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Abstract Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral

absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations

(IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations.

In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its rela-

tion to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro

models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed.

In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage

forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro

digestion models, which more closely simulate gastrointestinal physiology, are a more promising option.

Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be

validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and

cost of formulation development but can also contribute to the formulation design and optimization, thus

promoting the clinical translation of LBFs.
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1. Introduction

Oral route is the most popular way for drug administration.
Currently, more than 50% of marketed drugs and 90% of drug
candidates are poorly water soluble, and these proportions
continue to grow because of the rapid progress in drug discov-
ery1e5. Since dissolution is a prerequisite for drug absorption,
poor solubility always leads to retarded dissolution rate and,
thereby, poor bioavailability. The situation is even worse for drug
candidates with poor solubility and poor permeability6,7. Great
efforts have been made in the past to improve poor bioavailability
of such compounds in an attempt to unlock their therapeutic po-
tential as oral medicines and achieve some success8e18. The
enhancement of dissolution and absorption is one of the enduring
research topics in pharmaceutical researches19e21.

Inspired by the positive “pharmaceutical food effect”22, lipid-
based formulations (LBFs) have been developed and demon-
strated a great potential in enhancing the oral bioavailability of
poorly water-soluble drugs23,24. Based on their components and
contents, four main classes of LBFs have been evolved25. Type I
LBFs are lipid solutions, which are non-dispersible in aqueous
media but release co-formulated drugs upon digestion. Type II
LBFs are self-emulsifying drug delivery systems (SEDDSs)
comprising lipids and surfactants. The surfactants bear a
hydrophilicelipophilic balance (HLB) value of less than 12, and
the type II LBFs generally form emulsions in aqueous media.
Type III LBFs consist of lipids, hydrophilic surfactants with a
HLB value larger than 12, and hydrophilic cosolvents. They are
subdivided into types IIIa (SEDDSs) and IIIb [self-
microemulsifying DDSs (SMEDDSs) and self-nanoemulsifying
DDSs (SNEDDSs)], based on the size of the formed emul-
sions. Type IV LBFs only contain surfactants and hydrophilic
cosolvents, without lipids, and form micelles when dispersed in
water. All of the types of LBFs have been available in market,
being shown in Table 126. The first approval for each types of
LBFs by the US Food and Drug Administration (FDA) is in
1941 (Drisdol�, type I), 1983 (Sandimmune�, type II), 1995
(Neoral�, type III), and 1999 (Agenerase�, type IV), respec-
tively23. Numerous discoveries and substantial improvements
have been achieved in the field of LBFs in the last 5 years,
bringing this old technology back to the limelight27. Nonethe-
less, very few LBFs are available as commercial products on the
market, while some have been discontinued (Table 1)26,28. On
the one side, the problem is due to the scale-up and stability
challenges. The majority of LBFs are filled in soft gelatin
capsules for clinical application. However, in-house
manufacturing capabilities of soft gelatin may be missing in a
few countries, while soft gelatin capsules are not acceptable in
all countries. In addition, incompatibility of the excipients with
the shells of the soft gelatin as well as precipitation of the active
ingredients during storage at a lower temperature are common
stability issues for LBFs, which requires solidification of the
formulation . On the other side, the lack of in vitro tests that
are able to predict the in vivo behavior of LBFs with much
accuracy, is the crucial reason for the limited number of
products10,32.

In vitro and in vivo correlations (IVIVCs) are powerful tools
for optimizing the formulation and dosage, setting dissolution
limits, and reducing bioequivalence (BE) studies19,33e39. By
definition, an IVIVC is a mathematical model bridging in vitro
properties and an in vivo response of a preparation40. Dissolu-
tion is the most commonly used in vitro property, while the
fraction of drug absorbed is the popular in vivo response.
In vitro dissolution can be a surrogate for BE studies upon
availability of an established IVIVC. Considerable interest in
IVIVCs has been elicited in the pharmaceutical industry,
academia, and regulatory sectors20,38,41, while dosage forms
have been extended from oral extended-release to oral
immediate-release forms19,35,42e47, modified-release parenteral
dosage forms36,47e51, and transdermal DDSs33,34,52e56. Similarly,
a reliable IVIVC model could promote the development of
LBFs. However, it is a significant challenge to establish IVIVCs
for LBFs because of the complex in vivo process. Unlike normal
dosage forms, lipid components in LBFs undergo extensive
lipolysis in the gastrointestinal (GI) tract, while co-formulated
drugs may precipitate or be dissolved during the intermediate
phase of lipolysis24,57e66. The lack of mechanistic understanding
of the in vivo behavior of LBFs hampers the possibility of
obtaining an IVIVC67.

This review briefly introduces the relationship between GI
digestion of lipid/LBFs and enhanced oral drug absorption, as well
as the concept of IVIVC. On this basis, the current status of
establishing IVIVCs for LBFs is reviewed, and future perspectives
in this field are discussed.

2. Lipid digestion and enhanced drug absorption

The development of LBFs was inspired by the phenomenon that a
high-fat diet enhances the bioavailability of poorly water-soluble
drugs. The underlying mechanisms are correlated with the
digestion and absorption of lipids (Fig. 1), i.e., the “pharmaceu-
tical food effect” promotes physiological changes, assisting drug
absorption. Lipid ingestion stimulates the secretion of gastric
lipase, which partly breaks down triglycerides into diglycerides
and fatty acids in the stomach. The process contributes to w15%
of the overall lipid digestion in the GI tract68. In the meantime,
dietary fat is converted into an emulsion of fine oil droplets. The
transfer of these lipidic substances into the duodenum stimulates
the secretion of pancreatic lipase and bile. Bile salts, phospho-
lipids, and cholesterol coat and stabilize the emulsion droplets,
which become more accessible to the action of pancreatic en-
zymes. The remaining lipids are completely digested in the small
intestine via breakdown of triglycerides into a 2-monoglyceride
and two fatty acid molecules. The lipolysis proceeds from the
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Table 1 FDA-approved drugs utilizing lipid systems.

Molecule (trade

name)

New drug

application year

Biopharmaceutic

classification

system

Type of lipid-

based

formulation

Oil Surfactant (HLB

<12)

Surfactant (HLB

>12)

Hydrophilic cosolvent

Ergocalciferol

(Drisdol�)

1941 3 I Soybean oil ‒ ‒ ‒

Calcitriol

(Rocaltrol�)

1978 2/4 I Fractionated triglycerides of

coconut oil

‒ ‒ ‒

Valproic acid

(Depakene�)

1978 1 I Corn oil ‒ ‒ ‒

Isotretinoin

(Accutane�)

Discontinued

1982 2 I Beeswax, hydrogenated soybean

oil flakes, hydrogenated

vegetable oil, soybean oil

‒ ‒ ‒

Cyclosporin A

(Sandimmune�)

1983 2 II Olive oil ‒ Polyoxyethylated

oleic glycerides

Ethanol 12.5%

Dronabinol

(Marinol�)

1985 2/4 I Sesame oil ‒ ‒ ‒

Clofazimine

(Lamprene�)

Discontinued

1986 2 I Beeswax ‒ ‒ ‒

Cyclosporin A

(Sandimmune�)

1990 2 II Corn oil Linoleic

macroglycerides

‒ Ethanol 12.7%

Ranitidine (Zantac�)

Discontinued

1994 3 ‒ Medium-chain triglycerides Gelucire 33/01 ‒ ‒

Cyclosporin A

(Neoral�)

1995 2 III A/III B Corn oil mono-di-triglycerides ‒ Polyoxyl 40

hydrogenated

castor oil

Ethanol 11.9%, glycerol,

propylene glycol

Tretinoin

(Vesanoid�)

Discontinued

1995 ‒ I Beeswax, hydrogenated soybean

oil flakes, hydrogenated

vegetable oil, soybean oil

‒ ‒ ‒

Ritonavir (Norvir�) 1996 4 III A ‒ Oleic acid Polyoxyl 35 castor oil Ethanol

Saquinavir

(Fortovase�)

Discontinued

1997 4 ‒ Medium-chain mono- and di-

glycerides

‒ ‒ ‒

Progesterone

(Prometrium�)

