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Abstract

Increased levels of total tumor-infiltrating lymphocytes (TILs) are generally associated with good 

prognosis in several breast cancer subtypes. Subtypes of TILs impact both tumor cells and immune 

cells in a variety of different ways, leading to either a pro-tumor or anti-tumor effect. Tumor­

infiltrating CD8+ T cells and natural killer (NK) cells perform as effector cells against tumor 

cells and are associated with better clinical outcome. Immunotherapy approaches that improve 

the antitumor activity and proliferation of CD8+ T and NK cells include PD-1/PD-L1 blockade, 

CAR T-cell therapy, or ex vivo-stimulated NK cells. A subset of CD8+ T cells, tissue-resident 

memory T cells, has also recently been associated with good prognosis in breast cancer patients, 

and has potential to serve as a predictive biomarker and therapeutic target. Tumor-infiltrating B 

cells also secrete apoptosis-inducing IgG antibodies and can act as antigen-presenting cells to 

prime CD4+ and CD8+ T cells. On the other hand, regulatory T and regulatory B cells modulate 

the immune response from CD8+ T cells and NK cells by secreting immunosuppressive cytokines 

and inhibiting maturation of antigen-presenting cells (APCs). These regulatory cells are typically 

associated with poor prognosis, therefore rendering suppression of their regulatory function a key 

immunotherapeutic strategy.
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Introduction

Breast cancer is the most common type of cancer for women globally and is one of the 

leading causes of cancer-related deaths in women in the United States, second only to lung 
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cancer [1,2]. 1 in 8 women in the United States are expected to develop breast cancer during 

their lifetime, with the risk of breast cancer development increasing with age [3]. Over 

275,000 cases and 40,000 deaths are estimated to occur due to breast cancer in the United 

States in 2020, representing approximately 15.4% and 7.0% of all estimated new cancer 

cases and cancer-related deaths in 2020. 5-year survival rates for breast cancer patients 

decrease from 99% to just 27% with the transition from local Stage 0 or 1A cancer to 

metastatic stage IV cancer, highlighting a need for systemic treatment that can eradicate 

microscopic as well as macroscopic metastasis.

There are several systemic treatment options for patients with metastatic breast cancer: 

chemotherapy, hormonal therapy, targeted therapy, and immunotherapy. With each of these 

therapies, patients with higher levels of total tumor-infiltrating lymphocytes (TILs) tend to 

exhibit better treatment outcomes [4-7]. TILs are comprised of T cells, B cells, and natural 

killer (NK) cells (Fig. 1), which represent about 75%, 20%, and 5% of TILs in breast 

tumors, respectively [8,9]. The subtypes of immune filtrate also play a role in predicting 

prognosis. Regulatory T and B cells, which modulate the immune response rather than 

augment it, are both negatively associated with breast cancer prognosis in all breast cancer 

subtypes [10,11]. Thus, immunotherapy, which seeks to improve the level and composition 

of TILs, has become an exciting avenue for the treatment of breast cancer patients. This 

review aims to identify the role of different TIL subtypes in breast cancer and discuss 

different immunotherapeutic strategies that target these cells.

CD8+ T cells

To differentiate into CD8+ effector T cells that recognize and attack tumor cells, naïve CD8+ 

T cells must first become stimulated by dendritic cells (DCs) in lymphoid organs [12]. DCs 

will uptake and process tumor-associated antigens, presenting the MHC-peptide complexes 

on their surface. T-cell antigen receptors (TCR) on the surface of CD8+ T cells recognize 

the MHC-peptide complex on the DCs, bind, and are activated in an antigen-specific manner 

(Fig. 1). At this stage, these early effector CD8+ T cells can further differentiate into 

memory precursor cells, which have the capacity to survive long-term as central memory 

T cells (TCM) and effector memory T cells (TEM) [13]. Co-stimulatory molecules on the 

surface of DCs also have the ability to prompt T cells to undergo clonal expansion, forming 

a large pool of CD8+ effector T cells [12]. During early human development, DCs are also 

responsible for inducing self-tolerant T cells by presenting self-antigens to naïve T cells in 

the thymus, ensuring that the only T cells that enter circulation are those with no or low 

affinity to self-antigens [14,12]. Upon recognition of the target cell via surface antigens, 

effector CD8+ T cells release lytic granules containing perforin, granzymes, and serine 

proteases (Fig. 1) [15]. Perforin polymerizes to form pores in the target cell membrane, 

allowing granzymes and serine proteases to enter the target cell. Upon entry, the granzymes 

activate an enzyme cascade that leads to DNA degradation of the target cell, triggering the 

cell to undergo apoptosis.

