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Abstract The coronavirus disease 2019 (COVID-19)
pandemic has fatalized 216 countries across the world
and has claimed the lives of millions of people glob-
ally. Researches are being carried out worldwide by
scientists to understand the nature of this catastrophic
virus and find a potential vaccine for it. The most pos-
sible efforts have been taken to present this paper as a
form of contribution to the understanding of this lethal
virus in the first and second wave. This paper presents
a unique technique for the methodical comparison of
disastrous virus dissemination in two waves amid five
most infested countries and the death rate of the virus
in order to attain a clear view on the behaviour of the
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spread of the disease. For this study, the data set of the
number of deaths per day and the number of infected
cases per day of the most affected countries, the USA,
Brazil, Russia, India, and theUK, have been considered
in the first and second waves. The correlation fractal
dimension has been estimated for the prescribed data
sets of COVID-19, and the rate of death has been com-
pared based on the correlation fractal dimension esti-
mate curve. The statistical tool, analysis of variance,
has also been used to support the performance of the
proposed method. Further, the prediction of the daily
death rate has been demonstrated through the autore-
gressive moving average model. In addition, this study
also emphasis a feasible reconstruction of the death
rate based on the fractal interpolation function. Subse-
quently, the normal probability plot is portrayed for the
original data and the predicted data, derived through the
fractal interpolation function to estimate the accuracy
of the prediction. Finally, this paper neatly summarized
with the comparison and prediction of epidemic curve
of the first and second waves of COVID-19 pandemic
to visualize the transmission rate in the both times.

Keywords Coronavirus disease · Fractal time series ·
Correlation dimension · Fractal interpolation function ·
Autoregressive model · Prediction analysis

1 Introduction

The world is in a state of havoc and turmoil due to
the increasing fatality of the epidemic virus, called
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the Severe Acute Respiratory Syndrome Corona Virus
2 (SARS-CoV-2) which is the most prevalent coro-
navirus. The Coronavirus Disease 2019 (COVID-19)
has put the world in a mode of panic, which has led
to a state of emergency that has profoundly affected
the manner in which we see our reality and our day-
by-day lives. This COVID-19 pandemic has presented
both health and financial crises across the world. For-
tunately, there are medications available to avert or
to treat the infection such as amantadine hydrochlo-
ride, dexamethasone, hydroxychloroquine, and remde-
sivir and also used in the representative countries. With
reference to the report of WHO, the first mass vac-
cination programme started in the early of December
2020, and as of 15 February 2021, 175.3 million of
at least 7 different vaccine doses have been adminis-
tered. The World Health Organization (WHO) advises
not to treat the infection with any self-medication.
Also,WHOrecommends prevention, controlling infec-
tions and adopting health policies as key health prior-
ities in dealing with the disease. However, there are
many clinical trials involving western and traditional
medicines. According to a report given by WHO and
other world eminent organizations in the arena of pub-
lic health, as on 07 August 2020, the total number of
confirmed cases and deaths of coronavirus disease is
19,172,505 and 716,327, respectively. Exclusively in
USA, Brazil, Russia, India and UK, the total number of
COVID-19 confirmed cases is significantly increasing
and unfortunately reports indicate that the total num-
ber of death cases is also gradually increasing. The
increasing number of infected cases and deaths of the
pandemic demands a continuous data analysis, so that
the dynamical behaviour of the virus canbeunderstand-
able, and it leads us towards the growth control of the
epidemic.

Controlling the outbreak of COVID-19 infections
requires systematic planning and strategies, so the
researchers can utilize the mathematical modelling for
COVID-19 data analysis. In mathematical perspective,
one can recognize the patterns and general mechanisms
in the process of disease, which can assist to identify
some of the basic structures that govern eruptions and
epidemics. Recently, several researchers have focused
on predictions based on some mathematical analysis
of the exact number of COVID-19 cases. In particular,
ARIMAmodel is applied on COVID-19 data set to pre-
dict the spread and occurrence of the virus [1]. Mishra
et al. [2] described three quarantine models to handle

the pandemic disease by considering several compart-
ments called susceptible population, immigrant pop-
ulation, home isolation population, infectious popu-
lation, hospital quarantine population, and recovered
population in 2020. Kassa et al. [3] developed a math-
ematical model for analysing the disease COVID-19.
Bouchnita and Jebrane [4] designed amultiscalemodel,
which simulates the transmission dynamics of COVID-
19. Also, the authors demonstrated that the stability of
SARS-CoV-2 on hard surfaces determines the number
of events reached during the peak of the infection. Dji-
lali and Ghanbari [5] estimated a predictive mathemat-
ical analysis for the epidemiological outbreak of coro-
navirus infection in South Africa, Turkey and Brazil
in 2020. Furthermore, the authors investigated the
impact of isolation of affected individuals on the spread
of COVID-19 disease. Fanelli and Piazza used the
susceptible-infected-recovered-deaths (SIRD) model
for forecasting COVID-19 spreads to Italy, China and
France in 2020 [6]. Sun and Wang [7] developed a
mathematical model to classify imported escapes and
asymptomatic patients. Using the described model, the
authors accomplished some stochastic simulations for
the pandemic. Ayinde et al. [8] proposed some curve
estimation models with an autoregressive model of
order 1 to contemplate the pattern of the COVID-19
cases from Nigeria. Ghosal et al. [9] predicted a lin-
ear regression analysis for the number of deaths due
to SARS-CoV-2. The qualitative evaluation has been
made based on the implemented prevention and con-
trol interventions to control the epidemic of COVID-19
[10]. Creating models that can interpret the infection
and the general trend parameters are useful for pre-
diction purposes; it may be useful for future planning
for viral respiratory illnesses by other countries that
are at an early stage of the epidemic. Two models are
developed by the authors one model for analysing the
spread during the fast phase and the other for inter-
preting the entire data set and those models reasonably
agreewith the data [11]. In order to analyse this harmful
COVID-19outbreak, amodifiedSEIRSmodel has been
constructed to extend prediction on the current projec-
tions of the pandemic into three possible outcomes:
death, recovery, and recovery with a possibility of re-
susceptibility [12]. A power law with Pareto exponent
has also been modelled nearly equal to the exponent
estimated directly from the distribution of confirmed
cases across counties [13].
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As the fractal and multifractal analyses have been
applied to time series and experimental signals, the
dimensional measures have mainly been used to anal-
yse the change in the chaotic nature in different phys-
iopathological conditions and to estimate the complex-
ity in forecasting process [14–18]. Among all the non-
linear schemes, the correlation fractal dimension mea-
surement is more accessible in dealing with diffusion
datawithmore complexity in nature for prediction [19–
28]. Due to an uncertainty in the spread of coronavirus,
the empirical data of the number of infected cases and
death cases are being analysed based on the power law
kinetics with fractal exponent, which gives a best fit
to the contemporary data than the traditional epidemi-
ology method. Hence, the fractal-based comparative
study of COVID-19 has been provoked at different sit-
uations [29–33]. This study proposes the correlation
fractal dimension and the autoregressive moving aver-
age model-based comparative prediction analysis of
COVID-19 death rate in the first and second waves.