1998 2 I Peanut oil ‒ ‒ ‒

Amprenavir

(Agenerase�)

Discontinued

1999 2 IV ‒ ‒ Vitamin E TPGS PEG400, propylene

glycol

Bexarotene

(Targretin�)

1999 ‒ IV ‒ ‒ Polysorbate 20 PEG400

Doxercalciferol

(Hectorol�)

1999 2/4 I Coconut oil ‒ ‒ Alcohol

Sirolimus

(Rapamune�)

1999 ‒ III Phosphatidylcholine, mono- and

di-glycerides, soy fatty acids,

ascorbyl palmitate

‒ Polysorbate 80 1.5%e2.5% ethanol,

propylene glycol

Cyclosporin A 2000 2 IV ‒ ‒ Polysorbate 80, Propylene glycol, alcohol
(continued on next page)
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Table 1 (continued )

Molecule (trade

name)

New drug

application year

Biopharmaceutic

classification

system

Type of lipid-

based

formulation

Oil Surfactant (HLB

<12)

Surfactant (HLB

>12)

Hydrophilic cosolvent

(Gengraf�) Polyoxyl 35 castor

oil

12.8% v/v

Cyclosporin A

(Gengraf�)

2000 2 IV ‒ ‒ Polyoxyl 40

hydrogenated

castor oil,

polysorbate 80

Propylene glycol

Ritonavir/lopinavir

(Kaletra�)

Discontinued

2000 4 III ‒ Oleic acid Polyoxyl 35 castor oil Propylene glycol

Dutasteride

(Avodart�)

2001 2/4 I Mono-di-glycerides of caprylic/

capric acid

‒ ‒ ‒

Isotretinoin

(Claravis�)

2003 (ANDA) 2 ‒ Hydrogenated vegetable oil,

soybean oil, white wax

‒ Polysorbate 80 ‒

Omega-3-acid ethyl

esters (Lovaza�)

2004 ‒ I Soybean oil ‒ ‒ ‒

Tipranavir

(Aptivus�)

2005 4 III A Mono-/di-glycerides of caprylic/

capric acids

‒ Polyoxyl 35 castor oil Ethanol, propylene glycol

Tipranavir

(Aptivus�)

2005 4 IV ‒ ‒ Vitamin E TPGS PEG 400, propylene

glycol, water

Paricalcitol

(Zemplar�)

2005 4 I Medium-chain triglycerides

fractionated from coconut oil

or palm kernel oil

‒ ‒ Alcohol

Lubiprostone

(Amitiza�)

2006 2/4 I Medium-chain triglycerides ‒ ‒ ‒

Fenofibrate

(Lipofen�)

2006 2 III ‒ ‒ Gelucire 44/14

(lauroyl macrogol

glyceride type

1500)

‒

Topotecan HCl

(Hycamtin�)

2007 1 I Hydrogenated vegetable oil Glyceryl

monostearate

‒ ‒

Loratadine

(Claritin�)

2008 2 ‒ Caprylic/capric glycerides ‒ Polysorbate 80 ‒

Isotretinoin

(Absorica�)

2012 2 ‒ Soybean oil, stearoyl

polyoxylglycerides

Sorbitan monooleate ‒ ‒

Enzalutamide

(Xtandi�)

2012 2 I Caprylocaproyl

polyoxyglycerides

‒ ‒ ‒

Nintedanib (Ofev�) 2014 2/4 II Medium-chain triglycerides, hard

fat

Lecithin ‒ ‒

Calcifediol

(Rayaldee�)

2016 2/4 II/III Mixture of lipophilic emulsifier with a HLB <7 and an absorption enhancer with HLB of 13e18

Oily vehicle-mineral oil, liquid paraffins, or squalene

‒, not applicable; HLB, hydrophilicelipophilic balance.

The table is adapted from Ref. 26 complying with the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1 Illustration of gastrointestinal lipid digestion and enhanced absorption of co-administered drugs. Digestion of triglycerides in

gastrointestinal tract liberates monoglycerides and fatty acids, which form unilamellar/multilamellar vesicles, mixed micelles, and micelles in

combination with endogenous bile salts and phospholipids. Co-administrated drugs are solubilized in these colloidal structures, delivered across

the unstirred water layer, and reach the enterocytes. The drug molecules may be released from the structures and diffuse to the basolateral side via

either (a) transcellular or (b) paracellular pathway. Facilitated drug (c) influx by membrane proteins and (d) efflux of ingested drugs are also

possible. In addition, the drug loaded vehicles or micelles may be absorbed via (e) endocytosis and (f) transcytosis pathways. The intracellular

monoglycerides and fatty acids are re-esterified to form triglycerides, which are further (g) packed into chylomicrons. Drugs with high affinity to

chylomicrons are then transported via the lymph route with chylomicrons.

In vitro and in vivo correlation for lipid-based formulations 2473
outside with a continuously changing interface. Multilamellar
liquid crystals are formed at the interface during hydrolysis and
are further converted into diverse colloidal structures in combi-
nation with bile salts68. The identified structures include multi-
lamellar and unilamellar vesicles, mixed micelles, and micelles.
The lipophilic products of the breakdown of dietary fats (fatty
acids and monoglycerides), as well as co-administered poorly
soluble drugs, are solubilized in colloidal structures, which deliver
the cargos across the unstirred water layer and reach the brush-
border membranes of intestinal cells. The loaded drug may
either leave the structures to diffuse across the epithelium or be
absorbed as the cargo of the intact vehicles or micelles. The
transepithelial pathways include passive diffusion of free drugs via
either transcellular (Fig. 1a) or paracellular (Fig. 1b) way, facili-
tated drug influx by membrane proteins (Fig. 1c), and endocytosis
(Fig. 1e) or transcytosis (Fig. 1f) of the colloidal structures. Efflux
of ingested drugs is also possible (Fig. 1d). The intracellular
monoglycerides and fatty acids are re-esterified to form tri-
glycerides, which are further packed into chylomicrons and exo-
cytosed to enter the central lacteal lymph vessels (Fig. 1g). Drugs
that have a high affinity to chylomicrons may have a high potential
to be transported via the lymph route, while others are mainly
absorbed via the hepatic portal vein32,59,63,69e72.

Similarly, LBFs play a beneficial role in solubilization and
absorption of co-administered poorly soluble drugs. The presence
of LBFs in the GI tract also stimulates the secretion of endogenous
lipases and bile73. The biliary lipids are combined with the
exogenous lipids and lipid digestion products to form complex
colloidal structures74,75. During this process, co-formulated drugs
may either be solubilized in the intermediate colloidal phases or
precipitate. It is reasonable to expect good IVIVCs for LBFs that
keep solubilization of co-delivered drugs during lipolysis. How-
ever, recent studies on halofantrine and cinnarizine SNEDDSs
have shown controversial results for general cognition67,76. The
formulations that underwent rapid drug precipitation during
in vitro lipolysis had similar bioavailability to those that did not
show any precipitation. Although the reason was attributed to
ready redissolution of the precipitated drugs, due to their amor-
phous state, the situation complicates the establishment of IVIVCs
for LBFs. Nonetheless, the dispersion and digestion of
formulation-derived lipids as well as the solubilization of co-
administered drugs in the GI tract should be systematically
considered in vitro models to obtain a more accurate prediction of
the in vivo performance of LBFs.