Triple-negative breast cancer (TNBC) and HER2+ patients with higher levels of infiltrating 

CD8+ T cells are more likely to achieve an objective response rate (ORR) with immune 

checkpoint inhibitor (ICI) therapy [16]. In addition to CD8+ effector T cells, this cell 
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population can also consist of CD8+ TCM, TEM, T stem cell memory (TSCM), and naïve 

CD8+ T cells [17]. ER+ breast cancer patients who respond to ICI immunotherapy are more 

likely to have exhausted T cell infiltration (CTLA-4+/PD-1+ CD8+ T cells), as these cells 

are the target cell population of ICIs [18]. The association between response rate and TIL 

levels was seen in TNBC tumors, but had not been shown in ER+ tumors until recently [19]. 

Spatial localization of CD8+ T cells within breast tumors also contributes to their prognostic 

ability. CD8+ TILs found within cancer islands (i.e. tumor parenchyma) of breast tumors 

have a stronger association with relapse-free survival (RFS) in TNBC patients than CD8+ 

TILs found within the stroma [20]. Similar findings were also found in ER− (TNBC and 

HER2+) breast cancer patients [21]. Additionally, high HLA-I expression levels on primary 

HER2+ breast tumor cells in patients are positively associated with a reduced relapse rate, 

likely due to the contribution of CD8+ T cells [22].

Although CD8+ T cells are positively correlated with better clinical outcome in breast 

cancer patients, breast cancers employ several methods of developing resistance to CD8+ 

T cell antitumor activity, thus reducing their clinical benefit. The tumor microenvironment 

(TME) secretes immunosuppressive cytokines, such as IL-6, IL-17, or TGF-β, which are 

associated with poor clinical outcomes [23,24]. By releasing immunosuppressive cytokines, 

the TME also elevates levels of tumor-associated macrophages (TAMs), regulatory T cells 

(Tregs), and myeloid-derived suppressor cells (MDSCs) that restrict CD8+ T cell infiltration, 

proliferation, and activity within the tumor [25-28,23]. Human breast cancer cells can 

also induce an immunosuppressive environment by upregulating PD-L1 expression, which 

induces T cell suppression and inhibits T cell activity upon binding of tumor PD-L1 to the 

PD-1 or B7-1 receptors located on T and B cells [29]. Further, TCR signaling, a marker of 

T cell functionality, is decreased in peripheral blood of HR+ metastatic breast cancer patients 

compared to healthy donors, particularly in PD-1+ T cells [30].

As the presence of CD8+ T cells in tumors is strongly associated with improved RFS and 

objective response, several treatment strategies target CD8+ T cells directly. For example, 

antibodies that target the PD-1/PD-L1 axis have become increasingly popular for treating 

breast cancer, particularly in TNBC patients. In a systematic analysis of ICIs in clinical 

trials, anti-PD-L1 immunotherapy demonstrated an ORR of 28% compared to anti-PD-1 

(16%) and anti-CTLA-4 (no significant response) [16]. Indeed, atezolizumab, an anti-PD-L1 

antibody, and pembrolizumab, an anti-PD-1 antibody, are the only ICIs currently approved 

by the FDA for treatment of TNBC [31,32]. Chimeric antigen receptor (CAR) T cell 

therapy involves adapting the CD8+ T cell receptor to target tumor antigens, expanding the 

cells ex vivo, and transferring the expanded CD8+ CAR T cells to the patient by infusion 