The main goal of this study is to provide a tech-
nique for a systematic comparisonofCOVID-19 spread
among fivemost infected countries and the death rate to
understand the chaotic behaviour of the disease trans-
mission.Wehave considered thedata sets of the number
of deaths per day and the number of infections per day
in the five most affected nations, namely the United
States of America (USA), Brazil, Russia, India and the
United Kingdom (UK). The correlation dimension is
estimated for the representative data sets of daily infec-
tions, daily deaths and daily death rate of COVID-19.
Further, the mean differences of the actual data sets
and its computed correlation dimension estimates are
compared by the analysis of variance. At last, the com-
parative analysis is performed to depict the structure of
the transmission and death rate of the corona virus in
both phases.

The present work is organized as follows: Sect. 2
succinctly portrays the mathematical techniques of the
correlation dimension, fractal interpolation and the
necessary statistical methods. The data set information
is described in Sect. 3. In Sect. 4, the estimation of the
correlation dimension and the fractal interpolation rep-
resentation for COVID-19 data set are explored. The
ARMA processes and the parametric statistical tech-
nique one-way analysis of variance are also performed
on the actual data sets and the calculated correlation
dimension estimates in the same section. Additionally,
the second wave analysis is done by comparative study

and also discussed elaborately in Sect. 4. The con-
cluding remarks of the research work are presented in
Sect. 5.

2 Mathematical methods

Mainly the noisy data sets can be modelled and anal-
ysed by the basic probability distributions. Based on
that impression, the Renyi entropy and the correla-
tion fractal dimension are generally defined in terms
of discrete probability measures. As per the definition,
the probability distributions are mainly involved in the
Renyi entropy and the fractal dimensions. Hence, the
Renyi entropy is very appropriate and widely used for
describing the generalized fractal dimension method in
order to analyse the noisy data for getting more infor-
mation about the uncertainty and complexity. So the
Renyi entropy and the correlation fractal dimension are
used as generalized techniques in our proposed meth-
ods to analyse/predict the complex time series. The
preliminaries of the Renyi entropy, the correlation frac-
tal dimension and the fractal interpolation function are
depicted mathematically in this section.

2.1 Renyi Entropy

One of the most important concepts in modern science
is entropy, and it is a measure to estimate the multi-
formity, unsureness or randomness of a system in the
theory of information. If the value of the random vari-
able is unsure, one can use Shannon entropy, which is
a measure of the average information. Renyi entropy is
Shannon’s generalization entropy, which is also used
to define the correlation fractal dimension. The Renyi
entropy of order q ( �= 1) is denoted as Sq , and it is
defined by

Sq = 1

1 − q
log2

(
N∑
i=1

pqi

)
, (1)

where Sq is a non-negative and non-increasing func-
tion on q, and q is a positive real number. Further, pi ∈
[0, 1] are the probabilities of the discrete random vari-
able X which takes N possible values x1, x2, . . . , xN ,
that is PX (xi ) = pi for i = {1, 2, . . . , N } [34] .
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2.2 Correlation fractal dimension

Correlation fractal dimension is one of the nonlinear
measures, which imparts the data about the kind of
dynamics available and also describes the presence of
chaotic dynamics in the time series. The correlation
dimension is a measure of the dimensionality of the
space occupied by a number of random points in com-
plex systems. The correlation dimension is an exam-
ple of a fractal dimension measurement because it per-
mits non-integer dimensional values. A mathematical
model of a system that evolves over time is known
as a dynamical system. Even though the time series
appears irregular in the time domain, the linearity is
manifested in the frequency domain as sharp peaks. If
the time series comes from a nonlinear dynamical sys-
tem, with or without small added noise, or a random
process (large noise), the time series will be irregular
in both the time and frequency domains [35–37].

The various methods for calculating the dimension
are the Hausdorff dimension, the box-counting dimen-
sion and the information dimension are available to
analyse the signals or time series, but the correlation
dimension has a predominant scope of being computed
immediately, performed on the reconstructed path, and
generated the different values reflecting the different
types of correlations in the reconstruction. The corre-
lation dimension is the easiest dimension measurement
to perform and is the most commonly used dimension
in random time-series analysis. The correlation dimen-
sion is also associatedwith the smallest number of vari-
ables required to model the behaviour of the system in
phase space [38–40].

This section concisely presents the necessary mate-
rials of the correlation dimension. Based on the Renyi
entropy, the correlation dimension (correlation fractal
dimension) of a fractal time series is defined by con-
structing the probability distribution as follows [19–
28].

Let x1, x2, . . . , xn be the points of a fractal time
series and the total range of the time series is divided
into N intervals (bins) such that

N = xmax − xmin

r
(2)

where xmax and xmin are the maximum and the min-
imum values of the time series for the corresponding
experiment, respectively, and r is the uncertainty factor.

Define pi = Ni
N , where Ni is the number of points

of the time series lies in the i th bin of length r .

Then, the correlation fractal dimension (Dc) for the
known probability pi is defined by:

Dc = lim
r→0

S2
log2(1/r)

= lim
r→0

log2
(∑N

i=1 p
2
i

)
log2 r

. (3)

2.3 Fractal interpolation function

Fractal interpolation functions are generated by a spe-
cial type of iterated function system (IFS) of affine
transformations. This section concisely presents the
necessary materials to construct the fractal interpola-
tion functions; more rigorous treatment of the fractal
interpolation is given in [41–46].