3. A brief introduction to IVIVCs

In 1997, the FDA published guidelines concerning the con-
struction of IVIVCs for development of extended-release oral
preparations40. Four levels (A, B, C, and multiple C) of IVIVCs
were proposed in the guidance based on the correlating re-
lationships between in vitro data and the plasma drug
concentrationetime curve77. Level A is a point-to-point corre-
lation between in vitro dissolution and in vivo drug absorption78,
wherein a straight line through the origin with a slope of one is
obtained79. As the highest degree of correlation, level A is the
only one that is recognized by FDA to grant a biowaiver from
in vitro dissolution tests80. In addition, the level A correlation
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helps control the quality of the formula and choose an appro-
priate formula39,81,82. The principles of statistical moment
analysis are adopted in the construction of level B IVIVC,
wherein the mean in vitro dissolution time correlates with the
mean in vivo residence time. Due to the absence of a point-to-
point correlation, level B IVIVC is unable to predict the
in vivo performance of preparations. The level C is the lowest
level of IVIVC, which shows a single-point correlation between
in vitro parameters (e.g., the time for 50% of the drug being
dissolved or a dissolution percentage at 4 h) and pharmacoki-
netic (PK) parameters [e.g., area under the curve (AUC), peak
plasma concentration (Cmax), and time to reach Cmax (Tmax)].
Level C IVIVC is mainly adopted for formulation screening and
development of quality standards. Multiple level C is a multiple
correlation between drug dissolution in vitro at different time
points (at least three points) and one or several PK parameters.
4. In vitro release/dispersion and IVIVC

Since the release of drug substance from dosage forms and the
subsequent solubilization of the released drugs under physiolog-
ical conditions are critical steps for drug absorption via oral route,
in vitro dissolution is the main test for the prediction of the in vivo
performance of oral solid preparations83. Similarly, in vitro release
from SMEDDSs in enzyme-free aqueous media was first used to
establish the IVIVCs for LBFs84,85. The process, which uses a
USP type II dissolution apparatus, is rather simple. The rationale
for this test is based on the recognition that the solubilized drug,
instead of the precipitated one, is available for absorption. Hence,
an IVIVC may be achieved using this in vitro release/dispersion
test86e89. Inspired by a level A IVIVC for a cyclosporine
SMEDDS, a biowaiver extension for a poorly water-soluble drug
was claimed using a SMEDDS formulation84. However, during
the in vitro release process, co-formulated drugs are not released
to the media in the molecular form because SMEDDSs sponta-
neously form drug-loaded microemulsions, resulting in a disper-
sion process rather than drug release. The situation is completely
different from that of solid dosage forms, wherein released drugs
are solubilized in the media and available for absorption. In
addition, this test ignores possible in vivo precipitation of
dispersed drugs, due to the lipolysis of formulations in the GI
tract, which leads to inconsistent results in terms of obtaining an
IVIVC90.

As a result of an insufficiently accurate simulation of the
physiological environment in the GI tract by compendial media,
biorelevant dissolution media were developed to achieve a better
IVIVC for poorly water-soluble drugs91e96. Simulated gastric
fluid (SGF) containing 0.5% (w/v) sodium lauryl sulfate (SLS)
was adopted for in vitro drug release from an olmesartan
medoxomil-loaded SMEDDS using a USP type II dissolution
apparatus97. A high predictive power of the in vitro dissolution
performance for the in vivo absorption was revealed by obtaining a
level A IVIVC. Furthermore, a dialysis bag method was developed
to understand the drug release profile, which was performed in
SGF containing 0.5% (w/v) SLS for 1 h and simulated intestinal
fluid (SIF) for another 2 h69. In a membrane with a cutoff of
12 kDa, >90% of the drug was released within 1 h, of which
nearly 80% was released within 30 min. In a membrane with a
cutoff of 1 kDa, only 13%e22% of the drug was released within
30 min, and a maximum of 54%e61% of the drug was released
within 3 h. The reduced drug release profile of the 1 kDa
membrane was due to the small cutoff, which only allowed a
passage of free drug molecules. Nonetheless, in addition to a level
A and a level B IVIVC, a level C correlation was achieved be-
tween in vitro drug release parameters (t30%, t50%, and t90%) and
Cmax, Tmax, and AUC.

In some cases, an in vitro release in biorelevant media failed to
produce an IVIVC98. The in vitro release of fenofibrate from LBFs
was shown to be dependent on both biorelevant media and the
LBF composition (Tween 80 with different lipids). In contrast to
the in vitro results, the tested LBFs exhibited similar in vivo
performance in rats in both fasted and fed states. The authors
attributed these inconsistencies to incessant excretion of bile in
rats, leading to the enhanced solubility of fenofibrate in vivo.
Therefore, animal model may be crucial in the establishment of
IVIVC.

The dissolution apparatus may also affect the construction of
an IVIVC. The paddle (USP Apparatus 2) and Bio-Dis (USP
Apparatus 3) methods were used to study the release of RZ-50
from lipid suspensions in compendial and biorelevant media,
respectively99. The paddle method led to a very low drug release
due to the poor dispersibility of the formulation, whereas the Bio-
Dis method enhanced drug release by facilitating emulsification of
the formulation. A level A IVIVC was obtained under fed gastric
conditions using the Bio-Dis method.

5. In vitro digestion models and IVIVC

Despite attractive and simple, in vitro release/dispersion is not
suitable to predict the in vivo performance of LBFs because of the
inconsistency in achieving IVIVCs66. The primary drawback of
the test is the lack of mimicking the complex in vivo digestion of
LBFs and micellar solubilization100. Accordingly, in vitro lipolysis
is more suitable for assessing the fate of LBFs by mimicking the
intestinal lipid digestion process101e103. To obtain a strong IVIVC,
it is crucial to simulate the complex physiological conditions that
present in the human GI tract, such as pH, enzymes, transit times,
and mixing104,105. However, none of the currently available
models can simulate all of these complex multistage processes
owing to technical challenges. Only simplified digestion models
have been developed by capturing one or more key elements in
human GI digestion. The pH-stat lipolysis model and the TNO
(Netherlands Organization for Applied Scientific Research) GI
model (TIM-1), which differ in the complexity, compartmental
numbers, and physiological effects considered, are the most
commonly used models for the evaluation of LBFs.

5.1. pH-stat lipolysis model

The pH-stat lipolysis model, which mainly simulates enzymatic
digestion, is the most frequently used model in the evaluation of
LBFs. Since retention of administered LBFs is negligible in the
oral cavity, the model typically mimics the enzymatic conditions
in the intestinal (one-compartment) or GI (one- or two-
compartment) phase of digestion, while studies are all per-
formed at a fixed pH.

5.1.1. One-compartment intestinal digestion model
The experimental setup mainly comprises a thermostated vessel
(generally, at 37 �C), an overhead stirrer, a pH electrode, and a
titrator (Fig. 2). LBFs are dispersed in a medium mimicking
fasted- or fed-state intestinal digestive fluid. Initiation of lipid
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digestion by addition of lipase and colipase leads to the liberation
of fatty acids, causing a drop in the pH consequently. The pH
variation is measured by the electrode, while the released fatty
acids are automatically titrated with sodium hydroxide using the
titrator. The extent of the digestion can be indirectly quantified
using the rate of the addition of sodium hydroxide based on its
stoichiometric reaction with fatty acids. Samples can be taken
during the digestion process and ultracentrifuged to obtain three
distinct phases, namely, an oil phase containing undigested lipids,
a micellar phase containing a solubilized drug in colloidal struc-
tures, and a pellet phase comprising the precipitated drug.
Quantification of the drug amounts in each phase enables pre-
diction of the solubilizing capability of the formulation to co-
formulated drugs in the GI tract. Furthermore, the solubilized
amount of the drug in the micellar phase can be correlated with
the in vivo PK parameters to construct an IVIVC. At the least, a
rank order of the likely in vivo performances may be established
for a series of LBFs, based on the hypothesis that the high per-
centage solubilized in the micellar phase results in a high
bioavailability.
5.1.2. GI digestion model
The one-compartment intestinal digestion model is simple and has
been widely adopted in the evaluation of LBFs. The rationale of
the model is that the intestine is the main site for lipid digestion
and drug absorption. However, the model is inadequate for
simulating GI physiology because it does not consider processes
and conditions in the stomach. As mentioned above, lipid diges-
tion in stomach contributes to w15% of the overall lipid digestion
in the GI tract. In addition, the effects of gastric emptying and
sudden pH changes on the solubilization of co-formulated drugs
are ignored61. Therefore, GI digestion pH-stat models, either two-
step one compartment or two-step two compartments, were
developed to simulate both gastric and intestinal digestion106,107.
In the one-compartment model, the simulated gastric and intesti-
nal digestion is performed in two sequential steps, respectively.
LBFs are first dispersed in SGF, and gastric digestion is initiated
by adding gastric lipases. After a period of time, the SGF was
transferred to a medium similar to the intestinal fluid by addition
Figure 2 Schematic representation of the o
of a concentrated SIF and pancreatic lipases. During both steps,
automatic titration with sodium hydroxide maintains a constant
pH, corresponding to the gastric and intestinal pH, respec-
tively106,107. Two individual setups of the pH-stat model are used
in the two-compartment model to simulate the stomach and small
intestine, respectively (Fig. 3). SGF and SIF, as well as the cor-
responding lipases, are respectively added to the two reaction
vessels, which are connected by a peristaltic pump. During the
digestion process, the medium in the gastric compartment is
continuously pumped to the intestinal one at a rate mimicking
gastric emptying107e109. In this regard, the two-compartment
model more closely mimics the in vivo conditions than does the
one-compartment model.
5.1.3. IVIVCs and the pH-stat lipolysis model
The pH-stat lipolysis model is more reliable in the rank ordering
of LBFs than in the construction of level A IVIVCs. The absolute
bioavailability of danazol was found to increase with the dose of
Labrafil� M2125CS, while the same rank order was obtained
based on the percentage of solubilized danazol in the micellar
phase following in vitro lipolysis of the formulations110. How-
ever, the release profile of danazol failed to correlate with the
absorption profile in the in vivo study. Similar results were ob-
tained for a lipid solution and suspension of halofantrine102,
supporting the potential utility of the model to evaluate and rank
the in vivo performances of LBFs. Moreover, in vitro solubili-
zation data for two cholesterol ester transfer protein (CETP)
inhibitors, obtained using in vitro lipolysis of a series of
SEDDSs, were plotted against in vivo drug exposure (AUC) with
the same formulations (Fig. 4111). Although the plots were not
linear, good rank orders between the in vitro and in vivo data
were obvious.

