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A B S T R A C T

Governments have been challenged to provide timely medical care to face the COVID-19 pandemic. The aim of
this research is to propose a novel inventory pooling model to help determine order sizes and safety inventories
in local hospital warehouses. The current study attempts to portray the availability of pharmaceutical items
in public hospitals facing COVID-19 challenges. Different from previous studies, this research builds upon
the consecrated theory of inventory pooling, extending it to pandemic circumstances where the intractability
of kurtosis and skewness in inventory models are critical issues for making sure that medicines have high
availability at a low cost. These effects on the total cost of inventory are explored and compared to a supply
system with no consolidation. A continuous-review model is assumed with allocation rules for centralization
and regular transshipment given different skewness and kurtosis structures for the demand, describing them
by the copula method. This method models a multivariate demand considering that the marginal distributions
of the demand can be specified by the Generalized Additive Model for Location, Scale and Shape, which offers
advantages to model demands considering virtually any marginal statistical distribution. Numerical simulations
and an illustrative example show that distributions of demands with more negative skewness and high kurtosis
favor to a greater extent obtaining lower total costs with regular supply transshipment systems. Our study
points out important considerations for supply chain decision makers when having demands with skewness
and kurtosis patterns.
. Introduction

The health care industry provides a vital service for modern so-
ieties (Kochan, Nowicki, Sauser, & Randall, 2018). Analogously to
hat happens in other sectors, the health care industry competes
ased on time and quality. With the outbreak of COVID-19, several
ations deployed a war effort in delivering goods and services to
elp control the pandemic, including the hospital care industry. In
hile, for instance, efforts have been made to increase the installed
apacity for diagnoses, beds for critical patient care, as well as hospital
quipment and supplies, including medication. Therefore, responsive
nd timely health care operations play a significant contribution to
ocio-economic integrity, promoting patient survival in rural and urban
reas. What Newhouse (1970) said: ‘‘hospital services seem to be desirable
n some ethical sense, which justifies the claim that consumers have a right
o medical care’’, applies nowadays more than ever. We thus posit that
he importance of hospitals in times of disaster provides leverage to
onsumer rights with respect to medical care, which in turn presents
n indirect significant impact on the entire economy in the support and

∗ Correspondence to: Gran Bretaña 1093, Playa Ancha, Valparaiso, Chile.
E-mail address: fernando.rojas@uv.cl (F. Rojas).

provision of rural and urban populations. This being the case, improved
availability of pharmaceutical items at low cost is deemed necessary to
prevent such disasters (Hamzah & See, 2019), being the ultimate means
of survival for rural and urban communities.

In this regard, the inventory consolidation effect (or portfolio effect)
has been a highly analyzed topic in logistics literature (Askin, Baffo, &
Xia, 2014; Ballou, 1981; Ballou & Burnetas, 2003; Dolati Neghabadi,
Evrard Samuel, & Espinouse, 2019). Companies often satisfy the de-
mand per unit of time (DPUT) with an independent system (IS) of
supply, in which each point of sale (or demand area) is exclusively
served by dedicated facilities; see Ballou and Burnetas (2003), Dolgui,
Tiwari, Sinjana, Kumar, and Son (2018) and Tyagi and Das (1998).
Note that there is no consolidation effect in an IS of supply. When the
variability of the DPUT and the lead time (LT) are high, companies
can reduce them by using grouped orders; see Wanke (2009). In that
case, the DPUT may be satisfied with an inventory pooling that uses
a centralized supply or a regular supply employing transshipment.
Observe that transshipment assumes that a part of the demand is
supplied from locations that supply different points of departure, even
ttps://doi.org/10.1016/j.cie.2021.107591

vailable online 9 August 2021
360-8352/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cie.2021.107591
http://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107591&domain=pdf
mailto:fernando.rojas@uv.cl
https://doi.org/10.1016/j.cie.2021.107591


F. Rojas, P. Wanke, F. Bravo et al. Computers & Industrial Engineering 161 (2021) 107591

t
t
a
(

though there may not be a quantity of inventory on hand at the original
supply location; see Evers (1996) and Rayat, Musavi, and Bozorgi-Amiri
(2017). When both systems are compared, the inventory pooling often
provides lower costs than when using the IS of supply.

The consolidated total cost (TCc) of an inventory pooling and the
otal cost of an IS of supply (TCi) are composed of various costs related
o safety stocks and average quantities of inventories stored, ordered,
nd distributed during a cycle; see Knofius, van der Heijden, and Zijm
2019) and Wanke and Saliby (2009). The TCc is subject to changes

according to the allocation rules that determine if it is more convenient
to centralize the warehouses to supply the demand or regularly occupy
a transshipment policy; see Wen, Choi, and Chung (2019). The decision
of which allocation rule is more convenient for inventory pooling is
made after comparing the corresponding TCc.

To the best of our knowledge, the consolidation effect has been
mostly studied assuming independent and normally distributed DPUTs,
but when satisfying each point of sale or delivery, DPUTs are random
variables (RVs) that may show any shape (Sadeghi & Niaki, 2015).
For the statistical distributions of RV independently and identically
distributed (IID), such as the DPUTs , a statistical moment is a particular
calculable dimension of the shape of its probability density functions
(PDFs). The zero-th moment is always 1, the 1-th moment is the mean,
the 2-th central moment is the variance, the 3-th standardized moment
is the skewness, while the 4-th standardized moment is the kurtosis;
see Casella and Berger (2002), Deng, Miao, Ma, Wei, and Feng (2020)
and Lin, Sun, and Yu (2020). As we will see later in the background
of this paper, all these moments are related, and for this paper we will
postulate that they can influence inventory consolidation decisions.

Often an RV data set has a joint statistical distribution based on
marginal distributions with different skewness and kurtosis, as noted
in Chan, Lim, and McAleer (2005) and Escribano and Pfann (1998).
This structure of dependence of the DPUT can be described by the
copula method through the parametric specification and association of
the marginal statistical distributions that will make up a multivariate
joint distribution; see Autchariyapanitkul, Chanaim, and Sriboonchitta
(2014). Although theoretical foundations of copulas are complex, its
practical treatment is made simple using open source software such
as R (Kopczewski, Sobolewski, & Miernik, 2018). This approach is
made simpler than others, such as simulation (Qian, Li, & Hu, 2017).
In this context, it is essential to have excellent goodness of fit to
actual data for a theoretical description of the marginal statistical
distributions (Alavifard, 2019; Zhi, Wang, & Xu, 2020).

Generalized Additive Model for Location, Scale and Shape
(GAMLSS) is a semiparametric regression type model introduced by
Stasinopoulos and Rigby (2007) that allows great versatility in mod-
eling random variables, which can be used in describing multivariate
copulas of joint statistical distributions (Rohmer & Gehl, 2020).

In the current COVID-19 contingency scenario, drug demand pat-
terns have undergone major changes. This is materialized in the fact
that some products suffer large increases in the quantities demanded
(demand shock), while others suffer an abrupt drop in these quantities
requested for the treatment of patients. These changes in demand
patterns can be shown as an increase in kurtosis and skewness to the
right, in the first case, and as a decrease in kurtosis and left skewness
in the second case. In both cases, these demand patterns are critical in
determining the optimal lots to order and total inventory costs. In this
study we extend the possibility of treating the kurtosis and asymmetry
of the demand for critical items in the availability of pharmaceutical
products in public hospitals that face COVID-19 contingency issues. In
this context, the main contribution of this paper is to help understand
how the kurtosis and skewness of the demand for items affect the
supply systems of pooling and independent inventory policies and
their total costs. So, the general objective of this paper is to propose
a new methodology for studying how the skewness and kurtosis of
joint distributions of DPUTs affect the TCc of an inventory pooling

by using different allocation rules. The specific objectives are twofold:

2

(i) compare the total costs between systems with inventory pooling
and independent supply under a joint statistical distribution composed
of marginal distributions with different moment measures; and (ii)
analyze the changes in the indicators related to the inventory total costs
under different DPUT scenarios with different moment measures.

The remainder of the paper is organized as follows. In Section 2
we review literature regarding Healthcare inventory management and
Inventory pooling with skewness and kurtosis scenarios in uncertain
product demand. In the methodology of Section 3 we show how the
multivariate statistical distribution of DPUTs based on copulas with
different skewness and kurtosis of the marginal distributions affect
the TCc of inventories with different allocation rules. Also in this
section we design two simulation studies and an illustrative case with
their respective statistical analyses. Results are shown in Section 4.
Section 5 we provide managerial guidelines regarding the topic under
study. Section 6 shows the discussion, limitations, and possible future
research, and finally we presented our conclusions in Section 7.