Let the sample data {(xk, yk) ∈ R
2 : k ∈ Nn} with

x1 < x2 < · · · < xn be given and xk’s are not necessary
at equal distances. Let I = [x1, xn], Ik = [xk, xk+1]
for k ∈ Nn−1 and Lk : I → Ik , k ∈ Nn−1 be (n − 1)
contractive homeomorphisms satisfying the endpoint
conditions

Lk(x1) = xk, Lk(xn) = xk+1. (4)

Let rk ∈ [0, 1), k ∈ Nn−1 and X = I × R. Let n − 1
continuous functions Rk : I × R → R obeys

Rk(x1, y1) = yk, Rk(xn, yn) = yk+1. (5)

Moreover, Rk is a contractionwith respect to the second
variable. Define the functions fk : X → Ik × R, k ∈
Nn−1, by fk(x, y) = (Lk(x), Rk(x, y)). The iterated
function system {X; fk : k ∈ Nn−1} corresponds
to the self-mapping F on K(X) defined by F(A) =⋃

k∈Nn−1
fk(A), for any A ∈ K(X). Then, the space

K(X) is complete with respect to the Hausdorff metric,
since X is completemetric space. Further, F is contrac-
tion onK(X); hence, by the IFS theory, F has a unique
fixed point G whose graph is a continuous function
g : I → R, which satisfies g(xk) = yk for k ∈ Nn .The
function g generated by the IFS {X; fk : k ∈ Nn−1} is
termed as fractal interpolation function corresponding
to the data points {(xk, yk) ∈ R

2 : k ∈ Nn}.
As the paper deals with the prediction of the infected

and death rates from COVID-19 information, the data
set {(xi , yi ) : i ∈ Nn}, where xi represents the i th
day and yi denotes the death rate on i th day due to
COVID-19 infections, is considered along with the fol-
lowing IFS to generate the fractal interpolation func-
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tion: {[x1, xn] × R;wk : k ∈ Nn} , where

wk

(
x
y

)
=

(
ak 0
ck αk

) (
x
y

)
+

(
bk
dk

)
(6)

and αk ∈ (−1, 1) for all k ∈ Nn . Here, the free parame-
terαk is called the vertical scaling factor, which decides
the pattern and fractal dimension of the fractal interpo-
lation function. By Eq. (5), wk maps the terminals of
given data to the terminal of each sub-interval. That is,
wk maps first day and its death rate (x1, y1) to (k−1)th
day and its death rate (xk−1, yk−1). Similarly, image of
nth day and its death rate (xn, yn)under themappingwk

is kth day and its death rate (xk, yk) for each k. Hence,
the mapping wk has the following constructions.

wk

(
x1
y1

)
=

(
xk−1

yk−1

)
and wk

(
xn
yn

)
=

(
xk
yk

)
(7)

for all i ∈ Nn . Ifαk is a predefinedvariable in system (6)
with constraints (7), then it provides a unique solution
for (6). Therefore, the constants ak, bk, ck, dk can be
obtained uniquely as follows:

ak = xk − xk−1

xn − x1

bk = xnxk−1 − x1xk
xn − x1

ck = (yk − yk−1) − αk(yn − y1)

xn − x1

dk = (xn yk−1 − x1yk) − αk(xn y1 − x1yn)

xn − x1
. (8)

The coefficients ak & bk are required parameters to
define the contractive homeomorphisms between days
in the IFSgiven inEq. (6). Further, the constants ck &dk
are required to obtain the death rate on kth day under
the mapping wk in Eq. (6). If αk = 0 for all k ∈ Nn ,
then it gives the classical piecewise linear interpolation
function. The scaling factor αk determines the fractal
dimension of fractal interpolation function, since the
image of lines parallel to the y-axis under the mapping
wi is the line parallel to y-axis. Further, if the length of
the line L is l, then the length of its image is αk times
of l, for all k ∈ Nn . That is, the ratio between the length
of the lines L and wk(L) is |αk |.

2.4 ARMA processes

The time-series analysis has an extensive range of
applications in forecasting, spectral estimation and
modelling of time-domain system. The time series can
be analysed by means of time domain and frequency
domain. Frequency-domain approach is the study of
nonparametric decay using a spectral function in which
the time series is used in its different frequency com-
ponents. Albeit, the time-domain approach focuses on
parametric models to investigate the future values of
the time series as a parameter function of the present
and past values. One of the foremost methods to inves-
tigate the time series is autoregressive moving aver-
age (ARMA), which provides an intimate description
of a standard random process based on two polyno-
mials such as autoregression (AR) and moving aver-
age (MA). Besides, the complex time series can be
analysed, modelled and forecasted in both the time
and the frequency domains in detail by this superlative
method. ARMA(p, q) notion indicates the model with
p autoregressive terms AR(p) and q moving-average
terms MA(q).

The random process {Xt } is an ARMA(p, q) pro-
cess, if {Xt } is stationary and for every t ,

Xt = c + εt +
p∑

i=1

φi Xt−i +
q∑

i=1

θiεt−i . (9)

where c is a constant, Xt is a random variable repre-
senting the number of infected or death cases in the
t th day, εt is a random variable denotes the noise term
at the t th day, and φ1, φ2, . . . , φp & θ1, θ2, . . . , θq are
model parameters of AR(p) and MA(q), respectively.

2.5 Statistical methods

One-way analysis of variance (ANOVA) is a parametric
statistical technique used to compare data sets based
on the mean and the variance of the given data sets.
In ANOVA, the inferences about means are made by
analysing the variance. If the observed differences are
high, then it is considered to be statistically significant.
The p-value can be determined by F-test statistic in
the analysis of variance between groups, which is the
probability of getting a result. In ANOVA test, if the
p-value is near zero, the null hypothesis is rejected and
recommends the conclusion that at least one sample
mean is significantly different from the other sample
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means. We can establish the fact that the significant
differences between the data set increases when the p-
value approaches to zero.

The F-test statistic associated with ANOVA test is
defined as the ratio of the between-group variance to
the within-group variance.