In addition to typical LBFs, the rank ordering capability of the
pH-stat lipolysis models was demonstrated in fenofibrate-loaded
lipid particles64. Nanoparticles (100 nm) showed increased absorp-
tion than did microparticles and a crystalline suspension. The data
correlated well with those of in vitro lipolysis, wherein a higher level
of fenofibrate in the micellar phase was obtained from the 100-nm
nanoparticles than from the microparticles and suspension.
ne-compartment pH-stat lipolysis model.



Figure 3 Simulation of the digestion process in the stomach and small intestine by a two-step two-compartment digestion model.
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Consequently, the same rank order was observed between release
and absorption, that is, 100-nm nanoparticle > microparticle >
suspension.

Compared with a cell model of intestinal drug permeability, the
pH-stat lipolysis model provided a superior simulation of oral
absorption of LBFs, facilitating the establishment of a correlation
with an in vivo output63. A SNEDDS significantly increased the
solubility of four Biopharmaceutics Classification System (BCS)
II drugs (griseofulvin, phenytoin, indomethacin, and ketoprofen),
while their permeation through MDCK cell monolayers was lower
than that of saturated water solutions. These results were attrib-
uted to differences in the drug states in the formulations. In
saturated aqueous solutions, drugs are dissolved and transported in
a molecular form, while in SNEDDSs, drugs are trapped inside oil
cores and are transported as particles. The large size of the par-
ticles, relative to that of a molecule, hinders intestinal membrane
permeability of drugs. However, in vivo absorption from the
SNEDDS was significantly higher than that of free drug
Figure 4 In vitro and in vivo correlations for two CETP inhibitors usin

curves are plotted vs. the drug concentrations in the micellar phase dur

Copyright ª 2014 Elsevier B.V.
molecules, while an in vitro and in vivo relationship (IVIVR) was
demonstrated between the drug content in the lipid phase and its
oral bioavailability. Similar results were obtained for dexameth-
asone, griseofulvin, and progesterone solubilization from long
(LCT)-, medium (MCT)-, and short (SCT)-chain triglyceride
formulations103,112. Good correlations between the bioavailability
and the drug contents in the micellar phase of in vitro lipolysis
were obtained. The rank orders were LCT Z MCT Z SCT for
dexamethasone, MCT > LCT > SCT > H2O for griseofulvin, and
MCT > LCT > SCT for progesterone. In addition, permeation of
the drugs through the gut wall was tested using a modified Ussing
chamber system following completion of the lipolysis. However,
permeability did not correlate with the oral bioavailability. Even
though the SCT formulation doubled the permeability coefficients
of the drugs, the oral bioavailability of the formulation was more
related to the solubilizing capability during lipolysis. More
interestingly, a strong correlation with a correlation coefficient
>0.99 was obtained between the griseofulvin concentrations in the
g diverse self-emulsifying drug delivery systems. The areas under the

ing in vitro lipolysis. Reprinted with the permission from Ref. 111.
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micellar phase following in vitro lipolysis and the AUC values of
the corresponding formulations via oral administration.

In vitro lipolysis data may fail to construct IVIVC. In some
cases, bioavailability from formulations that presented rapid drug
precipitation following in vitro lipolysis was similar to that from
formulations that did not show any drug precipitation67,76,113.
Studies on halofantrine and cinnarizine SNEDDSs revealed that
the precipitates were in an amorphous form, with a rather high
dissolution rate, which may explain the enhanced absorption67,76.
Therefore, the authors suggested that solid-state characterization
of the pellet phase is essential in validating the predictive power of
the in vitro lipolysis test. However, it is also possible that in vitro
lipolysis failed to mimic physiological conditions. In addition, the
theory would not work for BCS IV drugs, which are poorly
permeable even in a solubilized form.

Of note, variations in the data obtained across different labo-
ratories may be due to variable experimental conditions114. The
complexity of the in vivo processing of LBFs has long interfered
with the establishment of robust IVIVCs for LBFs. Variations of
experimental conditions in the pH and the volume of the digestive
medium, the employed concentrations of bile salts and calcium,
and buffering capacity, may strongly affect the establishment of an
IVIVC. To obtain consistent data across different laboratories, the
Lipid Formulation Classification System Consortium was estab-
lished to standardize the protocols of the in vitro digestion tests for
the assessment of LBFs. The Consortium has published a series of
papers, to which interested readers are referred, reporting the re-
sults of systematic studies of the factors affecting IVIVCs,
including method parameters, effects of bile salt concentrations
and drug loading, supersaturation versus precipitation potential,
lipolysis by gastric lipase, and effects of varying pancreatin and
calcium levels114e119.

5.2. TIM and IVIVC

The TIM was developed to study food products under conditions
close to GI physiology of human120. The dynamic process of the
transit and digestion of a meal in the GI tract was simulated in the
TIM. The simulated parameters include mixing, transit, pH vari-
ation, input of digestive media, and output of water and digestive
products. A computer program was utilized to control and
reproduce a specific digestive setting. Protocols have been
developed to simulate physiologies of different species (e.g.,
human, dog, pig, and calve) and different populations (e.g., the
young, the adult, and the aged).

TIM-1 (Fig. 5) is the most popular configuration of the TIM
platform, which consists of four tubular compartments, i.e., the
gastric, the duodenal, the jejunal, and the ileal compartment,
respectively. Peristaltic valve pumps connect the compartments
for the passage of chyme in a controlled way. An alternating
pressure is put on the flexible walls of the compartments to mix
the contents. Awater jacket outside the walls is used to control the
temperature in the compartment. Gastric and duodenal secretions,
containing bile salts, electrolytes, and digestive enzymes (pepsin,
a fungal lipase as an alternative to gastric lipase, and pancreatin),
are pumped into the individual compartments. The flow of all
secretions is programmed in time as shown in Table 2121. The pH
in the compartment is measured by an individual pH meter and is
controlled via titration of hydrochloric acid or sodium bicarbonate
to follow a physiologically relevant pH profile. The model also
incorporates a hollow fiber membrane (cutoff size: 50 nm) on the
jejunal and ileal compartments to mimic the absorption of
dissolved/solubilized drugs. The pore size of the membrane has
been verified to allow the passage of intermediate colloidal
structures122. Approximately 80% of a nonprecipitating solute is
recovered by filtration, at an aspiration rate of 3.9 mL/min, within
5 h123. The filtrates from the jejunum and ileum compartments can
be collected to estimate the bioaccessibility of the formulation,
which is defined as the percentage of the solubilized drug in both
the oil and the micellar phases123. It is reasonable to predict the
bioavailability of formulations using the bioaccessibility because
solubilized drugs are readily absorbed.