2. Literature review

2.1. Healthcare inventory management

The literature has been investigating the issue of inventory man-
agement in the healthcare industry from different perspectives during
recent years. Table 1 summarizes the related studies over the past
decade.

2.2. Inventory pooling with skewness and kurtosis scenarios in uncertain
product demand

TCc usually corresponds to the sum of four components: (C1) con-
solidated safety stock (SSc) multiplied by the holding cost (HC), (C2)
consolidated cycle stock (CSc) multiplied by HC, (C3) consolidated dis-
tribution cost (DCc), and (C4) consolidated order cost (OCc); see Wanke
(2009) for details about these components. The uncertainty in the
DPUT and lead time (LT) of the items is important in determining
the sum of safety stocks that are consolidated in inventory pooling;
see Tallon (1993). Evers and Beier (1993) extended the SSc to mul-
tiple stocking points (locations or facilities) that serve the demand,
while Wanke (2014) did the same with the CSc. In the context of
reducing the TCc, Wanke (2009, 2014) and Wanke and Saliby (2009)
carried out a mathematical treatment of the consolidation effect consid-
ering three assumptions on the same safety-stock for the desired service
level in all locations, which are as follows: 1. continuously review the
model for lot-sizing; 2. define a reorder point as inventory control under
uncertainty of the lead time demand (LTD), so that the consolidation
does not affect the total average demand of the system; 3. variables
DPUT, LT, and LTD must be independent and identically distributed in
Gaussian form.

The allocation rules for the demand are an important aspect to
be considered in the consolidation effect. A first allocation rule cor-
responds to a given centralized location, which supplies the same
proportion of demand to each decentralized location, known as the
Tyagi and Das’ allocation rule. Under this rule, and considering the
DPUT as an IID RV, the maximum consolidation effect depends on the
LT conditions between locations. Note that the consolidation effect is
maximized when the TCc and inventory level are minimized. If both
centralized locations present equal LT means and standard deviations
(SDs), then the proportions of demand to be supplied in each decen-
tralized location should be equal. Otherwise, that is under different LT
means and/or SDs, a maximum consolidation effect is obtained when
inventories are centralized into a single location; see Wanke (2009).
In a second allocation rule, a location can supply a primary demand
area and also other demand areas, which in turn can be supplied by
other locations. This is known as Ballou and Burnetas’ allocation rule

and here one must ask whether a proportion of the demand should
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Table 1
Summary of previous studies in inventory management in the healthcare industry.

Authors Aim Method/data Results/implications

De Vries (2011) Investigate the shaping of inventory
management system

A qualitative exploratory case study 1. Inventory management system formation
is significantly affected by the interactive
relationships between different stakeholders
involved in the project
2. How to coordinate and balance the
different interests held by various
stakeholders is the challenge faced by top
management

Bhakoo, Singh,
and Sohal
(2012)

Investigate the inventory management
along this supply chain

Semi-structured interviews Inventory management across the supply
chain can be improved by collaborative
arrangement between manufacturers and
wholesalers/distributors

Zepeda, Nyaga,
and Young
(2016)

Examine the effects of horizontal
inter-organizational arrangements on
inventory costs for hospitals

A linear mixed effects model (LMM) with
random intercepts

Affiliation with local, regional, and national
systems has mitigating effects under weak
logistics services infrastructure with the
mitigating effect being greatest for
affiliation in local systems.

Gebicki,
Mooney, Chen,
and Mazur
(2014)

Evaluate the medication inventory
management

Event-driven simulation The trade off between patient safety and
cost can be addressed by incorporating drug
characteristics in the ordering decisions.

Wang, Cheng,
Tseng, and Liu
(2015)

Examine hospital inventory management A dynamic drum-buffer-rope replenishment
model

The optimal replenishment timing and
quantity of total inventory cost with no
stock-out occurrence can be effectively
determined by the model.

Niakan and
Rahimi (2015)

Examine the healthcare inventory
routing problem

A multi-objective mathematical model and
possibilistic fuzzy approach

The model proposed is superior in handling
uncertain parameters.

Forcina, Petrillo,
Bona, Felice, and
Silvestri (2017)

Target stocking level which minimizes
the total cost

Dynamic models the system while satisfying
the service level constraint

The proposed model has characteristics of
generality that allow the application in
other areas

Timajchi, Al-e
Hashem, and
Rekik (2019)

Examine the healthcare inventory
routing problem

Bi-objective mixed integer mathematical
programming

Risk routes can be avoided and the
economic supply network performance can
be increased by the transshipment option.

Saedi,
Kundakcioglu,
and Henry
(2016)

Investigate the optimal inventory policy
for a healthcare facility

A stochastic model Hospitals would benefit from inventory
pooling since products in the healthcare
industry, in particular in hospitals, have the
characteristics that they have limited
shelf-life.

Chen, Xiao,
Wang, and Lei
(2020)

Investigate the optimal order policies
and the inventory adjustment quantity
for a perishable products with a
two-period half-life

A stochastic optimization model 1. The expedited order plan performs better
in terms of product wastage risk control,
but it has a higher level of shortage risk
compared to the returns plan.
2. The risk of wastage and shortage in
inventory management can be effectively
controlled by combining the expedited
order plan and returns plan
be supplied by a primary location and the remainder by secondary
locations or not. In the assumption of IID DPUTs being considered,
regular transshipment (RT) offers a good alternative for positively
correlated DPUTs from all centralized locations with the possibility of
balancing high/low values of the LT mean and DPUT SD at different
centralized locations. It also seems to be the best system when the HC
is very low; see Wanke and Saliby (2009).

As mentioned, previous works on the consolidation effect topic are
based on the continuous review model under the assumption of IID
normal DPUTs. These works provided evidence that the corresponding
TCc decreased in different scenarios that considered the following
ndicators: (i) the correlation level between the DPUTs of the service
oints; (ii) the mean and SD of DPUTs and LTs; (iii) the security
actor for the LTD; and (iv) holding, order, and distribution costs.
or more details on these indicators and scenarios; see Wanke (2009)
nd Wanke and Saliby (2009). We can point out the following main
onclusions generated from previous works: (a) negative correlations
etween DPUTs and high values for SDs of DPUT are associated with
low TCc obtained by centralized systems; (b) positive correlations

nd low values for SDs of DPUT are associated with an IS of supply;
c) different SD (heterogeneity) for the LT is better handled by an
3

RT because this system combines and balances the DPUTs that are
served from different decentralized locations. The above findings are
confirmed theoretically for non-Gaussian distributions by Corbett and
Rajaram (2006). However, our study differs from the previous one since
we will explore the effect of left and right asymmetries and degree of
kurtosis on DPUTs distributions to conclude how these influence the
total costs between systems with inventory pooling and independent
supply obtained by allocation rules. Skewness is a measure that reflects
when a distribution or data set is symmetric or is shifted to the left
or right of the central data. Kurtosis is a measure of data and outliers
called tails, which can be heavy or light. Data with high kurtosis tend
to have heavy tails or outliers, while a dataset with low kurtosis tends
to have light tails or no outliers, where distributions with positive
kurtosis are called leptokurtic. Those with kurtosis around zero are
called mesokurtics and those with negative kurtosis are denominated
platykurtics. Fig. 1 illustrates these differences. Note that the leptokur-
tic distributions concentrate higher probabilities of occurrence in the
values close to the mean, while in the platykurtic the probabilities are
more distributed in the tails of the distribution, while the mesokurtic
distributions express the moderate cases of probabilistic distribution.

On the other hand, the right skewness implies that there is a shift of
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Fig. 1. Kurtosis and skewness of a distribution: (a) Leptokurtic, (b) Mesokurtic, (c) Platykurtic, (d) Right skewness, (e) Normal skewness, (f) Left skewness.
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the probabilities towards the data higher than the average, otherwise
with the left skew, while the normal symmetry corresponds well to a
Gaussian or normal distribution.

Nelsen (1999) introduced the copula method to describe the de-
pendence between RVs where the copula is a multivariate probability
distribution with uniform marginal statistical distribution for each
variable. Then, for the case of IID DPUTs, the copula method allows us
to obtain the joint probabilistic distribution of correlated RVs without
needing to know the joint distribution, which is easily obtainable from
real DPUT data. As mentioned in the introduction, it is possible to
use the GAMLSS model to model the marginal distributions of ran-
dom variables that make up the joint multivariate distribution. Unlike
generalized linear models (GLM), the GAMLSS considers a family of
generalized, discrete, or continuous statistical distributions, which can
have varying degrees of skewness and kurtosis. Thanks to its for-
mulation, it is possible to model any parameter of these statistical
distributions for the response variable linearly or not in an additive
parametric or non-parametric form of covariates with known or ran-
dom values; see Stasinopoulos, Rigby, and Akantziliotou (2008). The
advantage of using this type of statistical modeling is that GAMLSS is
a regression toolbox appropriate for a big dataset of response variables
that can consider linear or smoothing functions of predictive covariates
to model any parameter of location, scale, or shape of the statistical
distribution. The current packages available in R software (Stasinopou-
los, Rigby, Voudouris, Heller, & De Bastiani, 2015) allow working with
continuous (any type of skewness or kurtosis), discrete (including zero
inflated data), and mixture statistical distributions. Models can be se-
lected according to criteria of goodness of fit to the real data, as well as
by generating random numbers with arbitrary distributions of interest
for theoretical or empirical research (Rojas & Ibacache-Quiroga, 2020;
Rojas, Leiva, Wanke, Lillo, & Pascual, 2019).