[33]. This strategy is successful in a variety of hematologic malignancies [33-35], but has 

recently shown potential in solid tumors as well. Particularly, CAR T cells directed towards 

the human MUC1 cleavage product, a protein expressed in 95% of breast cancers, has 

demonstrated success in vivo and is currently in a Phase I clinical trial for the treatment of 

metastatic breast cancer (NCT04020575) [36,37]. Another method of stimulating CD8+ T 

cells for breast cancer treatment is by the use of a cancer vaccine. For example, DC-based 

vaccines stimulate DCs in vitro with various molecules (IFN-γ, LPS, IL-4, GM-CSF, etc.) 

and human tumor-associated antigens like p53 and HER2 to improve antigen presentation 

to CD8+ T cells [38-40]. These DC-based vaccines directed towards p53 and HER2 lead 
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to increases in tumor-specific CD8+ effector T cells, NK cells, and Th1 cytokine secretion, 

which resulted in an improvement of the 3-year progression-free survival (PFS) rate from 

31.0% to 76.9% in a clinical trial with stage II/IIIA PR−/ER− breast cancer patients 

[39,41,42].

CD4+ Regulatory T Cells (Tregs)

CD4+CD25+FoxP3+ human regulatory T cells (Tregs) play an important role in regulating 

the immune system to prevent autoimmunity, allergy responses, and to induce tolerance 

to organ grafts [43-46]. FoxP3 (forkhead box P3) contributes in several ways to Treg 

differentiation: it upregulates CD25, differentiates α/β TCR-positive T cells to Tregs in the 

thymus, and induces suppressive activity even in non-Tregs when expressed at high levels 

[47,48]. Intratumoral Tregs in breast cancer primarily develop from tumor-infiltrating naïve 

human CD4+ T cells in a CCL18-dependent manner [49]. CCL18 is a chemokine secreted 

by TAMs that recruits naïve CD4+ T cells to the tumor by binding to the PITPNM3 receptor 

on CD4+ cells. Accordingly, breast cancer patients exhibit upregulation of CCL18 in 

peripheral blood compared to healthy volunteers, and high CCL18 expression is associated 

with poor prognosis and cancer progression [50,51]. Knockdown of the PITPNM3 receptor 

in vivo with CD4-aptamer-siRNA chimeras in a mouse model (humanized NSG mice 

injected with isolated human CD4+CD25+CD127− Tregs throughout the study) of human 

MDA-MB-231 breast cancer led to a reduction in intratumoral Tregs that was associated 

with inhibition of tumor progression [49].

Once activated, Tregs have the ability to induce an immunosuppressive TME in several 

ways. Antigen-specific Tregs can inhibit maturation of antigen-presenting cells (APCs) 

that are essential for the development of cytotoxic CD8+ T cells via binding of CTLA-4 

expressed by Tregs to CD80/86 expressed by APCs (Fig. 1) [52,53]. The TCR repertoire 

from tumor-infiltrating Tregs specifically react against autologous tumors and mutated 

neoantigens, suggesting that these Tregs are activated and undergo clonal expansion within 

the TME [54]. In addition to modulating the immune response in an antigen-specific 

manner, activated Tregs also function in a nonspecific manner. Tregs consume IL-2 through 

their high affinity IL-2 receptor, which would otherwise mediate and stimulate cytotoxic 

activity of CD8+ effector T cells [52,55]. Additionally, Tregs secrete immunosuppressive 

cytokines such as IL-10, TGF-β, and IL-35 (Fig. 1), which inhibit CD8+ T cell mediated­

immunity and promote tumor growth and metastasis [56,57,52,58]. Lastly, degradation of 

ATP by human Tregs into adenosine by CD39 and CD73 leads to suppression of effector 

CD8+ T cells by engagement of the A2a receptor present on the surface of CD8+ T cells [59]. 

Although Tregs can act nonspecifically, Treg activation and expansion typically still requires 

TCR engagement [60,61].