F = Between-group variance

Within group variance
. (10)

A box plot is a graphical tool used to analyse the
prescribed data if there are any variations between the
levels of a one-way model. A graphical alternative to
the one-way ANOVA test is the box plot. It is also a
goodway to summarize and compare the data from two
or more samples. A box plot is a consistent method
of viewing a data set based on a five-number sum-
mary such as minimum, maximum, sample median,
first and third quartiles. In addition, the whiskers are
also occurred in the box plot like outliers, if the numer-
ical values are deviated from the prescribed range of
the data.

The power spectrum of a time series in statistical
analysis describes the distribution of power into fre-
quency components that make up the signal. The spec-
trum is the statistical average of a particular time signal
or sort of signal (including noise) as evaluated in terms
of frequency content. Since the cumulative energy of
such a signal over all time will be infinite, the power
spectral density (PSD) refers to the spectral energy dis-
tribution that would be found per unit time. The spec-
tral density, in simple terms, describes the signal’s fre-
quency content. One aim of the spectral density estima-
tion is to detect any periodicities in the data by looking
for peaks at the frequencies that correspond to these
periodicities. As COVID-19 infected and death cases
are complex data sets, the logarithmic power spectral
density can be estimated for all representative time
series to analyse the complexity, to predict the values
smoothly in terms of frequencies and also to estimate
the periodicities and peak values.

3 Data description

The empirical data have been accessed in the data
repository of COVID-19 provided by the Center for
Systems Science and Engineering (CSSE) at Johns
Hopkins University [47] and Statistics & Research
Coronavirus Pandemic (COVID-19) available in the

Table 1 Countries with the most number of COVID-19 cases as
on 18 January 2021

Country Total infected cases Total deaths

USA 24,438,935 406,162

Brazil 8,638,249 212,831

Russia 3,616,680 66,810

India 10,610,883 152,869

UK 3,515,796 93,469

database “Our World in Data” [48]. The daily infec-
tion count and the daily death count data sets of the
five most affected countries have been selected and uti-
lized in this research work as on 18 January 2021, and
the same information of the representative data sets is
meticulously presented in Table 1 [49]. The initial date
of the experimental data considered in this research
study is 23 June 2020 for the first wave and 01 October
2020 for the second wave of COVID-19.

4 Results and discussion

In this study, the five most disease-ridden countries
have been considered and the data set of each country
comprises a total of around 100 observations, which is
end on the date 30 September 2020 for exploring the
first phase.

The day-wise total number of reported cases is sub-
ject to change with the amount of testing that has been
completed in a particular day; henceforth, we have
decided to intensely examine the total number of death
cases and the ratio of death cases with the total number
of infected cases per day. The death rate or case fatal-
ity rate, also known as case fatality risk, is described
in epidemiology as the proportion of people who die
from a predetermined infection among all people diag-
nosed with the disease over a given time period. The
case fatality rate is commonly used as an indicator of
disease severity and is often used for prognosis (pre-
dicting disease outcome), with higher rates indicating
worse outcomes. It may also be used to assess the effec-
tiveness of new therapies, with tests declining as treat-
ments become more effective. The case fatality rate
(death rate) is calculated in this paper by dividing the
number of confirmed deaths per day by the number
of confirmed cases per day. The mortality rate or case
fatality rate would be estimated with respect to one day

123



An exploration of fractal-based prognostic model 1381

as a fixed time frame since the COVID-19 is a short-
term infectious disease (not a chronic disease) [50]. In
case of case fatality rate or the death rate, the number of
identified deaths out of the total number of confirmed
cases is classified in terms of its correlation dimen-
sion estimate curve. The daily death rate of COVID-19
as a function of the number of days is elucidated in
Fig. 1a, c, e, g, i, respectively, for USA, Brazil, Russia,
India, UK. Also, the correlation dimension estimates
as a function of the number of days for the death rate
are plotted in Fig. 1b, d, g, h, j, respectively, for USA,
Brazil, Russia, India and UK. Figure 1 narrates that the
peak of death rate of USA and Brazil occurred in the
initial timeline and conspicuously reduced at the end,
though the fatality rate of Russia and India is signifi-
cantly less in the onset period, getting contrary progress
in the end phase.

Further, the actual data set of the death rate of each
country is compared with the death rate of the world
which is exhibited in Fig. 1a USA, (c) Brazil, (e) Rus-
sia, (g) India, (i) UK. Similarly, analogies of the corre-
lation dimension estimate between the total death rate
of each country and the total death rate of the world per
day are displayed in Fig. 1b USA, (d) Brazil, (f) Rus-
sia, (h) India, (i) UK. Figure 1a shows that the death
rate is approximately periodic curve in USA as well as
in worldwide. It was a consequence of delay in report-
ing the cases and also not conducting the regular tests
during the weekend. Similarly in Fig. 1i, it is observed
that the death rate per day fluctuates periodically with
time period of one week. It is implied that the mortality
rate of UK is not much stable comparatively with other
countries during the prescribed time frame. Compari-
son in Fig. 1 demonstrates that the daily death rate of
UK is in an increased amount than the daily death rate
of the world from the beginning to end. It can be noted
that the daily death rate ofUSAandBrazil is fluctuating
over the death rate of the world, whereas the death rate
of Russia and India is lower than the death rate of the
world except one point at the end. Moreover, Fig. 1g
depicts that there is a certain noise occurred at 49th day
due to the sudden peak in the death rate of India. It has
to be denoised for further analysis as the preprocessing
step to perform the prediction process in the accurate
manner.

The minimum of correlation fractal dimension esti-
mates of death rates per day for all representative coun-
tries is graphically illustrated to examine the effect
of execution of the actions on decreasing the spread

of this fatal virus. Figure 1b, d, f, h and j manifestly
uncovers that the correlation dimension estimates for
death rates of representative countries except Russia
are nearly zero (minimum) during the period from 20th
day to 30th day, and it indicates the less intricacy in
death rates, due to the effectiveness of continuous lock-
downs and other preventative activities taken severely
during the first wave by the administration of all coun-
tries represented in this research work, whereas in Rus-
sia the intervention strategies including the progressive
lockdown implemented on 28 March 2020 eventually
reduced the positive cases of COVID-19 initially, and
hence, the lockdown was ended on 30 April 2020. This
results the correlation dimension estimates for death
rates of Russia are nearly zero during the initial period
from23rd June 2020 and then gradually increasedwith-
out attaining the minimum (zero) again.