Our proposal differs from what has been addressed in the literature
on the consolidation effect of inventories. We describe IID DPUT as a
marginal statistical distribution described by GAMLSS models, making
it possible to generate copulas to build joint multivariate with different
skewness and kurtosis from the marginal distributions and to explore
the TCc that leads to an inventory pooling by using different allocation
rules.

3. Methodology

3.1. How to describe the DPUT for an inventory item

GAMLSS formulation. Let 𝑌 be an IID RV corresponding to the DPUT.
If 𝑌 be the DPUT of an inventory item, we considered that 𝜇 is the
xpected value of a response variable. Consider to 𝑑 as a covariate. If
𝑓 (𝑦|𝜽) be a conditional PDF on parameters 𝜽 (𝐹𝑦|𝜽 is the conditional
umulative distribution function (CDF)), where 𝜽 = (𝜇, 𝜎, 𝜈, 𝜏)⊤ =
𝜃1, 𝜃2, 𝜃3, 𝜃4)⊤ is a vector of four distribution parameters. In the
AMLSS formulation, only 𝜇 is a function of the covariates, while 𝜇 and
4

are location and scale parameters, and 𝜈 and 𝜏 are shape parameters.
f {𝑦𝑖}, 𝑖 = 1,… , 𝑛 is an 𝑛 × 1 vector of the response variable to model,
onsidering 𝑘 = 1, 2, 3, 4 as parameters, then 𝑔𝑘 is a link functions
elated to the 𝑘th parameter 𝜽𝑘 and to covariates by the following
dditive models:

𝑔1(𝝁) = 𝜼1 = 𝑫1𝜷1 +
𝐽1
∑

𝑗=1
ℎ𝑗1(𝒅𝑗1), (1)

2(𝝈) = 𝜼2 =
𝐽2
∑

𝑗=1
ℎ𝑗2(𝒅𝑗2), (2)

𝑔3(𝝂) = 𝜼3 =
𝐽3
∑

𝑗=1
ℎ𝑗3(𝒅𝑗3), and (3)

𝑔4(𝝉) = 𝜼4 =
𝐽4
∑

𝑗=1
ℎ𝑗4(𝒅𝑗4), (4)

here 𝝁,𝝈, 𝝂, 𝝉 , 𝜼𝑡 and 𝒅𝑗1, for 𝑗 = 1,… , 𝐽𝑘 and 𝑘 = 1, 2, 3, 4, are 𝑛 × 1
ectors. 𝑫1 is an 𝑛 × 𝐽1 known matrix of variables and the regression
oefficients 𝜷1 to be estimated is a 𝐽1×1 vector. ℎ𝑗𝑘 is a semi-parametric
dditive function for the covariate 𝐷𝑗𝑘 evaluated at the vector 𝒅𝑗𝑘,
hich is assumed fixed and known.

For details of parameter estimate, diagnostic, and good fit on the
ata see Stasinopoulos and Rigby (2007).

oments, skewness, and kurtosis. If 𝐹 is a CDF of any statistical distri-
ution, considering the Riemann–Stieltjes integral (Liu, 2004), the 𝑛th
oment of the statistical distribution is expressed by:

′
𝑛 = E

[

𝑌 𝑛] = ∫

∞

−∞
𝑦𝑛 d𝐹 (𝑦)

ith E as an expectation operator for the mean.
The zero-th moment of any PDF is 1.
The first raw moment is the mean:

≡ E[𝑌 ].

The second central moment is the variance, and the square root of
he variance is the SD:

𝐷 ≡
(

E
[

(𝑦 − 𝜇)2
])

1
2 .

The normalized 𝑛th central moment of the RV 𝑌 is
𝜇𝑛
𝑆𝐷𝑛 =

E [(𝑌 − 𝜇)𝑛]
𝑆𝐷𝑛 ,

and represents the distribution.
The normalized third central moment is called the skewness. A

distribution that is skewed to the left has a negative skewness, and vice
versa. Zero values indicate symmetry of the distribution. The Fisher
coefficient of skewness (CSk) is defined as:

𝐶𝑆𝑘 =
𝜇′
3 ,
𝑆𝐷3
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where 𝜇′
3 is the third moment centered.

The fourth central moment is a measure of outliers values far from
the average distribution values and is denominated kurtosis. Statistical
distributions with kurtosis less than 3 are said to be ‘‘platykurtic’’, while
distributions with kurtosis greater than 3 are said to be ‘‘leptokurtic’’.
The Fisher coefficient of kurtosis (CK) is defined as:

𝐶𝐾 =
𝜇′
4

𝑆𝐷4
,

where 𝜇′
4 is the fourth moment centered.

Joint CDF 𝐹𝑌1 ,𝑌2 modeling by copulas. Now, let 𝑌1 and 𝑌2 be IID RVs
ith their unknown joint CDF 𝐹𝑌1 ,𝑌2 . Then, we have the relationship

(𝑎, 𝑏; 𝜌) = 𝐹𝑌1 ,𝑌2 (𝐹
−1
𝑌1

(𝑎), 𝐹−1
𝑌2

(𝑏)), 𝑎, 𝑏 ∈ [0, 1], (5)

where 𝜌 is a parameter of dependence between 𝑌1 and 𝑌2, which is
enoted as 𝜌 = 𝜌𝑌1 ,𝑌2 . The copula defined in (5) is assumed to be
ontinuous and twice differentiable. Thus, from (5) and Corbett and
ajaram (2006), we obtain that the probability density function (PDF)
ssociated with 𝐶(𝑢, 𝑣, 𝜌), which can be expressed as

(𝐹𝑌2 (𝑦2), 𝐹𝑌1 (𝑦1), 𝜌𝑌1 ,𝑌2 ) =
𝜕2𝐶

𝜕𝐹𝑌2𝜕𝐹𝑌1
.

For 𝑌 RV, the PDF 𝑓𝑌 defined on [0,∞) (non-negative support), is
a CDF

𝐹𝑌 (𝑦) = ∫

𝑦

0
𝑓𝑌 (𝑣)d𝑣

and a quantile function (QF) 𝑦(𝑞) = 𝐹−1
𝑌 (𝑞), for 0 < 𝑞 < 1. Note that

𝐹−1
𝑌1

(𝑎) and 𝐹−1
𝑌2

(𝑏), which can be obtained when marginal statistical
distributions are known or adjusted by the GAMLSS model from actual
data.

Readers interested in using copulas to describe correlated DPUTs in
consolidated effects are referred to Wanke (2014).

3.2. Consolidation effect

As mentioned in the introduction section, the TCc usually considers
the components C1, C2, C3, and C4 that contain, respectively, the
following elements:

SSc =
𝑚
∑

𝑓=1

√

√

√

√

√

(

E
( 𝑛
∑

𝑖=1
𝑤𝑖,𝑓𝑌𝑖

))2

Var(𝑇𝑓 ) + Var
( 𝑛
∑

𝑖=1
𝑤𝑖,𝑓𝑌𝑖

)

E(𝑇𝑓 ), (6)

CSc = 1
√

2HC

𝑚
∑

𝑓=1

√

√

√

√OC𝑓E
( 𝑛
∑

𝑖=1
𝑤𝑖,𝑓𝑌𝑖

)

, (7)

Cc = 1
2CSc

𝑚
∑

𝑓=1
OC𝑓E

( 𝑛
∑

𝑖=1
𝑤𝑖,𝑓𝑌𝑖

)

, (8)

DCc =
𝑚
∑

𝑓=1

𝑛
∑

𝑖=1
DCT𝑓,𝑖

𝑤𝑖,𝑓𝑌𝑖, (9)

where, for the centralized location 𝑓 , OC𝑓 is the order cost (ex-
ressed in USD$/order); HC𝑓 = HC is the holding cost (expressed
n USD$/unit); 𝑤𝑖,𝑓 is the proportion of the mean DPUT transferred
rom the decentralized location 𝑖 to the centralized location 𝑓 ; E(𝑇𝑓 )
s the LT mean; Var(𝑇𝑓 ) is the LT variance; and DCT𝑓,𝑖

is the unitary
ransportation distribution cost to move a single item from a centralized
ocation 𝑓 to a decentralized location 𝑖. Note that 0 ≤ 𝑤𝑖,𝑓 ≤ 1, for
ll 𝑖 = 1,… , 𝑛 and 𝑓 = 1,… , 𝑚, whereas ∑𝑚

𝑓=1 𝑤𝑖,𝑓 = 1, for all 𝑖,
ith 𝑚 being the number of centralized locations and 𝑛 the number
f decentralized locations, for 1 ≤ 𝑚 ≤ 𝑛.