CD4+CD25+FoxP3+ Tregs, as well as the Treg subset T follicular regulatory (Tfr) cells, are 

present at increased levels in peripheral blood and breast tissue of breast cancer patients 

than in healthy volunteers for all breast cancer subtypes [62-64]. Increased levels of Tregs 

are strongly associated with increased risk of relapse, lower RFS and overall survival, and 

can identify patients with higher risks of relapse after 5 years [64]. Additionally, Tfr cells 

in human breast tumors have increased FoxP3+ levels and IL-10 production, suggesting 
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that they have an increased capacity for immunosuppression [62]. FoxP3+ lymphocytes 

combined with cytoplasmic FoxP3+ in tumor cells leads to worse overall survival in breast 

cancer patients than either phenotype alone [11]. Moreover, the proportion of FoxP3+ Tregs 

increases significantly with progression of normal breast tissue to ductal carcinoma in situ 

(DCIS), and DCIS to invasive ductal carcinoma (IDC) [65]. Interestingly, CD4+ Tregs are 

also able to inhibit pre-invasive breast cancer from developing into invasive breast cancer 

by suppressing pro-tumorigenic Th2 responses [66]. As Tregs can co-infiltrate tumors along 

with CD8+ T cells and CD20+ B cells, higher levels of Tregs within TNBC tumors have also 

been correlated with better prognosis [67], highlighting a need to normalize the data through 

representation of the Treg level as a ratio of CD8/Treg as performed in other studies [68,69].

Tregs also possess the ability to suppress immunostimulation induced by immunotherapeutic 

approaches. For example, DC vaccines induce anti-tumor immunity, but this immunity 

does not always lead to tumor regression due to Treg expansion after DC infusion [70]. 

An in vivo study in mice resolved this phenomenon by combining a DC vaccine with a 

synthetic peptide known to inhibit Foxp3, resulting in improved therapeutic efficacy of the 

DC vaccine and reduced IL-10 secretion by Foxp3+ murine breast cancer cells in vitro 
[71]. IL-2, an NK-cell stimulatory cytokine, administered along with trastuzumab resulted 

in no objective responses in HER2+ metastatic breast cancer patients along with no NK cell 

expansion [72]. This outcome is possibly due to a concurrent activation and expansion of 

Tregs as previously demonstrated in melanoma and renal cancer upon IL-2 administration 

[72,73]. Strategies that aim to improve IL-2 therapy focus on engineering the IL-2 cytokine 

to selectively stimulate CD8+ or NK cells rather than Tregs, such as the IL-2 ‘superkine’ 

or PEGylated IL-2 [74,75]. PEG blocks the IL-2Rα subunit binding region, which typically 

activates Tregs, whereas the IL-2Rβ subunit binding region, which activates CD8+ T cells, is 

not blocked [75]. Additionally, radiotherapy induces higher proportions of Tregs compared 

to effector T cells due to their higher radioresistance levels [76].

Although Treg levels can be associated with better prognosis [67], they are more often 

associated with a worse outcome and the ability to reduce therapeutic benefit of NK 

and CD8+ T cell-directed therapies, thus, strategies have developed to modulate Treg 

activity. CTLA-4, a molecule commonly upregulated on activated T cells and constitutively 

expressed on Tregs, acts to inhibit CD8+ effector T cell function through activation of 

Tregs and by blocking the B7-1 and B7-2 ligands on APCs that would otherwise bind 

and activate CD8+ naïve T cells [77,78]. CTLA-4 blockade is known to suppress Treg 

activity and activate CD8+ effector T cells [77], and its use in breast cancer demonstrates 

clinical benefit [79,80]. In a phase I clinical trial, stable disease was achieved in 42% of 

HR+ breast cancer patients receiving tremelimumab (anti-CTLA-4 mAb) and exemestane 

(aromatase inhibitor) therapy, and 36% of these responding patients had previously failed 

exemestane therapy [80]. In an ongoing Phase II trial, anti-CTLA-4 therapy also has 

promising results when combined with anti-PD-1, achieving an ORR of 12% and a median 

overall survival of 12 months in patients with metaplastic breast cancer [79]. Another 

method involves using anti-CD25 mAb to deplete CD25+FoxP3+ Tregs, resulting in a long­

lasting depletion of circulating Tregs and a priming and boosting of effector T cell response 

when given concurrently with HLA-A2-binding peptide vaccination in metastatic breast 

cancer patients [81]. Although more indirect, standard neoadjuvant chemotherapy treatment 
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regimen of carboplatin, docetaxel, and trastuzumab also results in significantly decreased 

Treg levels in the peripheral blood, particularly in HER2+ breast cancer patients who also 

had better clinical outcomes [82]. Overall, the CD8/Treg ratio increased in HER2+ breast 

cancer patients, indicating that the chemotherapy did not negatively affect CD8+ T cells 

significantly. However, the method of reducing Treg proliferation is also critical because 

apoptotic human Tregs can induce oxidative stress in the TME by conversion of ATP to 

adenosine via CD39 and CD73, suppressing T cell activation at levels similar to or greater 

than live Tregs [83].