It is noted that the country India was positioned
under the first phase of the full lockdown from theMid-
dle of March to April. Also, the phases 2, 3 and 4 of the
lockdown were prolonged till the end of May, with the
incremental relaxations. Beginning of the June month,
India has started a lifting of restrictions in a phased
manner, which was continued and extended by a series
of unlocks till the month of November 2020. The jump
of the correlation fractal dimension estimates of the
daily death rates for India in Fig. 1h displays the grad-
ual increase in death rates per day, whichwas happened
due to certain exemptions from the lockdown. Conse-
quently in UK, the first wave of the pandemic occurred
from March to April 2020. By the middle of April, it
was reported that the severe lockdowns are flattened
the epidemic curves. Hence, the daily new cases and
deaths were cut down between the months of May and
June, and it was also continued at low levels over the
summer of 2020. The lockdowns in the UK were grad-
ually reduced by the authorities between the months of
June and July. It causes that the number of daily new
infections was continuously declined until the begin-
ning of August 2020. In Fig. 1j, the jump of the corre-
lation fractal dimension values of the daily death rates
in UK indicates the sign of the second wave in UK
from August 2020 to September 2020. The mentioned
jumps are occurred in the correlation fractal dimension
measures of the daily death rates, and those changes
cannot be treated as noise for the death rate time series,
as it was caused by the series of lockdowns.

The correlation dimension estimates for the number
of infected cases per day, the number of deaths per day
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Fig. 1 First wave:
comparison between the
worldwide daily death rate
and the representative
countries’ daily death rate: a
USA, c Brazil, e Russia, g
India, i UK and analogies of
the correlation dimension
estimates between daily
death rate of the country and
worldwide daily death rate:
b USA, d Brazil, f Russia, h
India, j UK

(a) USA (First Lockdown: March–May, 2020) (b) Dc Estimates of USA

(c) Brazil (First Lockdown: March–May, 2020) (d) Dc Estimates of Brazil

(e) Russia (First Lockdown: March–April, 2020) (f) Dc Estimates of Russia

(g) India (First Lockdown: March– June, 2020) (h) Dc Estimates of India

(i) UK (First Lockdown: March–June, 2020) (j) Dc Estimates of UK

and the daily death rate are estimated using Eq. 3 and
are plotted in Fig. 2. Theminimumof correlation fractal
dimension estimates of the infected, deaths and death
rates per day for all representative countries is visually
observed in Fig. 2 as minimum (nearly zero) around
the 25th bin of the experiment. It would validate the

competence of enactment of many safety procedures
and progressive lockdowns, and it marks the reduc-
tion in the diffusion process of the corona virus due to
the precautionary steps. Comparison in Fig. 2 narrates
that though the total number of infections of UK is less
than the other four countries, the correlation dimension
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Fig. 2 First wave (initial date of experimental data is 23rd
June 2020): correlation fractal dimension estimates of COVID-
19. The initial lockdown was introduced in all representa-
tive countries as follows: i USA—first lockdown: March–May,
2020; ii Brazil—first lockdown: March–May, 2020; iii Russia—
first lockdown: March–April, 2020; iv India—first lockdown:
March–June, 2020; v UK—first lockdown: March–June, 2020

Table 2 Correlation fractal dimension for the first phase of
COVID-19 data sets

Country Infected cases
per day

Deaths per
day

Death rate
per day

USA 2.3163 1.0171 1.3026

Brazil 2.4918 4.7337 0.9665

Russia 3.5853 0.9429 0.7580

India 3.4152 1.4693 1.0801

UK 4.0864 1.7201 1.3026

estimates of the daily infected cases and the daily death
rate of UK are notably higher. The correlation dimen-
sion estimate curve of the daily death rate of USA is
of concern, it stands behind UK, but the total deaths
of USA are at peak. In the onset phase, the correlation
dimension estimate curve of the daily death rate of India
is very low, later crossing Russia’s curve around 100
bins, which gradually increases to overtake the Brazil
death rate curve. Computational results reveal that the
death rate of UK significantly increases, so this study
recommends that the necessary control measures are to
be taken by the public health authorities to stabilize the
death rate of UK. The correlation fractal dimension for
COVID-19 data sets of the fivemost diseased countries
are computed, and the gained results are tabulated in
Table 2.

The F-test statistic is associated with the ANOVA
test as a statistical measure to test the significance dif-
ferences, and the statistical test is performed with 95%
level of confidence. The mean differences of the data
sets, the number of infections per day, the number of
deaths per day and the daily death rate of the five coun-
triesUSA,Brazil, Russia, India andUKare statistically
tested by one-way analysis of variance associated. The
statistical measures of one-way ANOVA are shown in
Table 3. The one-way ANOVA test statistically sub-
stantiates the proposed procedure in this study, since
the p-value in Table 3 for infected cases, death cases
and death rates is almost near to zero. Hence, one-way
ANOVA suggests the conclusion that at least one sam-
ple mean is significantly differed from the other sam-
ple means in actual data sets of infections, deaths and
death rates. It is statistically implied that the represen-
tative countries are varied sufficiently in the level of
infections, deaths and death rates with respect to col-
lected data sets and its correlation dimension estimates
except the correlation dimension estimates for infected
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cases. Thus, the infected cases for all the representa-
tive countries are not much fluctuated during the period
of research with respect to the correlation dimension
estimates. The same status on infected cases may be
changed in near future due to the various regional set-
tings of infectious diseases.