With 𝑚 and 𝑛 defined above, the case 𝑚 = 𝑛 = 2 can be extended
o any value of 𝑚, 𝑛, with 𝑚 ≤ 𝑛. This is based on the previous
orks of Ballou and Burnetas (2003), Tyagi and Das (1998), Wanke

2009, 2014) and Wanke and Saliby (2009), which allows us to have
benchmark for comparing our results. When 𝑛 = 𝑚 = 2, Tyagi and
5

as’ allocation rule provides 𝑤1,𝑓 = 𝑤2,𝑓 = 𝑤𝑓 , for 0 ≤ 𝑤𝑓 ≤ 1, and
𝑚
𝑓=1 𝑤𝑓 = 1, with 𝑤2 = 1 − 𝑤1. However, under Ballou and Burnetas’

llocation rule, it is known that 𝑤1,1 = 𝑤2,2 = 𝑤𝑝, and 𝑤1,2 = 𝑤2,1 =
−𝑤𝑝, where the subindex 𝑝 denotes the primary location, that is, the

ocation assigned with highest proportion of demand. Observe that the
ptimal solution under Ballou and Burnetas’ allocation rule does not
nly behave differently from the solution obtained with Tyagi and Das’
llocation rule, but it also implies in different inventory pooling models;
ee Wanke (2009). Note that, under Ballou and Burnetas’ allocation
ule, both demand points are supplied exclusively by a warehouse,
nder an optimal solution where 𝑤𝑝 is zero or one (IS of supply),
ut under Tyagi and Das’ allocation rule, if 𝑤1 is zero or one, both
ecentralized locations share one single serving facility. Nevertheless,
hen the optimal values of 𝑤𝑝 are greater than zero and less than one,
T takes place under Ballou and Burnetas’ allocation rule. The above

mplies that both demand points are supplied by all the warehouses. 0 <
1 < 1 produces the same pattern as that Tyagi and Das’ allocation rule,
ut they do not correspond to optimal solutions; see Wanke (2014). The
se of these allocation rules results in a consolidated inventory cost,
llowing the decisions of both supply policies to be compared and to
pt for the one with the lowest total cost. The differences and how these
llocation rules operate are illustrated inFig. 2.

Next we describe how to calculate CSc, SSc, OCc, and DCc under
oth allocation rules. Then, under Tyagi and Das’ allocation rule in
he decentralized location 𝑖, expressions defined in (6)–(9) acquire the
unctional forms

SSc =

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√𝑤2
1

( 2
∑

𝑖=1
𝜇𝑖

)2

Var(𝑇1) +𝑤2
1Var

( 2
∑

𝑖=1
𝑌𝑖

)

E(𝑇1)

+

√

√

√

√

√(1 −𝑤1)2
( 2
∑

𝑖=1
𝜇𝑖

)2

Var(𝑇2) + (1 −𝑤1)2Var
( 2
∑

𝑖=1
𝑌𝑖

)

E(𝑇2)
⎞

⎟

⎟

⎟

⎠

,

CSc =

√

∑2
𝑖=1 𝜇𝑖

2HC

(

√

OC1𝑤1 +
√

OC2(1 −𝑤1)
)

,

OCc =
OC1𝑤1(𝜇1 + 𝜇2)

2CSc
+

OC2(1 −𝑤1)(𝜇1𝑡 + 𝜇2)
2CSc

,

DCc = DCT1,1
𝜇1 + DCT1,2

𝜇2,

where 𝜇𝑖, for 𝑖 = 1, 2, are defined as in (1), and

Var
( 2
∑

𝑖=1
𝑌𝑖

)

= Var(𝑌1) + Var(𝑌2) + 2𝜌𝑌2 ,𝑌1
√

Var(𝑌1)Var(𝑌2).

n addition, to calculate DCc, we assume (without loss of general-
ty) that inventories are consolidated at location 1. Under Ballou and
urnetas’ allocation rule, and considering 𝑌𝑖 in the decentralized lo-
ation 𝑖, (6), (7), (8), and (9) acquire the following functional forms,
espectively.

SSc =
(

((𝑤𝑝𝜇1 + (1 −𝑤𝑝)𝜇2)2Var(𝑇1) + (𝑤2
𝑝Var(𝑌1) + (1 −𝑤𝑝)2Var(𝑌2)

+ 2𝜌𝑌2 ,𝑌1
√

Var(𝑌1)Var(𝑌2)𝑤𝑝(1 −𝑤𝑝))E(𝑇1))
)1∕2

+
(

(((1 −𝑤𝑝)𝜇1 +𝑤𝑝𝜇2)2Var(𝑇1) + ((1 −𝑤𝑝)2Var(𝑌1)

+𝑤2
𝑝Var(𝑌2)2𝜌𝑌2 ,𝑌1

√

Var(𝑌1)Var(𝑌2)𝑤𝑝(1 −𝑤𝑝))E(𝑇2))
)1∕2

,

CSc = 1
√

2HC

(√

OC1(𝑤𝑝𝜇1 + (1 −𝑤𝑝)𝜇2)

+
√

OC2
(

(1 −𝑤𝑝)𝜇1 +𝑤𝑝𝜇2
)

)

,

Cc =
OC1

(

𝜇1𝑤𝑝 + 𝜇2(1 −𝑤𝑝)
)

2CSc
+

OC2

(

(1 −𝑤𝑝)𝜇1 +𝑤𝑝𝜇2
)

2CSc
,

DCc =
(

𝑤𝑝DCT1,1
+ (1 −𝑤𝑝)DCT2,1

)

𝜇1

+
(

𝑤 DC + (1 −𝑤 )DC
)

𝜇 . (10)
𝑝 T2,2 𝑝 T1,2 2
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Note that, in (10), one must suppose that the highest proportions 𝑤𝑝
of 𝜇𝑖 are supplied with less DCT1,1

and DCT2,2
. In contrast, for the

ecentralized location 𝑖 considered under an IS of supply, the safety
tock, cycle stock, order cost, and distribution cost are respectively
iven by

SS𝑖 =
𝑚
∑

𝑓=1

√

√

√

√E(𝑇𝑓 )Var
( 𝑛
∑

𝑖=1
𝑌𝑖

)

+
𝑛
∑

𝑖=1
𝜇2
𝑖 Var(𝑇𝑓 ), (11)

CS𝑖 =

√

OC
𝑖
𝜇𝑖

2HC , OC𝑖 =
𝑚
∑

𝑓=1

OC𝑓𝜇𝑖
2CS𝑖

, DC𝑖 = 𝜇𝑖DCT𝑓,𝑖
. (12)

Following Tallon (1993), it is possible to define a consolidation
ffect indicator, which corresponds to ‘‘the percentage reduction in
ggregate safety stock made possible by consolidation effect of in-
entory from multiple locations into one location’’. This indicator of
onsolidation effect of inventory into location 𝑖 is defined as

E𝑖 = 1 −
CSc + SSc
CS𝑖 + SS𝑖

, 𝑖 = 1,… , 𝑛. (13)

As shown the SD of the DPUTs is an important parameter for deter-
mining both SS𝑐 and SS𝑖 as defined in (6) and (11), respectively. In turn,
in Section 3.1 we have reviewed that the SD is an important input for
calculating CSk and CK. Therefore, it is expected that these indicators
influence SS𝑐 and SS𝑖, and in turn the total costs reached in supply
systems with inventory pooling under the allocation rules of Ballou and
Burnetas (2003) and Tyagi and Das (1998) or independent systems.

3.3. Computational framework and simulation scenarios

We present details of the computational framework utilized. We
implemented our proposal in a non-commercial software named R;
see http://www.r-project.org. See Rojas, Leiva, Wanke, and Marchant
(2015), Rojas, Wanke, Coluccio, Vega-Vargas, and Huerta-Canepa
(2020), Wanke, Ewbank, Leiva, and Rojas (2016) and Wanke and Leiva
(2015) to visualize R applications in supply models .