Tissue-resident memory T cells

Tissue-resident memory T cells (TRM) are memory T cells that permanently localize within 

peripheral tissues rather than recirculating throughout the body [84,85]. TRM cells exhibit 

key differences from TEM cells, including chromatin landscape [86] and TCR repertoire 

[87]. Human TRM cells characteristically express the CD103 (αEβ7) integrin and the C-type 

lectin CD69 [88], while also displaying a downregulation of Kruppel-like factor 2 (KLF2) 

and sphingosine 1-phosphate type 1 (S1PR1) genes, resulting in TRM retention within 

tissues [89]. CD103 is a transmembrane receptor on the surface of TRM cells that binds to 

the E-cadherin ligand expressed on epithelial cells, favoring retention of these cells within 

epithelial tissues [90]. In fact, CD103 binding to E-cadherin facilitates antigen recognition 

on epithelial tumor cells [91]. CD69 plays a role in limiting TRM recirculation as well by 

downregulating S1PR1 [92], which promotes egress of naïve T cells from lymph nodes 

[93], and can be used as a phenotypic marker to distinguish TRM cells from TEM cells 

[94]. However, not all TRM cells express CD69 and CD103 [95], indicating that additional 

biomarkers need to be discovered to better characterize these cells.

To upregulate CD103, one of the specific markers of residency, CD8+ T cells typically 

require both antigen stimulation and TGF-β signaling [96,97]; although some TRM cells 

can be induced through antigen-independent means [98]. In mice, TRM cells were observed 

to develop from memory precursor cells resulting from downregulated or absent KLRG1 

expression in CD8+ effector cells [99]. Within epithelial tissue, CD8+ TRM cells bind to 

E-cadherin located on the epithelial tumor cells via the CD103 integrin [91]. This binding, 

along with TCR engagement, results in polarization of cytolytic granules at the immune 

synapse. Human TRM cells express high levels of mRNA encoding for cytotoxic molecules 

such as granzyme B, perforin, and IFN-γ [87], suggesting that TRM cells may have 

antitumor effects through direct cytotoxic ability and/or recruitment of cells via IFN-γ to the 

TME (Fig. 1) [99]. In vitro, human TRM cells (CD103+) display increased levels of apoptotic 

activity compared to CD8+ effector cells (CD103−) after incubation with autologous tumor 

cells [88].

Using gene expression data from the METABRIC consortium, Savas et al. found that a 

TRM gene signature is associated with an improved RFS and overall survival (OS) in 

TNBC patients after chemotherapy [87]. Patients with high CD8+ signature and a high 

TRM signature have better prognosis than patients with only a high CD8+ signature. A 

separate study found a similar correlation between a TRM gene signature and progression­

free and overall survival in TNBC patients after treatment with anti-PD-1 antibody [100]. 
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Intraepithelial CD8+CD103+ TIL in basal-like breast tumors also have a positive association 

with RFS and OS [101]. CD103+CD69+ TRM cells make up 40% of CD8+ TILs in human 

breast tumors on average [102]. Patients with a poor prognosis (defined as having a relapse 

less than 3 years after diagnosis) have TRM cells make up just 20% of CD8+ TILs. 

Alternatively, patients with a good prognosis (defined as having a relapse in more than 5 

years after diagnosis) have TRM cells make up 60% of CD8+ TILs. Additionally, an in vivo 
study in mice that activates DCs with dectin-1 observed an induction of CD8+CD103+ 

T cells after treatment that resulted in an antitumor response to breast cancer [103]. 