The box plots with red lines and whiskers for data
sets of daily infections, daily deaths and daily death
rates, and the corresponding correlation fractal dimen-
sion estimates among all five mostly affected countries
are elucidated in Fig. 3. In box plot, the median values
of daily infections, daily deaths and daily death rates,
and the median values of its correlation fractal dimen-
sion estimates of USA, India, Brazil, Russia, UK are
marked in red lines as in Fig. 3. The whiskers in box
plots are representing the outliers of the data sets. It
is perceived that the statistical differences among the
countries are occurred significantly in the infections,
deaths and death rates. In Fig. 3a, the median of the
infected cases for USA is very high in the prescribed
time span, when compared to the other countries, and
also the standard deviation of infected cases of Brazil is
comparatively high, as the corresponding box plot has
greater variances. In addition, more number of outliers
is occurred with minimum values in USA. Likewise,
Fig. 3b demonstrates that the median and the standard
deviation of death cases for USA is large, when com-
pared with the other countries and also infers that there
was huge variances in the number of deaths during the
mentioned period in that country. Figure 3c reveals that
themedian and the standard deviation of the daily death
rates of UK take the upper hand and also indicate that
the daily death rates varied notably in UK during the
prescribed period, when compared to the other coun-
tries.Besides that, the boxplots inFig. 3d–f sketchedon
correlation fractal dimension values for infected cases,
death cases and death rates would be differed notably
among the countries. In Fig. 3d, the standard devia-
tion of correlation dimension estimates of the infected
cases in India is varied higher than other countries with
more variations, whereas the correlation dimensions
estimate of the infected cases for USA is conspicu-
ously less as the box plot is constructed with less vari-
ance. In Fig. 3e, the standard deviation of correlation
dimension estimates of the death cases in Russia is rea-
sonably high, since there is a significant variation in the
box plot. But the standard deviation of correlation esti-
mates of the death cases for USA and UK is evidently
less with fewer variations. In Fig. 3f, the standard devi-

ation of correlation dimension estimates of the death
rate of India is remarkably high, as the correspond-
ing box plot has significant variations. However, the
standard deviation of the correlation fractal dimension
estimates of the death rate for Russia is comparatively
less than other countries as shown in the respective box
plot with the small amount of variance. As far as the
median is concerned in the box plot, the value is higher
in UK and lesser in Russia.

It is curiously observed in Fig. 3d, e that the vari-
ations in the vertical scale are too large due to the
occurrence of the unexpected extremal values in the
database and its correlation fractal dimension estimates
as well. In Fig. 3d, f, there are certain outliers occurred
in India with respect to maximum values, which are
comparatively higher than other countries. There are
some extremal points occurred in the maximum values
of the correlation dimension values for the countries
UK and Brazil, as it is clearly revealed in Fig. 3e. In
Fig. 3f, there is a significant difference in the box plot
of correlation estimate of death rates among the coun-
tries than the box plots for the original death rate data
sets. Especially, the box plot for the correlation dimen-
sion for death rates in India is varied significantly with
the wider range consisting of more whiskers plots. This
will indicate the sign of the second wave to India that
there will be increasing in the infected cases, death
cases and death rates gradually.

As the data sets are realistic in nature, there are cer-
tain noises occurred in the time series considered for
this study. For instance, there is a sudden peak observed
in Fig. 1g. It may affect the accuracy of the prediction
and comparison analysis in the proposed method. In
order to overcome this issue, the denoising process has
been done strongly for all data sets as the preprocessing
step by using the Gaussian process before applying the
ARMA process to predict the required information.

Theperiodograms inFig. 4 sequentially demonstrate
the logarithmic power spectral density estimate for the
original and the predicted data representing the daily
death rate in USA, Brazil, Russia, India and UK. The
time span of this research study is around 100 obser-
vations (days). The maximum frequency of the loga-
rithmic power spectral density periodogram is 0.5 ×
(1/day), and the minimum frequency of the same spec-
trum is 1/(100 days). The basic frequency is considered
as 1/week, as this study observes the week-based peri-
odical death rates. In Fig. 5, the autoregressive signal
transformed from the original death rate data and the
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Table 3 One-way ANOVA table—original COVID-19 data sets: a infected cases per day, b deaths per day, c death rate per day.
Correlation fractal dimension (Dc) estimates: d infected cases per day, e deaths per day, f death rate per day

ANOVA table
Source SS df MS F Prob > F

(a) Infected cases per day

Columns 2.35743e+10 4 5.89358e+09 128.89 2.4571e−75

Error 2.26342e+10 495 4.57257e+07

Total 4.62086e+10 499

(b) Deaths per day

Columns 7.77547e+07 4 19438678.7 89.14 5.07082e−57

Error 1.07942e+08 495 218063.7

Total 1.85696e+08 499

(c) Death rate per day

Columns 0.65621 4 0.16405 53.87 1.08402e−37

Error 1.50735 495 0.00305

Total 2.16356 499

(d) Dc Estimates of infected cases per day

Columns 9527.47 4 2381.87 0.7 0.593

Error 1,687,131.86 495 3408.35

Total 1,696,659.33 499

(e) Dc Estimates of death rate per day

Columns 33,493.6 4 8373.39 2.43 0.0471

Error 1,429,702.7 415 3445.07

Total 1,463,196.3 419

(f) Dc Estimates of death rate per day

Columns 14.7229 4 3.68073 122.68 1.13754e−72

Error 14.8516 495 0.03

Total 29.5745 499

Table 4 Autoregressive moving-average polynomial coefficients for prediction

Country Autoregressive moving-average polynomial coefficients

P3 P2 P1 P0 Error

USA 1 −0.4798 −0.4798 −0.5116 −4.0890e−04

Brazil 1 −0.4451 −0.4451 −0.5428 −2.5444e−04

Russia 1 −0.3856 −0.3856 −0.5251 −2.2326e−05

India 1 −0.4801 −0.4801 −0.5140 −5.9593e−04

UK 1 −0.4868 −0.4868 −0.5128 −0.0098

World 1 −0.3912 −0.3912 −0.5939 −1.6467e−04

predicted signal from the corresponding linear predic-
tor coefficient for the death rate are sketched against the
number of days to compare the day-wise information in
the form of stem plots. Figure 6 portrays the predicted
data of the death rate alongwith the corresponding orig-
inal death rate of COVID-19 of the represented coun-

tries. In order to predict the day-wise death rate data,
the autoregressive moving-average polynomial coeffi-
cients P3, P2, P1 and P0 are optimally determined by
using the ARMA process and depicted in Table 4 to

123



1386 D. Easwaramoorthy et al.

(a) Infected Cases Per Day (b) Deaths Per Day

(c) Death Rate Per Day (d) Dc Estimates for Infected Cases Per Day

(e) Dc Estimates for Deaths Per Day (f) Dc Estimates for Death Rate Per Day

Fig. 3 First wave (initial date of experimental data is 23 June
2020): box plots for original COVID-19 data sets: a infected
cases per day, b deaths per day, c death rate per day. Box plots

for correlation fractal dimension (Dc) estimates: d infected cases
per day, e deaths per day, f death rate per day

construct the following polynomial.