By close mimicking the GI physiology, TIM-1 offers a
promising tool to predict the oral bioavailability of most phar-
maceutical compositions under one standardized experimental
setting124,125. A systematic evaluation of the predictive power of
TIM-1 was performed by researchers from AstraZeneca on nine
model drugs of different BCS types and six formulations126. TIM-1
correctly predicted the in vivo rank order in 84% and 79% of
cases for the AUC and Cmax, respectively. A linear relationship
with a correlation coefficient of 0.78 was observed between the
bioaccessibility obtained in TIM-1 and the AUC. Owing to its
strong predictive capability, TIM-1 has been deployed by Astra-
Zeneca in the drug development for predicting the oral absorption
of drug candidates and their formulations.

Until recently, TIM-1 has been used for the evaluation of
Pickering emulsions because of a limited availability of the in-
strument127. The bioaccessibility obtained using TIM-1 showed a
great potential for the rank ordering of Pickering emulsions in
terms of their in vivo performance128e130. Compared with TIM-1,
the pH-stat lipolysis model may overestimate the bioaccessibility
of the formulations128e130. The difference was attributed to the
differences in the designs and simulations of the models. In the
pH-stat model, the formulations are fully exposed to the digestion
media under continuous stirring until the digestion ends. By
contrast, the transit of formulations in the GI tract is a peristalsis
movement, which is mimicked by TIM-1, while the absorption of
the formulation is concurrent with the lipolysis under realistic
circumstances. Consequently, the unrealistic conditions in the pH-
stat model lead to overestimation of bioaccessibility. However, it
has also been noted that the adsorption of model drugs on the
walls of the compartments in the TIM-1 digestive system causes
loss of bioaccessibility.

Despite the superiority to the pH-stat lipolysis model, the TIM-
1 shows obvious disadvantages. On the one hand, the setup of the
model is rather complex, hindering its popularization and appli-
cation. In addition, the complex process may greatly affect the
accuracy and consistency of the data because one mistake may fail
the process. A TinyTIM was designed to increase the throughput
by simplifying TIM-1121. The simplified version retains the gastric
compartment but only has one small intestinal compartment and
no ileal efflux. On the other hand, the filter system is unable to
mimic the active transport, efflux, and gut wall metabolism. A
valid correlation between bioaccessibility and bioavailability
cannot be obtained unless the transepithelial transport is not a
limiting step. The combination of TIM-1 with a Caco-2 cell cul-
ture model or in silico modeling provides a solution to bridge the
gap131.

5.3. Combined models and IVIVC

As mentioned above, in vitro lipolysis studies may fail to accu-
rately predict the oral bioavailability of LBFs because the model
does not fully represent in vivo conditions. As a closed system,



Figure 5 Schematic representation of the TNO gastrointestinal model (TIM-1). (a) Sensors; (b) pH meters; (c) Peristaltic valve; (d) Prefilter;

(e) Filtration system; (f) Cross-set of the filtration system; (g) Filtrate.

Table 2 Typical parameter settings in the TNO gastroin-

testinal model (TIM-1) in response to the digestion of a high-

fat meal.

Parameter Setting

Volume (mL) Stomach: 300, duodenum: 55,

jejunum: 130, ileum: 130

Meal size (g) 300

Gastric secretion (mL/min) 1

Gastric emptying curve t1/2 Z 80 min, b Z 2

Gastric pH curve (time, pH) (0, 5.2) (30, 3.2) (60, 2.2)

(120, 1.7)

Bile secretion (mL/min) 0.5

Pancreatin/electrolytes

(mL/min)

0.5

Ileal emptying curve t1/2 Z 220 min, b Z 2.2

Small intestinal pH Duodenum: 6.2, jejunum: 6.5,

ileum: 7.4

The table is adapted from Ref. 121 complying with the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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this model lacks the absorption sink that is present in vivo and may
therefore overestimate the precipitation potential98,113,132e134. The
intraluminal solvation capacity may be damaged because of the
altered composition of GI fluids in the process of intestinal
digestion, leading to supersaturation and consequent drug pre-
cipitation32,135. Meanwhile, in vivo absorption may lead to a rapid
and sufficient drop in the luminal drug concentration to avoid
precipitation. The absorption sink effect works even when the
initial supersaturation is high, provided that the absorption is
fast136. In addition to the absorption issue, absorbed drugs may
undergo first-pass metabolism. In this case, the in vitro lipolysis
model may overestimate the solubilization potential. Therefore,
combined lipolysisepermeation and digestionemicrosomal
metabolism models were developed, respectively, to obtain a
better IVIVC.

5.3.1. In vitro lipolysisepermeation models
In addition to the solubilization, supersaturation, and precipitation
of co-formulated drugs during digestion of LBFs, permeation of
model drugs is included in the lipolysisepermeation models. The
original setup of the model consisted of two separate single
compartments (Fig. 6). The lipolysis and permeation were per-
formed in a consecutive way. Dispersion and digestion of LBFs
were performed in a single compartment, utilizing the regular pH-
stat lipolysis model. At predetermined intervals, samples were
withdrawn and transferred to another compartment for the
permeation study. A normal setup of the Transwell system (top to
bottom) or Ussing chambers (side by side) can be adopted in this
step. However, the absorptive membrane should resemble the in-
testinal epithelia and withstand the harsh lipolysis conditions,
including pancreatic enzymes, diverse surfactants, excipients of
LBFs, and digestion. Permeability through the Caco-2 cell (a
human colon carcinoma cell line) monolayer represents the gold
standard for the evaluation of oral drug absorption133,137e141.
Differentiated Caco-2 cells resemble the epithelium of human
intestine, which enables the assessment of drug transport mediated
via different pathways, e.g., passive versus active transport and
paracellular versus transcellular routes142e144. Due to the intol-
erability of Caco-2 cells to the pancreatic enzymes, immobilized
lipase was used in the digestion step and was shown to success-
fully digest LBFs and be tolerated by cell monolayers133. An

http://creativecommons.org/licenses/by-nc-nd/4.0/
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artificial membrane (PermeaPad�)145 and intestinal rat tissue112

are used as alternative membranes for Caco-2 cell monolayer.
However, the model fails to establish the IVIVC for LBFs because
of the lack of concurrence of the digestion and per-
meation132,133,145e147. As illustrated using griseofulvin LCT,
MCT, and SCT LBFs, the consecutive lipolysisepermeation
model failed to establish the IVIVC. Instead, the single lipolysis
model was found to be useful112.

To capture the simultaneous occurring of drug release and
permeation during digestion, an in situ single-pass intestinal
perfusion in rats was coupled with the in vitro lipolysis148. For in
situ intestinal perfusion, the small intestine of an anesthetized rat
was exposure by a midline incision in the abdomen; the jejunum
(10 cm) was cannulated, while the intestinal contents were
removed with saline flush. The mesenteric vein that drained the
isolated region of the jejunum was cannulated to measure the drug
absorption; donor blood was infused via the cannula to the jugular
vein to maintain a consistent blood supply. The coupled model
successfully predicted the in vivo performances of three fenofi-
brate LBFs, while the single in vitro lipolysis model failed148. In
addition, the coupled model provided valuable mechanistical in-
sights into the interplay among drug solubilization, supersatura-
tion, precipitation, and absorption of LBFs during controlled
digestion. However, due to the high technical threshold, the model
is not a viable option.