The joint distribution when facing IID DPUT is simulated by using
the copula method, occupying and R package denominated copula;
ee Hofert, Kojadinovic, Maechler, and Yan (2014). The copula pack-
ge provides classes of commonly used Archimedean, elliptical, and
xtreme value copulas, as well as other copula families such Gaussian.
6

his package also contains methods for computing values related to
DF and CDF, generating a random number, plotting tools, fitting of
opula models and goodness-of-fit tests.

The mathematical programming of inventory pooling models is
erformed by an R package named nloptr; see Johnson (2014).

Recall that 𝑚 is the number of centralized locations and 𝑛 the num-
er of decentralized locations, but the results presented here consider
= 𝑛 = 2, because the results of this situation can be extended to any

alue of 𝑚, 𝑛, with 𝑚 ≤ 𝑛.
The simulation study 1 of scenarios establish different: (i) inventory

olicies (supply and allocation), (ii) statistical models for the DPUT,
nd (iii) mathematical programming to minimize costs. We used three
ypes of supplies for inventory policies (IS/RT/inventory centralization
IC–) and two allocation rules (Tyagi and Das/Ballou and Burnetas).
he statistical modeling is based on IID DPUTs assuming a Weibull type
(WEI3) statistical distribution, see Stasinopoulos et al. (2020). We can

stimate the parameters of the WEI statistical distribution proposed for
he modeling of 𝑌1 and 𝑌2, by using the histDist command of the
gamlss package. We can also calculate the variances as:

sd2
𝑌1

= 𝜇2
𝑌1
{

𝛤 ( 2
𝜎𝑌1 +1

)

𝛤 ( 1
𝜎𝑌1 +1

)2
− 1}, and

sd2
𝑌2

= 𝜇2
𝑌2
{

𝛤 ( 2
𝜎𝑌2 +1

)

𝛤 ( 1
𝜎𝑌2 +1

)2
− 1}, where 𝛤 (⋅) is the gamma function.

We assumed several structures of skewness and kurtosis with bivari-
te WEI3 marginal statistical distributions for the DPUT. We used the
ollowing indicators with WEI3 statistical distribution to generate these
0,000 scenarios:
Statistical parameters
∙ 𝜇𝑌1 , 𝜇𝑌2 ∼ U(80, 120),
∙ 𝜎𝑌1 , 𝜎𝑌2 ∼ U(0.8, 20),
Correlation parameter
∙ 𝜌𝑌1 ,𝑌2 ∼ U(−1, 1),
Costs
∙ DCT1,1

,DCT2,2
∼ U(0.20, 0.25),

∙ DCT1,2
,DCT2,1

∼ U(0.25, 0.30),
∙ HC ∼ U(1, 1000),
∙ OC1 ∼ U(17, 67) and OC2 ∼ U(20, 140);
The choice of these values is based on previous studies on the topic;

see Wanke (2009, 2014) and Wanke and Saliby (2009).

http://www.r-project.org


F. Rojas, P. Wanke, F. Bravo et al. Computers & Industrial Engineering 161 (2021) 107591

o

T

u
I
m

T

T
b
d
t
i
e

T

u
N
b
o

C
c
w
𝑛
s
t

t
c
a
w
d

3

t
i
f
C
W
e
d
m
a
o
i

f
a
a
a
d
i
p

3

t
a
K
o

g
d

t
o
p
f
c
t
o
v
a
c

a
o
h
t
w
b
a
i
c
i
o

4

4

t
w
s
a
s
s
1

o
m
p
f
C
F
t
t
t
t
f

o
r
i
s
c
c
p
f
a
t

c
c

Mathematical programming is performed to minimize the total cost
f inventory by using an objective function

Cc = HC(CSc + SSc) + DCc + OCc, (14)

nder Tyagi and Das’ allocation rule, that is, when considering an
C. If the IS of supply is utilized, the mathematical programming for
inimizing the total cost of inventory uses the objective function

C𝑖 = HC(CS𝑖 + SS𝑖) + DC𝑖 + OC𝑖, 𝑖 = 1, 2. (15)

hus, such as Wanke (2009), we can compare IC and IS of supply
ased on (14) and (15), respectively, but now assuming WEI3 statistical
istributions for the DPUTs. We call this Case 1. Furthermore, in
his simulation study, we compare IC, RT, and IS of supply, such as
n Wanke and Saliby (2009), employing the total cost of inventory
xpressed as

Cc = HC(CSc + SSc) + DCc, (16)

nder both Tyagi and Das’ and Ballou and Burnetas’ allocation rules.
ote that (16) is considered as the objective function to be minimized
y the corresponding mathematical programming and compared to the
ptimization of (15). This is Case 2.

Recall that the TCc defined in (14) is formed by the components
1, C2, C3, and C4, while, the TCc defined in (16) only considers
omponents C1, C2, and C3. Analogously for the TC𝑖 defined in (15),
here the cost components considered are the same. Then, for 𝑚 =
= 2, we considered 10,000 different scenarios to minimize the corre-

ponding total cost, by using mathematical programming for obtaining
he optimum values of C1, C2, C3, and C4.

Our simulation study 2 is based on Wanke (2009), who showed
hat the behavior of the consolidation effect indicator given in (13)
an be treated as a response variable described by a linear function
ccording to its relationship with the ratio 𝑅 = Var(𝑇2)∕Var(𝑇1). Then,
e explored the relationships of the consolidated effect in respect to
ifferent parameters of inventory model, for segments of 𝑅.

.4. Illustrative actual case

We illustrate our methodology with a real demand data set of
wo identical products with bivariate demand obtained from a mix of
nventories that will allow us to show the methodology proposed. We
irst performed a descriptive statistical analysis for the demand data.
onsidering a goodness-of-fit analysis of the statistical distribution
EI3, we postulated it to theoretically describe the data and then

stimated parameters that theoretically define their marginal statistical
istribution and correlation. Second, we used inventory management
odels of centralization under the rules of Ballou and Burnetas (2003)

nd Tyagi and Das (1998) and compared their results of TCs with IS
f supply, considering parameters, indicators, and the diverse costs
nvolucrate.

In this illustration, we performed a statistical analysis of the demand
or two identical products used in palliative COVID-19 treatments in
nonymous Chilean public hospital pharmacies. Our proposal is to be
ble to optimize an inventory system for these services and reduce costs
ssociated with the centralization or decentralization of decisions. The
ata to be analyzed corresponded to a monthly demand of salbutamol
nhalers from two hospital pharmacies. The actual supply system of this
roduct is of the type IS.

.5. Statistical analysis

In simulation study 1, groups of scenarios were formed according
o the grouping policy (IC, RT or IS) that achieves the lowest TC by
llocation rules. We analyzed these results through the non-parametric
ruskall–Wallis test. This test makes it possible to relate the median

f the different parameters of the inventory model used, in each of the i

7

roups (IC, RT, or IS) and to verify if these show statistically significant
ifferences.

For statistical analysis of simulation study 2, we explored the rela-
ionships of the consolidated effect with respect to different parameters
f inventory model, through B-Spline regression, as this approach
rovides a way to estimate the values of a response variable between
ixed points called knots. A polynomial regression between nodes is cal-
ulated, where the splines are a series of chained polynomial segments
hat are joined into knots. The choice of the degree of freedom (minus
ne if there is an intercept) generates knots at suitable quantiles of the
ariable, which will ignore missing values. An analogous regression
nalysis considering normal statistical distribution for DPUTs can be
onsulted in Table 7 of Wanke (2009).

We apply descriptive statistics to the DPUTs data for the statistical
nalysis of our illustrative actual case, then we estimate the parameters
f the WEI 3 statistical distribution of these variables, by using the
istDist command of the gamlss package in R software. We check

he goodness of fit by examining their quantile–quantile (QQ) plots,
hich allows us to verify differences between the probability distri-
ution of a population from which a random sample has been drawn
nd a theoretical distribution such as WEI3 used for comparison. Its
nterpretation is simple, since the graph should follow a diagonal within
onfidence intervals. Finally, by means of the optimization methods
ndicated in the preceding subsections, we conclude the best method
f grouping inventories for the actual case.

. Results

.1. Results simulation study I

Firstly, in the 10,000 scenarios proposed for both Cases 1 and 2 and
heir skewness and kurtosis frameworks for the DPUTs, we analyzed
hich supply system would provide the minimum total cost. The results

how that the total costs described by (14) for Case 1 or (16) for Case 2
re smaller when generated by an IC. For Case 1, we get 7590 optimum
cenarios under IC and 2410 with an IS of supply. The number of
cenarios with IC, RT, and IS of supply for Case 2 are 6270, 1830, and
900, respectively.