D(t) = P3t
3 + P2t

2 + P1t
1 + P0t

0, (11)

where t represents the number of days and D(t) is the
death rate in the t th day of COVID-19 infection. The
polynomial in Eq. (11) predicts the death rate for near
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Fig. 4 First wave (initial date of experimental data is 23 June 2020): periodogram of logarithmic power spectral density estimate for
original data and predicted data with the frequency, f = 1/(7 days): a USA, b Brazil, c Russia, d India, e UK, f World

future by using the ARMA polynomial coefficients.
The representations of the predicted data from the orig-
inal data by using the ARMA process are depicted with
different geometrical settings in Figs. 4, 5 and 6.

A phenomenal time, the rapid rise of the death cases
in several countries of the world, is representing a

major lacuna on what the future will carry for us. The
top five countries together significantly account in the
total infected cases and death cases. In Fig. 4, the peri-
odogram of the logarithmic power spectral density esti-
mate is exposed graphically for the original and the pre-
dicted data indicating the daily death rate in the repre-
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Fig. 5 First wave: stem plots of original autoregressive signal and the predicted signal by linear predictor against the number of days:
a USA, b Brazil, c Russia, d India, e UK, f World. (Color figure online)

sentative countriesUSA,Brazil, Russia, India, UK, and
World Wide. The logarithmic power spectral density is
projected against the normalized frequency values after
normalizing the usual frequencies in Fig. 4 with respect
to the preferred basic frequency 1/week, so that the pre-
dicted data curve is obtained smoothly by the investiga-

tional system. It is evident that the logarithmic power
spectral estimate is too irregular for original data of
daily death rate with noises, whereas the power spec-
tral estimate is so smooth for predicted data of daily
death rate in the frequency domain. Thus, the logarith-
mic power spectral density estimates the predicted data
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Fig. 6 First wave: representation of death rate in time domain for original COVID-19 data and predicted data by ARMA process versus
number of days: a USA, b Brazil, c Russia, d India, e UK, f World

as a smooth curve to represent the original data appro-
priately in frequency phase. It is an advantage for the
governing authorities, and it will help them to predict
the data for future span approximately with the less
amount of error for taking the precautionary measures
vigorously. Figure 5 demonstrates a stem plot represen-
tation of the autoregressive signal (blue stems) trans-

formed from the original death rate data and the pre-
dicted signal (red stems) from the corresponding linear
predictor coefficient for the death rate in terms of days.
It is observed from Fig. 5 that the actual data extracted
from the autoregressive technique may be constructed
with the certain noises or outliers, and the same devia-
tions are controlled or reduced by the suitable estimator
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of the linear predictor coefficient. In addition, the peak
values of original data (blue stems) observed for all
countries in Fig. 5 are denoised and the same those
peak values corresponding to the predicted data (red
stems) have been normalized and represented by using
theARMAprocess. Hence, Fig. 5 evidently reveals that
the daily death rate data are predicted in the accepted
level with less deviation and considered for the further
study of comparison. Figure 6 illustrates a compara-
tive analysis of death rate prediction. Countries around
the world are working to flatten the death rate curve
of this pandemic. As a comparison in Fig. 6 elucidates
that predicted death rate curves of USA and Brazil are
set to peak in early time and gradually reducing the
peak at the end. Though the death rate curve of Russia
and India is flatten throughout the prediction timeline,
it is not seen a declining trend at the terminal. Hence,
the public health authorities of Russia and India should
cautiously maintain the stabilized action to uphold the
current status of the death rate.

The predicted death ratio ofUSA,Brazil, India, Rus-
sia and UK using the model framed by the fractal inter-
polation function of the iterated function system given
in Eq. (6) is exhibited in Fig. 7. Besides, the five most
disease-ridden countries have been considered and the
death ratio is predicted for the data set of each country,
which comprises of nearly 100 observations (days) that
ends on the date 30 September 2020 for exploring the
first phase. Comparing the results of the fractal inter-
polation forecasting method, the predicted death rate
curve of India follows a uniform pattern, but not has
more fluctuation, whereas other countries have more
oscillation in death rate. The probability plots for nor-
mal distribution of the original death rate and the pre-
dicted death rate of USA, Brazil, Russia, India and UK
are depicted in Fig. 7. The normal probability plot gen-
erates each sample data point in death rate represented
by + markers and also compared with the reference
line theoretically given by the normal probability dis-
tribution. Basically, the reference line is obtained by
connecting the first and third quartiles of the sample
data and extending to the extremum of the data. The
sample data points appear along with the reference line
provided the information that the sample data follow
the normal distribution. Perhaps, the sample data does
not possess the normal distribution, if those points are
significantly deviated from the reference line. Compar-
isons illustrated in Fig. 7 elucidate that the predicted
death rate by the fractal interpolation method obeys

normal distribution, if the actual death rate follows nor-
mal distribution.

4.1 Second wave analysis of COVID-19

In the first phase of COVID-19 pandemic, the mas-
sive public health interventions have been encountered
across the world. Additionally, the most affected coun-
tries have executed stringent social measures based
on local risk assessments, such as lockdown, mobility
restrictions, compulsory face mask-wearing, telecom-
muting for non-essential community services, and
virtual meeting in educational institutes as well as
business sectors. However, the reduced COVID-19
positive count could undoubtedly resurge when the
social measures are relaxed for economic and educa-
tional factors. As on 30 September 2020, there were
7,228,526 (USA), 4,810,935 (Brazil), 1,170,799 (Rus-
sia), 6,312,584 (India), 455,846 (UK), confirmed cases
of COVID-19 infections reported in the database. It
was collated publicly available officially confirmed
cases of each country to construct the epidemic curve
on January 18, 2021 in which 24,078,772 (USA),
8,511,770 (Brazil), 3,552,888 (Russia), 10,581,823
(India), 3,443,350 (UK), total number of confirmed
cases ofCOVID-19were reported.Moreover, the coun-
tries like Russia, UK and USA are recording with
the infected rate at the beginning of January 2021
comparatively higher than the infected rate of those
detected from March to September, 2020. On the con-
trary, India’s infected cases are lower than the other
countries from the second week of January, 2021. The
attributes of the high severity of the first wave of pan-
demic in these countries seem to be unpredictable.