Recently, a simple device consisting of two chambers, which
are separated by a Caco-2 cell monolayer or an artificial mem-
brane, was developed to simultaneously study lipolysis and
permeation of LBFs132,133,145e147 (Fig. 7). The upper chamber is
used for digestion studies, while the lower one is for assessment of
drug permeation. The presence of the absorptive monolayer allows
reduction of drug concentration in the digestion chamber and thus
maintains sink conditions, which facilitates improving the in vitro
predictions24,149. Similarly, immobilized lipase was used in the
digestion chamber for compatibility with the Caco-2 cell mono-
layer132,146. The accuracy of the prediction for in vivo drug
Figure 6 Consecutive use of combined
exposure, based on drug amount in the acceptor chamber, has been
validated with different fenofibrate- or carvedilol-loaded
LBFs132,146. Conversely, absence of the absorption membrane
led to fail of predicting the in vivo exposure of the formulations. It
was intriguing to find that the mixture of lipids and carvedilol was
as efficient as the carvedilol loaded LBF in oral bioavailability146.
Alternatively, artificial membranes can be used to tolerate a
porcine pancreatic extract. Screening with the membrane integrity
marker Lucifer Yellow indicated that n-dodecane-coated poly-
vinylidene difluoride membrane supports (0.45 mm pore size,
thickness 100e145 mm) were able to withstand the lipolysis with
porcine pancreatin over a sufficient assay period147. The rank
order of apparent permeability coefficients for different
fenofibrate-loaded LBFs was similar to that obtained using the
Caco-2 cell-based model. However, the IVIVR of the cell-free
model is yet to be improved using alternative digestive agents.

In addition to the absorption membrane, an everted gut sac was
recently combined with the pH-stat lipolysis model to better
evaluate and predict the in vivo absorption of LBFs150. The
everted gut sac model is efficient to study the mechanisms and
kinetics of drug absorption151, but it fails to evaluate LBFs
because of the absence of lipolytic conditions. The issue was
solved by incubating an everted gut sac in the medium of the pH-
stat lipolysis model. The performance is similar to that of the
original pH-stat model, except that samples are collected from the
gut sac. Simultaneous lipolysis and absorption of LBFs are well
simulated in this model. With optimized pH and concentrations of
D-glucose and pancreatic lipase, the combined model showed a
superior IVIVC (r Z 0.9772) between the in vitro absorption
percentages of an indomethacin LBF and the in vivo absorption
fraction compared with that obtained using the single everted gut
sac model150. However, the combined model has some drawbacks.
Tissue viability represents one limiting factor. Another disadvan-
tage is the presence of the muscularis mucosa, which may lead to
underestimation of the absorption of compounds with a tendency
to bind to muscle cells151.
in vitro lipolysisepermeation models.



Figure 7 Simultaneous use of a combined lipolysis and permeation model.
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5.3.2. Lipolysisemicrosomal metabolism model
As far as the oral bioavailability of BCS II drugs is concerned,
solubilization in GI tract as well as metabolism in enterocytes and
liver, instead of permeability, are the main obstacles. Microsomal
metabolism was thus coupled with an in vitro lipolysis to allow
prediction of oral bioavailability of LBFs in human152. Marinol�
(sesame oil solution of dronabinol) and Neoral� (SMEDDS of
cyclosporine A) were used as model preparations. The in vitro
lipolysis model enables an estimation of intraluminal solubility of
delivered drugs, while microsomal stability assays provide the
information on the first-pass metabolism ratio. The LBFs were
digested in two separate lipolysis buffers, with different concen-
trations of sodium taurocholate and phosphatidylcholine. The
absorption fraction (Fabs) was predicted by the drug concentration
in the micellar phase following in vitro lipolysis, seeing that all
solubilized drugs would be completely absorbed. Metabolism
occurs both in the liver and within enterocytes. The fractions of
the nonmetabolized drug dose in the liver (Fh) and in the gut (Fg)
were determined by metabolism studies using human hepatic and
intestinal microsomes, respectively. Subsequently, the predicted
oral bioavailability (Fpredicted) was estimated as shown in Eq. (1).

Fpredicted Z Fabs � Fh � Fg (1)

A strong correlation between the observed and predicted oral
bioavailabilities was verified by Pearson’s correlation for both
drugs at different doses. The composition of the digestion buffer
affected the accuracy. More accurate predictions were obtained
using the media with composition closer to physiological condi-
tions. However, it should be noted that the predicted values
disregard the effects of gastric metabolism and lymphatic trans-
port, which facilitate the bypassing of hepatic metabolism.

6. In silico prediction of IVIVCs

The complex in vivo processing of LBFs hinders the predictability
of the in vitro lipolysis model. Even a fairly complex model such
as TIM-1 cannot simulate all of the complex, multistage in vivo
processes, which involve the dispersion, digestion, solubilization,
precipitation, absorption, and metabolism of LBFs and co-
formulated drugs. However, in silico physiologically based PK
(PBPK) modeling provides a possibility to predict the complex
in vivo behavior via computational calculation based on the
available in vitro data. Several commercial programs are now
available for model generation, such as Gastroplus™, STELLA�,
Simcyp™, and PK-Sim�153. Although the combination of in vitro
solubility, dissolution, and precipitation testing with in silico
modeling is still in its infancy, it has shown a great potential to
predict the oral bioavailability of solid preparations154,155.

An in silico approach was proposed to establish the IVIVC of
fenofibrate LBFs156. Lipid excipients significantly enhanced the
solubility and dissolution of fenofibrate in gastric and intestinal
media, producing a high supersaturated state. Precipitation of the
drug after dissolution in the GI media was detected and depended
on the composition of the LBFs. The in vitro dissolution behavior
of the formulations and the in vivo PK parameters were incorpo-
rated in a STELLA� software to set up the PBPK model. In silico
simulation enables taking into account the possible precipitation
and redissolution of co-formulated drugs during digestion of
LBFs. Consequently, the simulated plasma concentration profiles
were accurately fitted with the observed ones for all of the LBFs
(Fig. 8156).

In addition to PBPK modeling, artificial intelligence, such as
artificial neural networks (ANNs), has been adopted to deal with
nonlinear in vitro and in vivo relationships and intrinsic variable
parameters that may be faced during IVIVC modeling157,158.
Recently, neuro-fuzzy modeling, a combination of ANNs and a
fuzzy logic with a capability to treat nonlinear complex problems,
has been introduced for IVIVC modeling of probucol LBFs159. In
the study, the release of probucol from an oil solution, a
SMEDDS, and a SNEDDS was tested using a lipolysis model159.
The rank order of the rate and extent of probucol release
(SMEDDS > SNEDDS > oil solution) was similar to that of the
bioavailability in an in vivo study. A significantly high prediction
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ability was achieved using the neuro-fuzzy model for different
data formations, without employing complex configurations.

Both the in vitro and the in vivo data should be mathematically
treated by either compartmental or linear methods to establish
IVIVC, which can be facilitated by different modules affiliated to
GastroPlus™. The PKPlus™ module provides the relevant PK
parameters by analyzing the plasma concentration profiles using
compartment methods. The IVIVCPlus™ module implements
deconvolution using the WagereNelson (one-compartment),
LooeRiegelman (two- and three-compartment), and numerical
deconvolution single and double Weibull methods to calculate the
fraction of the drug absorbed for establishing a correlation (linear,
power function, and second- and third-order polynomial). Based
on the advantage of the powerful in silico GastroPlus™ simula-
tion, good IVIVCs have been established for furosemide-loaded
solid lipid nanoparticles160, fenofibrate lipidic dispersions161,
and a rifampicin-loaded solidified SMEDDS162.

7. Summary and future perspectives

Several in vitro models have been developed to construct IVIVCs of
LBFs, which are summarized in Table 3. The pH-stat lipolysis
model is the most popular one and forms the basis for the devel-
opment of advanced models. Although a few early studies reported
successful IVIVCs, a growing number of studies have demonstrated
the inability of the pH-stat lipolysis model to generate level A
IVIVCs. The absence of the absorption process is the main draw-
back in the design of the model. However, the pH-stat model is
efficient in the rank ordering of formulations, which makes it an
excellent tool in formulation screening. A simplified pH-stat lipol-
ysis model adopted for 96-well plates may greatly increase the
throughput and cost effectiveness of screening163e166. TIM-1 is
preferable to the pH-stat model because of a closer simulation of the
GI physiology in dealing with lipid digestion and removal of water
and metabolites. Although pharmaceutical companies such as
AstraZeneca have recognized the value of TIM-1, its application is
limited by the high price and complex setup. However, TinyTIM
may provide a practical option. The initial application of TIM-1 for
the evaluation of Pickering emulsions shows a good potential in the
rank ordering of formulations. The capability of the model to
Figure 8 In silico approach facilitated establishment of in vitro and

in vivo correlations of fenofibrate lipid-based formulations (LBFs).