Secondly, using the 10,000 scenarios with IS, IC, and RT, we carried
ut a statistical analysis that is composed of two parts: (i) to identify the
ore relevant component (C1-C4) of the total cost from a quantitative
erspective; and (ii) to determine whether statistically significant dif-
erences are presented for the association of the statistical indicators
Sk, CK, and costs with the supply systems in Cases 1 and 2. See
ig. 3 to examine the shape of the statistical distribution and define
he most important component of each total cost. Note that in all cases
he values of the distribution median lead to the conclusion that C1 is
he component with the highest proportion in total costs. We computed
he number of scenarios where C1 is the larger component of total costs
or Cases 1 and 2.

For Case 1 with DPUTs, C1 corresponds to the highest proportion
f the total cost in 8950 and 1050 scenarios under IC and IS of supply,
espectively. For Case 2 with DPUTs, C1 is the most relevant component
n 4570, 5310, and 120 scenarios under modalities RT, IC, and IS of
upply, respectively. We compared the value of cost associated with
omponent C1 regarding the sum of costs related to the remaining
omponents (C2, C3, and C4) using the 𝜒2 test for the difference of
roportions and detected statistically significant differences at 1% in
avor of C1 for both Cases 1 and 2 under IC, RT, and IS of supply. This
llows us to conclude that C1 is the most relevant component of the
otal cost.

We used the Kruskal–Wallis (KW) test to compare medians of indi-
ators related to statistical parameters, symmetry coefficient , kurtosis
oefficient, and costs associated with IC, RT, and IS of supply. This test
s carried out when minimum total costs are reached in Cases 1 (IC and
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Table 2
Medians and corresponding Kruskal–Wallis 𝑝-value when comparing them for the

odel, indicator, and supply system mentioned based on the total cost for Case 1.
Indicator IC IS KW 𝑝-value

𝜇𝑌1 100.80 100.08 0.015
𝜇𝑌2 100.78 99.98 0.868
𝜎𝑌1 10.78 9.12 <0.001
𝜎𝑌2 11.05 8.94 <0.001
sd𝑌1 221.11 205.64 <0.001
sd𝑌2 226.61 201.33 <0.001
CSk1 −0.63 −0.55 <0.001
CSk2 −0.64 −0.57 <0.001
CK1 3.57 3.52 0.009
CK2 3.56 3.56 0.094
𝜌𝑌1 ,𝑌2 −0.14 0.47 <0.001
𝜇𝑇1 2.96 2.66 <0.001
𝜇𝑇2 2.93 2.81 <0.001
𝜎𝑇1 1.26 1.26 0.338
𝜎𝑇2 1.29 1.18 <0.001
DCT1,1

0.124 0.13 0.020
DCT2,2

0.126 0.12 <0.001
DCT1,2

0.374 0.37 <0.001
DCT2,1

0.375 0.38 0.036
HC 0.36 0.14 <0.001
OC1 41.08 43.10 0.052
OC2 83.78 81.03 <0.001

IS of supply) and 2 (IC, RT and IS of supply). Tables 2 and 3 present
the results for Cases 1 and 2, respectively.

Note that the medians of 𝜌𝑌1 ,𝑌2 , 𝜎𝑌1 , 𝜎𝑌2 , CSk1, CSk2, CK1, and
CK2 are associated with a decrease in the total cost under Case 2,
as indicated in Table 3. Positive coefficients of correlation and small
demand variability are associated with the IS of supply, confirming
the findings of Wanke and Saliby (2009). It is also possible to see
that minors CSk1, CSk2, CK1, and CK2, are associated with the IS
f supply, indicating that the skewness and kurtosis of the statistical
istribution of the data of DPUTs are factors to consider in the decision
f the best supply system (centralized or non-centralized). As pointed
ut in Section 3.1, these parameters directly impact to the variances,
orrelations, skewness, and kurtosis of DPUTs , which are elements of
Sc and SS𝑖. Table 4 provides the medians of a selection of parameters
hat favor IC, RT, and IS of supply, considering only C1 or the HC of the
afety stock (C1 = HC × SS). We realize that only the highest kurtosis
nd correlations favor lower C1 with RT systems and the effect of the
ther indicators is significant, but not always with the same type of
ssociation in relation to the total costs under (16), which balances the
ariances, skewness, and kurtosis of the better DPUTs. Furthermore,
n comparison to total costs under (16), 𝜌𝑌1 ,𝑌2 does not need to be so
egative for inducing lower C1 in an IC. However, it must increase
o highly positive values to favor lower C1 in the IS of supply and to
ositive values close to zero to induce lower C1 in the RT.

.2. Results simulation study II

Table 5 shows the estimates of the regression coefficients obtained
or the conditional expectance of the response variable related to
onsolidated effect (CE), standard errors (SE), and 𝑝-value of the corre-
ponding 𝑡-test, with knots at suitable quantiles of 𝑅 < 1. The adjusted
-squared obtained for the B spline regression model was 0.7762. Note

hat not all the indicators turned out to be statistically significant
s predictors of CE, and some of them changed the direction of the
elationship by changing the knots at suitable quantile of CE related
ith 𝑅. sd𝑌1 , sd𝑌2 and 𝜌𝑌1 ,𝑌2 , are always positive or negative predictors
f CE, respectively, for both the indicators and their B splines. However,
Sk𝑌1 , CSk𝑌2 , CK𝑌1 and CK𝑌2 , change the direction of the relationship
ith respect to CE according to the indicators or its B splines occupied
s predictors.
8

able 3
edians and corresponding Kruskal–Wallis 𝑝-value when comparing them for the model
entioned, indicator, and supply system, based on the total cost for Case 2.
Indicator IC IS RT KW 𝑝-value

𝜇𝑌1 100.92 101.98 98.27 <0.001
𝜇𝑌2 100.66 99.93 101.21 0.797
𝜎𝑌1 10.47 9.60 11.27 <0.001
𝜎𝑌2 10.93 8.88 10.93 <0.001
sd𝑌1 218.77 207.73 223.35 0.002
sd𝑌2 224.62 199.46 232.23 <0.001
CSk1 −0.63 −0.58 −0.62 <0.001
CSk2 −0.64 −0.56 −0.64 <0.001
CK1 3.52 3.50 3.68 <0.001
CK2 3.56 3.61 3.56 0.009
𝜌𝑌1 ,𝑌2 −0.15 0.44 0.09 <0.001
𝜇𝑇1 2.96 2.68 2.83 0.002
𝜇𝑇2 2.98 2.80 2.62 <0.001
𝜎𝑇1 1.24 1.29 1.37 <0.001
𝜎𝑇2 1.29 1.17 1.24 <0.001
DCT1,1

0.124 0.126 0.126 <0.001
DCT2,2

0.126 0.123 0.127 <0.001
DCT1,2

0.374 0.373 0.374 0.105
DCT2,1

0.375 0.376 0.374 0.026
HC 0.33 0.10 0.47 <0.001
OC1 41.42 43.51 38.61 <0.001
OC2 87.01 82.03 68.85 <0.001

Table 4
Medians and corresponding Kruskal–Wallis 𝑝-value when comparing them for the
indicator mentioned and supply system based on the component C1.

Indicator IC IS RT KW 𝑝-value

𝜇𝑌1 100.75 104.63 100.28 <0.001
𝜇𝑌2 100.75 93.11 100.71 <0.001
𝜎𝑌1 9.75 6.99 10.99 <0.001
𝜎𝑌2 10.80 8.65 10.67 0.394
sd𝑌1 216.97 244.95 222.33 0.015
sd𝑌2 221.21 195.57 224.20 0.082
𝜌𝑌1 ,𝑌2 −0.09 0.90 0.05 <0.001
CSk1 −0.61 −0.19 −0.63 <0.001
CSk2 −0.63 −0.60 −0.63 0.169
CK1 3.52 3.74 3.58 <0.001
CK2 3.56 3.42 3.57 0.546

4.3. Results from illustrative actual case

The bivariate data set from the illustrative actual case has a length
of 36 months (see Section 3.4), and its descriptive statistical measures
can be consulted in Table 6.

Table 7 shows estimated parameters for the modeling by WEI3
statistical distribution of 𝑌1 and 𝑌2 by GAMLSS.

In Fig. 4, we show an empirical quantile–quantile (QQ) plot to check
the good standing of our proposed statistical distribution (WEI3) to
model the DPUT. Since almost every values is within the confidence
bands, we conclude that the statistical distribution proposed fits the
data perfectly.

The rest of the coefficients required for carrying out the nonlinear
optimizations under the centralization rules of Ballou and Burnetas
(2003) and Tyagi and Das (1998) can be found in Table 8 with the
results of TCs with respect to IS of supply compared.