In the view of second wave, the death ratio of USA,
Brazil, India, Russia and UK is analysed and pre-
dicted by using the fractal interpolation function of the
given iterated function system mentioned in Eq. (6)
and demonstrated in Fig. 8, based on the data recorded
from 01 October 2020 to 18 January 2021. In [14], the
authors have proposed a reconstruction method of the
epidemic curves from the fractal interpolation function
with constant vertical scaling factor. In particular, the
vertical scaling factor is fixed as 0.1 for all the data
constantly. The proposed technique highlights the fea-
sible reconstruction of the death rate based on the frac-
tal interpolation function with the constant scaling fac-
tor. In addition, the vertical scaling factor is optimized
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Fig. 7 First wave:
comparison between the
original and predicted daily
death rate of the
representative countries by
fractal interpolation
function: a USA, c Brazil, e
Russia, g India, i UK and
analogies of the probability
plot for normal distributions
between predicted and
original daily death rate: b
USA, d Brazil, f Russia, h
India, j UK

in the proposed model, and hence, the scaling factor
will be automatically selected based on the nature of
COVID-19 data set, whereas the vertical scaling factor
was a fixed value and not optimized in [14]. Hence, the
proposed method is performed superior to the exist-
ing reconstruction method as in [14] with respect to
the vertical scaling factor. Moreover, the predicted data

can be noisy, as it is an extrapolation of the proposed
method. The vertical scaling factor is selected based on
the data in the proposed technique to reduce or to avoid
the occurrence of noises significantly in the predicted
data. Further, the correlation fractal dimension is esti-
mated for the prescribed data sets of COVID-19 for the
second phase as reported in Table 5. Also, the corre-
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Fig. 8 Second wave: comparison between the original and predicted daily death rates of the representative countries by fractal inter-
polation function: a USA, b Brazil, c Russia, d India, e UK

lation dimension estimates for the number of infected
cases per day, the number of deaths per day and the
daily death rate are plotted in Fig. 9. Table 5 narrates
the comparison that the correlation fractal dimension
of infected cases per day, number of deaths per day
and daily death rates of for all representative countries.
It will marks the significant jump in the number of

infected cases and the number of deaths in secondwave
of coronavirus in the mentioned countries.

4.2 Influence of lockdown

The nonlinear measures and statistical tools have been
calculated and applied to COVID-19 data sets (infected
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Table 5 Correlation fractal dimension for second wave of
COVID-19 data sets

Country Infected cases
per day

Deaths per
day

Death rate
per day

USA 0.4646 0.9574 0.4311

Brazil 0.5312 1.3153 0.4163

Russia 0.6942 2.2627 0.4834

India 0.5277 1.4541 0.3743

UK 0.5193 1.2297 0.4613

cases, death cases and death rates) to understand the
dynamics of the disease transmission. Especially, the
correlation fractal dimension, the fractal interpolation
function and the autoregressive moving average model
have been applied to analyse the chaotic behaviour and
also to perform the comparison-based prediction anal-
ysis for COVID-19 death rates of the five most disease-
ridden countries. The local minima of correlation frac-
tal dimension estimates of death rates for all represen-
tative countries are graphically explored to investigate
the impact of implementation of the action on reduc-
ing the spread of SARS-CoV-2 viruses. Figure 2 evi-
dently shows that there is a period in which the correla-
tion dimension estimates for death rates are nearly zero
(minimum), and refers the less complexity, due to the
efficacy of precautionary measures taken strictly dur-
ing the first wave by the government of all countries
reflected in this study. It infers that the intervention
strategies including the progressive lockdown imple-
mented since March 2020 have influenced the spread
of the outbreak. The effectiveness of COVID-19 has
been reduced dramatically during the first wave as a
result of the respective governing authorities’ inces-
sant lockdown, social distancing, medical precautions
and early safety steps. As a result, the mortality rate
has been noticeably reduced. Another important point
can be identified that the infected cases and the death
rate have been increased slowly during the first wave
after restrictions relaxed by the governing bodies. It
will advise world nations to strictly adhere to the pre-
ventive measures so that the respective countries can
suppress the death rate as outlined in Sect. 4.1 and save
the lives of many people.

Fig. 9 Second wave (initial date of experimental data is 1 Octo-
ber 2020): correlation fractal dimension estimates of COVID-19
second wave database
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5 Conclusion

The alarming and rapid rise of the COVID-19 positive
cases and the rate of mortality due to the second wave
of the COVID-19 in several countries of the world are
becoming amajor threat for the world economy and the
livelihood. During this period of pandemic, a detailed
study on the virus growth, death rates, recovering rate
and on many more parameters has become inevitable
to pursue future research on this dreadful virus. In this
context, this study has provided a systematic explo-
ration on the comparative analysis and prediction of the
spread of the contagion in the first and second waves.
The data sets of the number of deaths and the num-
ber of infected cases per day of the five most affected
countries have been considered for a comparative and
prediction analysis. The correlation fractal dimension
is estimated for the prescribed data sets of COVID-19
in the first and second waves. Moreover, the compar-
ative analysis of the death rates has been performed
based on the correlation fractal dimension estimate
curve. The performance of the proposed method has
been supported by ANOVA statistical tool. Moreover,
the prediction of the daily death rate has been demon-
strated through the fractal interpolation function and
autoregressive moving average model for both first and
second waves. This proposed method has successfully
predicted the progress of this dreadful contagion and
expressively implemented with the second wave analy-
sis of COVID-19 by comparison based on the reported
data provided byWHO and other prestigious organiza-
tions. It is observed generically from this study that the
prediction of the death rate is liable to change depend-
ing on the increase in size of the data set available, and
in such a scenario, the rudiments of epidemic preven-
tion, testing, tracking and treatingmust be concentrated
severely.

Availability of data and materials The experimental data sets
analysed in this research study are publicly available [47–49].
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