Simulated (solid lines) and observed (symbols with error bars) plasma

fenofibric acid concentration profiles for the LBFs. Reprinted with the

permission from Ref. 156. Copyright ª 2013 Elsevier B.V.
construct a level A IVIVC is yet to be confirmed. Meanwhile, the
combined digestionepermeation model shows promise in con-
structing IVIVCs of LBFs. A model combined with a Caco-2 cell
monolayer or everted gut sac is particularly promising for fulfilling
level A IVIVC modeling because of the involvement of active
transportation of solubilized drugs and metabolism inside the
epithelia. None of the present models are able to provide full and
consistent IVIVCs due to the inability to mimic fully the overall
processes occurring in vivo. Yet some physiological and physico-
chemical parameters have not been touched, such as the hormonal
and nervous control, feedback mechanisms, mucosal cell activity,
realistic shape and motility of GI tract, mechanical forces from
physiological contractions, and involvement of the local immune
system104. It is also crucial to mimic the dynamic secretion of
digestive enzymes/bile salts and changes in gastric emptying and GI
transit time. The future perspective on the setup of the in vitromodel
is to closely simulate the physiological and physicochemical envi-
ronments in the GI tract to increase the predictive capability.

In addition to the setup of an in vitro model, other issues should
be considered in the construction of IVIVCs. Model drugs adopted
in present studies, such as fenofibrate, griseofulvin, phenytoin,
indomethacin, and ketoprofen, are typical BCS II drugs. They have
poor water solubility but good permeability, which indicates a good
probability of obtaining level A IVIVCs for BCS II drugs if they are
solubilized during the lipolysis of LBFs. However, LBFs are
overqualified for oral delivery of BCS II drugs and are more
applicable to BCS IV drugs by increasing both their solubility and
permeability. In this regard, the feasibility of an in vitro model for
constructing an IVIVC should be determined for BCS IV drugs.
Moreover, it should be noted that the ultimate goal of an IVIVC is
to predict the in vivo behavior of LBFs in humans. The majority of
the present studies are performed in rats, while the GI physiology of
animals is different from that of humans. For example, bile is
continuously secreted in rats, while bile secretion in humans is
stimulated by food. It is crucial to verify the predictability of in vitro
models using data obtained in humans. PBPK modeling may be
promising in this regard. The PBPK platform provides equations
describing the whole processes of administrated formulations in
different compartments (e.g., the gastric lumen, the intestinal
lumen, the plasma, the liver, the glomerular filtration, and the pe-
riphery tissues) based on human physiological parameters.
Combining with drug dependent parameters (e.g., physicochemical
properties, permeability, protein binding, and metabolism by he-
patic enzymes) enables building a PBPK model to predict in vivo
performance of formulations in human. For detailed concept of
PBPK, please refer to recent reviews167,168. Lastly, the in vitro
model should be conducive to understanding the mechanisms of
action of LBFs. Present studies only measure the total drug amount
for the construction of IVIVCs but do not discriminate between free
drug molecules and those solubilized in formulations. It is unknown
whether and to what extent the LBFs contribute to the absorption of
drug molecules, particularly BCS IV drugs. Environment-
responsive fluorescent probes, such as aggregation-caused quench-
ing and Förster resonance energy transfer probes, may provide a
powerful tool to answer this question. The environment-responsive
fluorescent probes enable self-discrimination of LBFs via the
fluorescent quenching (aggregation-caused quenching) or switching
to different wavelengths (Förster resonance energy transfer) when
the probes are released from the vehicles upon lipolysis. Theoreti-
cally, the fluorescent intensity can be utilized to quantify the intact
LBFs. Since the hydrophobic cargos are not leaked from the LBFs
unless the formulation is broken down upon lipolysis, the quantity



Table 3 Summary of the current in vitro models.

Model Component Simulated parameter Advantage Disadvantage

In vitro release/

dispersion model

USP type II or type III dissolution

apparatus

Drug release from formulation;

dispersion of formulation

Simple Absence of the gastrointestinal

situation.

One-compartment

intestinal digestion

model

A thermostatic vessel, an overhead

stirrer, a pH electrode, and a

titrator

Lipid digestion in intestinal track,

solubilizing or precipitation of

drugs during lipolysis

Simple, most widely adopted model

in evaluation of lipid-based

formulations

Ignoring lipolysis in stomach, gastric

emptying, and pH changes in

gastrointestinal tract;

Absence of dynamic secretion of

digestive enzymes and bile salts;

Absence of the absorption process.

Gastrointestinal

digestion model

Similar to the intestinal digestion

model

Both gastric and intestinal digestion,

pH changes in gastrointestinal

tract, and gastric emptying

Mimicking both the gastric and the

intestinal conditions;

Gastrointestinal transit and pH

changes are included.

More complex than one-

compartment intestinal digestion

model;

Absence of dynamic secretion of

digestive enzymes and bile salts;

Absence of the absorption process.

TNO gastrointestinal

model

Four tubular compartments (i.e., the

gastric, the duodenal, the jejunal,

and the ileal compartment),

peristaltic valve pumps connecting

the compartments, gastric and

duodenal secretions, pH meter,

titration, filtration system

Lipid digestion in both gastric and

intestinal tract, gastric emptying,

pH changes in gastrointestinal

tract, absorption of solubilized

drugs

Closely mimicking the dynamic

process of the transit, digestion,

and absorption of formulations in

gastrointestinal tract

Extremely complex setup, high price,

poor reproducibility;

The filtration system cannot provide

active and facilitated transport

processes and brush border

enzyme activities.

In vitro lipolysis

epermeation

models

The lipolysis setup is similar to the

one-compartment intestinal

digestion model; The permeation

study utilizes Transwell system,

Ussing chamber, or diffusion cell;

Caco-2 cell monolayer, artificial

membrane, or everted gut sac is

adopted as absorptive monolayer

Lipid digestion and permeation of

model drugs in a consecutive or in

a simultaneous way

Providing the absorption sink effect. Absence of dynamic secretion of

digestive enzymes and bile salts;

Absence of transit in gastrointestinal

tract.

Lipolysis

emicrosomal

metabolism model

The lipolysis setup is similar to the

one-compartment intestinal

digestion model; microsomal

stability assays

Solubilization of co-formulated drug

following digestion; metabolism

of the drug in enterocytes and liver

The first-pass metabolism is included

in the model.

The model is limited to drugs with

high first-pass metabolism;

Absence of dynamic secretion of

digestive enzymes and bile salts;

Absence of absorption process.

In silico prediction Physiologically based

pharmacokinetic modeling

The dispersion, digestion,

solubilization, precipitation,

absorption, and metabolism of

formulations and co-formulated

drugs.

Computational calculation of the

complex in vivo behavior based on

the available in vitro data.

Prediction of the in vivo performance

in human is possible.

Accuracy of the model is yet to be

validated.

2
4
8
2

Y
an
p
in
g
H
u
an
g
et

al.



In vitro and in vivo correlation for lipid-based formulations 2483
of the intact LBFs may be converted to the drug amount still in
formulation. Although these probes have been widely used for
qualitative analysis, quantification is yet to be realized. Break-
through in this technique will bring about critically important in-
formation for design of LBFs.

8. Conclusions

The feasibility of LBF use in oral drug delivery has been fully
recognized by both academia and industry. Construction of
IVIVCs is a prioritized research which provides a powerful tool to
promote the development of LBFs. A variety of in vitro models
have been developed to understand and predict the in vivo per-
formance of LBFs. However, none of the present models are able
to mimic fully the overall processes of LBFs occurring in vivo,
leading to frequent failure in obtaining level A IVIVCs. Great
efforts have been made to improve the predictive power of in vitro
models by closely simulating the gastrointestinal physiology. A
substantial improvement in this field will definitely promote the
clinical translation of LBFs.
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Álvarez C, Dı́az-Garzón Marco J, Rodrı́guez-Bonnı́n MA, et al.

IVIVC approach based on carbamazepine bioequivalence studies

combination. Pharmazie 2017;72:449e55.