Now we can compare the TC obtained under the centralization
rules of Ballou and Burnetas (2003) and Tyagi and Das (1998) with
the IS supply system. Under the Tyagi and Das (1998) allocation rule,
𝑤1 = 0.999 (indicating centralization in localization 1) obtained a TC
= 77.04 USD$. Under the Ballou and Burnetas (2003) allocation rule,
𝑤𝑝 = 0.624 (it is indicating an RT system) and obtained a TC = 99.42
USD$, while the IS of supply obtained a TC = 87.53 USD$, concluding
that the best supply policy in this actual case is that of centralization
in localization 1.
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Fig. 3. (a) C1 in IC, RT, and IS, (b) C2 in IC, RT, and IS (c) C3 in IC, RT, and IS, (d) C4 in IC, RT, and IS.

Fig. 4. QQ plot for statistical distributions proposal for 𝑌1 and 𝑌2.
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Table 5
Estimate, its SE and 𝑝-value of the 𝑡-test of the parameter associated with the covariate
indicated in the B-spline regression of the consolidated effect using a WEI3 model for
DPUT, for the 𝑅 knots.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1518 0.0468 3.24 0.0012
𝜇𝑌1 0.0001 0.0002 0.74 0.4580
bs(𝜇𝑌1 )1 0.0005 0.0075 0.07 0.9440
bs(𝜇𝑌1 )2 −0.0189 0.0074 −2.54 0.0110
𝜇𝑌2 0.0002 0.0001 1.50 0.1336
bs(𝜇𝑌2 )1 0.0119 0.0073 1.63 0.1036
bs(𝜇𝑌2 )2 −0.0120 0.0072 −1.66 0.0965
𝜎𝑌1 −0.0072 0.0041 −1.76 0.0786
bs(𝜎𝑌1 )1 −0.0782 0.0415 −1.89 0.0594
bs(𝜎𝑌1 )2 −0.0321 0.0143 −2.25 0.0248
𝜎𝑌2 −0.0051 0.0047 −1.10 0.2727
bs(𝜎𝑌2 )1 −0.1165 0.0467 −2.50 0.0126
bs(𝜎𝑌2 )2 −0.0036 0.0156 −0.23 0.8169
CSk𝑌1 0.0404 0.0101 4.01 0.0001
bs(CSk𝑌1 )1 −0.0367 0.0225 −1.63 0.1035
bs(CSk𝑌1 )2 −0.1637 0.0367 −4.46 0.0000
CSk𝑌2 −0.0303 0.0119 −2.55 0.0108
bs(CSk𝑌2 )1 0.0070 0.0209 0.33 0.7386
bs(CSk𝑌2 )2 0.0965 0.0424 2.28 0.0227
sd𝑌1 0.0004 0.0001 4.10 0.0000
bs(sd𝑌1 )1 0.1451 0.0368 3.94 0.0001
bs(sd𝑌1 )2 0.0576 0.0130 4.44 0.0000
sd𝑌2 0.0003 0.0001 2.95 0.0032
bs(sd𝑌2 )1 0.1111 0.0321 3.46 0.0005
bs(sd𝑌2 )2 0.0391 0.0127 3.09 0.0020
𝜌𝑌1 ,𝑌2 −0.2379 0.0023 −102.90 0.0000
bs(𝜌𝑌1 ,𝑌2 )1 −0.1173 0.0073 −16.16 0.0000
bs(𝜌𝑌1 ,𝑌2 )2 −0.0227 0.0073 −3.10 0.0019
CK𝑌1 −0.0204 0.0069 −2.96 0.0031
bs(CK𝑌1 )1 −0.0192 0.0142 −1.35 0.1757
bs(CK𝑌1 )2 0.1443 0.0443 3.26 0.0011
CK𝑌2 0.0115 0.0058 1.97 0.0491
bs(CK𝑌2 )1 0.0430 0.0151 2.85 0.0043
bs(CK𝑌2 )2 −0.1477 0.0459 −3.21 0.0013
𝜇𝑇1 −0.0058 0.0012 −4.90 0.0000
bs(𝜇𝑇1 )1 0.0266 0.0074 3.60 0.0003
bs(𝜇𝑇1 )2 −0.0111 0.0073 −1.52 0.1285
𝜇𝑇2 0.0166 0.0012 14.02 0.0000
bs(𝜇𝑇2 )1 0.0219 0.0072 3.05 0.0023
bs(𝜇𝑇2 )2 0.0030 0.0076 0.39 0.6959
𝜎𝑇1 −0.0496 0.0031 −16.05 0.0000
bs(𝜎𝑇1 )1 0.0155 0.0074 2.09 0.0368
bs(𝜎𝑇1 )2 −0.0260 0.0073 −3.58 0.0003
𝜎𝑇2 −0.0059 0.0032 −1.84 0.0654
bs(𝜎𝑇2 )1 −0.0381 0.0075 −5.07 0.0000
bs(𝜎𝑇2 )2 −0.0216 0.0074 −2.93 0.0034
DCT1,1

−0.0379 0.0936 −0.40 0.6855
bs(DCT1,1

)1 0.0038 0.0073 0.52 0.6039
bs(DCT1,1

)2 −0.0119 0.0073 −1.62 0.1048
DCT2,2

0.5270 0.0941 5.60 0.0000
bs(DCT2,2

)1 0.0158 0.0074 2.14 0.0324
bs(DCT2,2

)2 −0.0434 0.0074 −5.91 0.0000
DCT1,2

−0.2831 0.0963 −2.94 0.0033
bs(DCT1,2

)1 −0.0119 0.0072 −1.64 0.1004
bs(DCT1,2

)2 0.0035 0.0076 0.46 0.6463
DCT2,1

0.0527 0.0914 0.58 0.5645
bs(DCT2,1

)1 0.0043 0.0072 0.59 0.5550
bs(DCT2,1

)2 −0.0186 0.0074 −2.52 0.0117
HC −0.0714 0.0069 −10.34 0.0000
bs(HC)1 −0.0388 0.0073 −5.31 0.0000
bs(HC)2 0.0060 0.0073 0.83 0.4093
OC

1
−0.0003 0.0001 −3.54 0.0004

bs(OC
1
)1 0.0008 0.0074 0.11 0.9130

bs(OC
1
)2 −0.0043 0.0075 −0.57 0.5686

OC
2

0.0003 0.0000 8.77 0.0000
bs(OC

2
)1 0.0000 0.0075 0.00 0.9994

bs(OC
2
)2 −0.0038 0.0073 −0.52 0.6041
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Table 6
Descriptive measures for the monthly demand bivariate data set indicated.

Measure 𝑌1 (units/month) 𝑌2 (units/month)

Min. (units/month) 16.14 84.01
1st Qu. (units/month) 58.36 106.34
Median (units/month) 79.89 113.39
Mean (units/month) 97.82 112.29
3rd Qu. (units/month) 127.77 121.29
Max. (units/month) 263.21 129.95
CSk (dimensionless) 0.62 −0.64
CK (dimensionless) 3.06 3.75

𝜌𝑌1 ,𝑌2 (dimensionless) −0.35 p < 0.05

Table 7
Estimated parameters for modeling by WEI3 statistical distribution of 𝑌1 and 𝑌2 by
GAMLSS.

Estimated parameters 𝑌1 (units/month) 𝑌2 (units/month)

𝜇 (units/month) 98.4 112
𝜎 (dimensionless) 1.7 12.3
sd2 (units/month)2 7926.34 71 588.35
AIC (dimensionless) 392 278

5. Management implications in decision making

Next we discuss the implications of our results for decision making
management in the field of logistics by first referring to the importance
of considering skewness and kurtosis patterns that DPUT data can have
when inventory consolidation is desirable. With the results obtained,
we conclude that these skewness and kurtosis patterns have a direct
influence on parameters related to the variance and correlation of
DPUTs. These parameters directly impact the component C1 of the total
costs of inventory, which is the most relevant component in all the
methods of inventory pooling and IS of supply; see Fig. 1. A simple
way to detect skewness and kurtosis patterns of the DPUT is by using
histograms. For an interpretation of these graphs, the interested reader
is referred to Brown (1997). A selection of the main implications is
provided next:

• ∙ In general, DPUT distributions with a more negative skewness
(CSk < 0) and more leptokurtic, that is to say more pointed
and with thicker tails than normal (CK > 3), favor to a greater
extent obtaining lower total costs with RT systems. The RT of
supply is favored given that it is associated with an increase in
the variances and correlations of DPUTs in these conditions of
symmetry and kurtosis.

• In general, the above conditions of skewness and kurtosis favor
a lower C1 with RT systems. On the contrary, more positive
skewness of DPUTs and less leptokurtic, meaning tails not so
heavy (CK tending to 3), favor to a greater extent the obtaining
of a lower C1 with IS systems.

• The statistical indicators with the highest direct impact on the
percentages of consolidated effect are ordered as: DCT2,2

> bs
(sd𝑌1 )1 > bs(CK𝑌1 )2 > bs(sd𝑌2 )1 > bs(sd𝑌1 )2 > bs(sd𝑌2 )2 > bs(𝜇𝑇1 )
1 > bs(𝜇𝑇2 )2 > 𝜇𝑇2 .

• The statistical indicators with the highest inverse impact on the
percentages of consolidated effect are ordered as: DCT1,2

> 𝜌𝑌1 ,𝑌2
> bs(CSk𝑌1 )2 > bs(CK𝑌2 )2 > bs(𝜌𝑌1 ,𝑌2 )1 > HC > 𝜎𝑇2 > bs(DCT2,2

)2.

Fig. 5 shows a decision-making scheme developed to facilitate man-
ging the supply decision of centralized or decentralized inventories
ccording to skewness and kurtosis of the demand. To determine which
ype of inventory to pick, both skewness (CSk) and kurtosis (CK) must
e evaluated simultaneously. The blue arrow indicates the direction to
ake that favors IC, the red arrow indicates the direction to take toward
n IS, and the yellow arrow indicates the direction to take that favors
T.
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Fig. 5. Decision-making scheme developed to facilitate managing the supply decision of centralized or decentralized inventories according to skewness and kurtosis of the demand.
Table 8
Coefficients for carrying out optimization in actual case.
𝜇𝑇1 𝜇𝑇2 𝜎𝑇1 𝜎𝑇1 OC

1
OC

2
DCT1,1

DCT2,2
DCT1,2

DCT2,1
HC

(Days) (Days) (Days) (Days) (USD$/order) (USD$/order) (USD$) (USD$) (USD$) (USD$) (USD$/units)

1.82 1.11 0.76 1.09 45.64 128.98 0.11 0.14 0.40 0.38 0.18
6. Discussion

Coronavirus is not only a disease that has a devastating effect on
people’s lives by attacking the respiratory system, but it has a very fast
spread rate, which has posed a big challenge to the related medicine
production. The production process does not only need to focus on a
timely medicine availability to meet a growing volume of demand, but
also on how to simultaneously control the cost, which is the issue faced
by all the producers. Since the outbreak of coronavirus, efforts have
been made to investigate the issues of resource allocation, medical cost
as well as supply of medical related resources (Bartsch et al., 2020;
Zhang, Yao, Wang, Long, & Fu, 2020). The above challenge was not
only faced by the medical producers, but most importantly the hospitals
that deal with this virus by directly contacting and treating the patients.
Hospitals play a key role in slowing down the spread of the virus and
11
there was a dilemma that was faced by the hospitals which was the
significant increase in the number of patient’s but limited amounts of
resources in terms of medical related staffs, equipment, and medicine.
Keeping these issues in mind, the investigation of pooling inventory
policies would be of particularly relevant, useful, and important for
policy making purposes by the government, through which a better
decision-making process can be facilitated during the Covid-19 crisis.

The aim of this study is to provide solutions to the policy makers
in terms of how to mitigate inventory stock-out of critical supplies
and significantly improve their ability by applying a novel stochastic
inventory optimization model. Although this type of model has been
proposed by a few studies in different contexts recently (Jackson,
Tolujevs, & Reggelin, 2018; Pirhooshyaran & Snyder, 2020), we are
the first piece of research that uses this model in the context of COVID-
19. The development of these practices would be of very paramount
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not only for the government as well as health care ministries in Chile,
but it is very useful to develop a dynamic communication mechanism
between hospitals transnationally, so it is recommended that the health
managers should be actively engaged in this inventory policy approach
and relevant trainings should be provided to them in terms of further
improving their technical abilities of using R and Phyton, so as to better
understand the policies.

The usefulness of the current study also lies in the fact that the
topic area is relevant not only to academic research in the area of
operations research, but also very practical in the real world in terms
of management of decisions. In the literature, there are a number of
studies that investigate the issues of inventory control. Demand per
unit of time is one of the areas of interest.Cobb, Rumí, and Salmerón
(2013) investigated the optimal policies in inventory management
when demand per unit of time follows a log-normal distribution. In
comparison, while an inventory model is formulated by Pando, Garcı,
San-José, Sicilia, et al. (2012) in which the demand per unit of time
is a concave potential function of the inventory level. The stochastic
inventory model was also examined by Hayya, Harrison, and Chatfield
(2009) in which the demand per unit of time and the lead time
random variables that are distributed independently and identically.
Our results suggest new decision-making patterns such as considering
the skewness and kurtosis of data related to demands per unit of time
since it has shown its effect on the variance, which interacts with the
best allocation rule for inventory pooling in terms of the consolidated
safety stock multiplied by the holding cost and by the total cost. More
precisely, in the presence of negative skewness and high kurtosis for
the demands per unit of time, there must be fewer safety stocks and
less total costs under the Ballou and Burnetas (2003) allocation rule
that leads to inventory pooling for an RT system, implying that a
contrary case favors dedicated facilities for the supply in terms of
total cost. For the cost component related to the consolidated safety
stock multiplied by the holding cost, the regular transshipment had a
better statistical performance than the independent system of supply.
This is in accordance with Reyes and Meade (2006). We propose the
methodology, which was implemented using the R software, facilitated
by relevant R code . The methodology adopted in the current study
possesses the advantages of being able to undertake a simulation study
based on data with Skewness and Kurtosis.

Regarding future research, this work is expandable to more general
models with heteroscedasticity of variance, such as the widely known
variants of generalized lineal models, which are very flexible allowing
linear and non-linear functional structures. In addition, in line with this
work, the methodology to model a time series, such as the generalized
autoregressive and moving average (GARMA) model can be explored
and its effects over CE. Theoretically, GARMA has been discussed by
relevant studies (Albarracin, Alencar, & Ho, 2019; Gomes, Morettin,
Cordeiro, & Taddeo, 2018), however little effort has been made to
apply this model to the real world practice, in particular in the area
of inventory management. Furthermore, multivariate time series may
be also considered. It is important to consider these new probabilistic
approaches in cost reduction studies by potential locations for consol-
idation facilities that combine shipments, thus improving the level of
service. Some of these issues are being analyzed by the authors whose
findings will be reported in future articles.

Due to the global outbreak of coronavirus at the beginning of this
year, there has been an unprecedented pressure and challenge faced by
hospitals across all countries. This also posed important questions in
inventory management in the healthcare industry. Previously the em-
pirical research focused on the cost perspective and in particular how to
balance the cost and availability in the inventory management (Moons,
Waeyenbergh, & Pintelon, 2019; Saedi et al., 2016), while nowadays
and in the future, we think the focus of the research in the area
will be oriented to investigating how to manage the inventory during
unexpected events. In other words, the future research trend will focus

more on cost savings, inventory availability, uninterrupted supply, as

12
well as on dealing with unexpected/unpredicted change in demand.
Our study can be regarded as a pioneer in this research perspective by
investigating inventory pooling decisions by considering the skewness
and kurtosis of data.

7. Conclusions

This research developed a novel inventory pooling model to assist
in determining order sizes and safety inventories in public hospital
warehouses, which have been dramatically impacted by COVID-19
challenges as regards availability of distinct items in distinct warehous-
ing locations. Besides, the model developed here contributes to the
current body of literature on inventory management, not only by over-
coming the intractability of kurtosis and skewness in classic inventory
models, but also by devising a framework to assess inventory consol-
idation gains. As long as all the moments of the distribution of the
demand during the lead-time are related, and thus impact on inventory
consolidation decisions, the copula method – through the parametric
specification and association of the marginal statistical distributions
that make-up a multivariate joint distribution – was employed for the
first time to address inventory pooling issues. This paper is also helpful
to hospital inventory managers and practitioners, ascertaining, under
more realistic assumptions, that medicines have high availability at
a low cost in different hospital warehouses. Therefore, in summary,
our paper makes significant contributions from both theoretical and
practical perspectives.

Numerical simulations and an illustrative example were considered
under the assumption of a continuous-review model while testing for
distinct inventory allocation rules as regards inventory centralization
and regular transshipment. Overall results indicated that distributions
of demands with more negative skewness and high kurtosis favor are
keys for obtaining lower total costs with regular supply transshipment
systems. Based on the results, we also provided relevant practical policy
implications, which was clearly presented in a good detail in the dis-
cussion section. Future studies should address not only distinct business
environments as regards inventory cost parameters but should also
consider different modeling assumptions, such as the periodic-review
and the order-up-to-level regime.

As regards the limitations of the proposed model, they are mainly
related to modeling multivariate demand considering that the marginal
distributions of the warehouse demands can be specified by the Gen-
eralized Additive Model for Location, Scale and Shape. While such
approach offers advantages to model demands considering virtually any
marginal statistical distribution, it falls short in addressing autocorre-
lated demands at each warehousing location. This could also constitute
a research topic for future studies.
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