35. Ruiz Picazo A, Martinez-Martinez MT, Colón-Useche S, Iriarte R,
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Rüschenbaum S, et al. Optimizing novel implant formulations for the

prolonged release of biopharmaceuticals using in vitro and in vivo

imaging techniques. J Control Release 2016;235:352e64.

48. Zhu Q, Wei YD, Li CH, Mao SR. Inner layer-embedded contact

lenses for ion-triggered controlled drug delivery. Mater Sci Eng C

Mater Biol Appl 2018;93:36e48.

49. Zhu Q, Liu C, Sun Z, Zhang XF, Liang N, Mao SR. Inner layer-

embedded contact lenses for pH-triggered controlled ocular drug

delivery. Eur J Pharm Biopharm 2018;128:220e9.

50. Li JQ, Zheng HL, Qin L, Xu EY, Yang LL, Zhang L, et al. In vitro‒

in vivo correlation of inhalable budesonide-loaded large porous

particles for sustained treatment regimen of asthma. Acta Biomater

2019;96:505e16.

51. Shen J, Burgess DJ. In vitroein vivo correlation for complex non-oral

drug products: where do we stand?. J Control Release 2015;219:

644e51.
52. Yang Y, Manda P, Pavurala N, Khan MA, Krishnaiah YS. Develop-

ment and validation of in vitro‒in vivo correlation (IVIVC) for

estradiol transdermal drug delivery systems. J Control Release 2015;

210:58e66.

53. Patel H, Joshi A, Joshi A, Stagni G. Transdermal delivery of eto-

poside phosphate II: in vitro in vivo correlations (IVIVC). J Phar-

maceut Sci 2016;105:2139e45.
54. Mittapelly N, Pandey G, Tulsankar SL, Arfi S, Bhatta RS, Mishra PR.

In depth analysis of pressure-sensitive adhesive patch-assisted de-

livery of memantine and donepezil using physiologically based

pharmacokinetic modeling and in vitro/in vivo correlations. Mol

Pharm 2018;15:2646e55.

55. Shin SH, Thomas S, Raney SG, Ghosh P, Hammell DC, El-

Kamary SS, et al. In vitro‒in vivo correlations for nicotine

transdermal delivery systems evaluated by both in vitro skin

permeation (IVPT) and in vivo serum pharmacokinetics under the

influence of transient heat application. J Control Release 2018;

270:76e88.
56. Simon A, Amaro MI, Healy AM, Cabral LM, de Sousa VP.

Comparative evaluation of rivastigmine permeation from a trans-

dermal system in the Franz cell using synthetic membranes and pig

ear skin with in vivo‒in vitro correlation. Int J Pharm 2016;512:

234e41.

57. Kuentz M. Drug supersaturation during formulation digestion,

including real-time analytical approaches. Adv Drug Deliv Rev 2019;

142:50e61.
58. Alskär LC, Keemink J, Johannesson J, Porter CJ, Bergström CA.

Impact of drug physicochemical properties on lipolysis-triggered

drug supersaturation and precipitation from lipid-based formula-

tions. Mol Pharm 2018;15:4733e44.

59. Williams HD, Trevaskis NL, Yeap YY, Anby MU, Pouton CW,

Porter CJ. Lipid-based formulations and drug supersaturation: har-

nessing the unique benefits of the lipid digestion/absorption pathway.

Pharm Res 2013;30:2976e92.

60. Sassene PJ, Michaelsen MH, Mosgaard MD, Jensen MK, Van Den

Broek E, Wasan KM, et al. In vivo precipitation of poorly soluble

drugs from lipid-based drug delivery systems. Mol Pharm 2016;13:

3417e26.

61. Carriere F. Impact of gastrointestinal lipolysis on oral lipid-based

formulations and bioavailability of lipophilic drugs. Biochimie

2016;125:297e305.

http://refhub.elsevier.com/S2211-3835(21)00097-6/sref26
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref26
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref26
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref26
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref27
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref27
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref27
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref27
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref27
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref28
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref28
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref28
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref28
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref29
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref29
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref29
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref29
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref30
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref30
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref30
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref30
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref30
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref31
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref31
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref31
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref31
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref31
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref32
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref32
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref32
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref32
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref33
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref33
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref33
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref33
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref33
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref33
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref34
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref34
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref34
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref34
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref34
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref35
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref35
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref35
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref35
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref35
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref36
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref36
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref36
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref36
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref36
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref37
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref37
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref37
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref38
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref38
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref38
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref39
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref39
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref39
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-vivo-correlations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-vivo-correlations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-vivo-correlations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-vivo-correlations
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref41
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref41
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref41
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref41
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref41
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref41
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref42
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref42
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref42
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref42
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref43
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref43
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref43
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref43
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref43
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref44
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref44
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref44
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref44
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref44
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref45
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref45
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref45
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref45
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref45
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref46
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref46
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref46
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref46
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref46
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref47
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref47
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref47
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref47
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref47
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref48
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref48
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref48
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref48
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref49
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref49
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref49
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref49
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref50
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref50
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref50
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref50
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref50
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref51
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref51
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref51
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref51
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref51
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref52
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref52
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref52
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref52
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref52
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref53
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref53
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref53
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref53
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref54
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref54
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref54
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref54
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref54
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref54
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref55
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref56
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref56
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref56
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref56
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref56
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref56
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref57
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref57
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref57
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref57
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref58
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref58
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref58
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref58
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref58
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref59
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref59
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref59
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref59
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref59
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref60
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref60
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref60
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref60
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref60
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref61
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref61
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref61
http://refhub.elsevier.com/S2211-3835(21)00097-6/sref61


In vitro and in vivo correlation for lipid-based formulations 2485
62. O’Dwyer PJ, Box KJ, Koehl NJ, Bennett-Lenane H, Reppas C,

Holm R, et al. In vivo novel biphasic lipolysis method to predict

performance of lipid-based formulations. Mol Pharm 2020;17:

3342e52.

63. Ye JY, Wu HY, Huang CL, Lin WT, Zhang CF, Huang B, et al.

Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat

models for oral absorption on BCS II drugs in SNEDDS. Int J

Nanomed 2019;14:5623e36.

64. Borkar N, Xia D, Holm R, Gan Y, Mullertz A, Yang M, et al.

Investigating the correlation between in vivo absorption and in vitro

release of fenofibrate from lipid matrix particles in biorelevant me-

dium. Eur J Pharmaceut Sci 2014;51:204e10.
65. Khan J, Rades T, Boyd BJ. Lipid-based formulations can enable the

model poorly water-soluble weakly basic drug cinnarizine to pre-

cipitate in an amorphous-salt form during in vitro digestion. Mol

Pharm 2016;13:3783e93.
66. Berthelsen R, Klitgaard M, Rades T, Mullertz A. In vitro digestion

models to evaluate lipid based drug delivery systems: present status

and current trends. Adv Drug Deliv Rev 2019;142:35e49.

67. Larsen AT, Ohlsson AG, Polentarutti B, Barker RA, Phillips AR,

Abu-Rmaileh R, et al. Oral bioavailability of cinnarizine in dogs:

relation to SNEDDS droplet size, drug solubility and in vitro pre-

cipitation. Eur J Pharmaceut Sci 2013;48:339e50.
68. Binder HJ, Reuben A. Nutrient digestion and absorption. In: BoronWF,

Boulpaep EL, editors. Medical physiology: a cellular and molecular

approach. Philadelphia: Elsevier Saunders; 2009. p. 949e79.

69. Beg S, Sharma G, Thanki K, Jain S, Katare OP, Singh B. Positively

charged self-nanoemulsifying oily formulations of olmesartan

medoxomil: systematic development, in vitro, ex vivo and in vivo

evaluation. Int J Pharm 2015;493:466e82.
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