In melanoma, adoptive cell transfer of glycoprotein B-expressing B16 variant cells into 

immunized mice elicits a TRM cell-dependent antitumor effect [104]. These recent studies 

suggest that the TRM signature may serve as a predictive biomarker and potential therapeutic 

target in the future with further elucidation of its antitumor effect.

Natural Killer (NK) cells

Natural killer (NK) cells are innate lymphocytes that express a range of inhibitor receptors 

that are activated when NK cells encounter infected or transformed cells [105,106]. 

Some of these inhibitory receptors respond to MHC class I molecules, but others can 

recognize non-MHC class I molecules [107]. Through these receptors, NK cells are able 

to differentiate between normal and altered self-cells and provide the first-line immune 

defense against foreign cells [108]. Human NK cells are further characterized by their 

level of CD56 expression: CD56dim cells are recognized as functionally mature cells and 

make up approximately 90% of NK cells, whereas CD56bright cells are considered to 

be functionally immature, directing their focus towards cytokine production rather than 

cytotoxicity [109-111].

NK cells exhibit antitumor potential in two primary ways: by secretion of key cytokines 

such as IFN-γ, TNF-α, and GM-CSF, and by directly binding to tumor cells via their 

activating receptors to induce apoptosis (Fig. 1) [112,113]. These cytokines lead to tumor 

site recruitment and functioning of other hematopoietic cells and enhances antigen-specific 

T-cell responses [114]. Tumor cells are first recognized by NK cells as ‘non-self’ due to their 

reduced amount of surface MHC-I molecules, which are expressed on almost all healthy 

cells of the body [115]. Upon binding of the NK cell to the target cell, perforin inserts itself 

into the cell membrane and creates a pore, allowing for entry of granzymes into the target 

cell cytoplasm to trigger apoptosis of the cell [116,117].

One strategy that human breast cancer cells use to neutralize the NK cell response is the 

accumulation of actin filaments within the cell upon binding of the NK cell, known as an 

“actin response” [118]. This buildup of actin filaments leads to a significant decrease in 

granzyme B levels and is also associated with modifications of the NK cell receptor ligands 

at the synapse between the cells. Thus, breast cancer cells that undergo the actin response 

are also significantly more likely to evade apoptosis induced by NK cells. Additionally, 

tumor secretion of IL-18 was also demonstrated to contribute to NK cell immunosuppression 

by regulation of NK cell differentiation [119]. Exposure of human NK cells to IL-18 leads to 

a higher proportion of CD56dimCD16−/dim NK cells, which display lower levels of activating 

receptors and cytolytic molecules [120], compared to CD56dimCD16+ NK cells [119], which 
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have strong antitumor activity [121]. Additionally, chronic exposure (i.e. with a persistent 

tumor) of the target cells to NK cell receptors may cause hyporesponsiveness, reducing the 

cytotoxic ability of NK cells [122].

In patients with primary HER2+ breast cancer, baseline levels of tumor-infiltrating NK cells 

is prognostic for achieving pathological complete response (pCR) with anti-HER2 mAb 

and standard chemotherapy treatment [22]. Decreased HLA-I expression is associated with 

increased pCR rates, likely due to higher rates of recognition of low HLA-I expressing 

tumor cells by NK cells. However, HLA-Ihigh tumors have the highest rates of pCR, likely 

because they are targeted by cytotoxic CD8+ T cells rather than NK cells. Further, tumor­

infiltrating NK cells combined with high m-CD155 expression are able to predict improved 

patient survival across all breast cancer subtypes, likely due to the recruitment of NK 

cells by m-CD155 present on the surface of breast cancer cells [123,124]. Higher levels of 

circulating CD57+ NK-cell numbers in HER2+ breast cancer patients is inversely correlated 

with achieving pCR with early treatment of anti-HER2 mAbs, indicating that CD57+ NK 

cell levels could be used as a biomarker for primary resistance to anti-HER2 mAb treatment 

[125]. Characteristics of CD57+ NK cells that could be leading to this observation include 

lower expression levels of surface CXCR3 (which is involved in NK-cell tumor homing), 

lower expression of activating receptors, and a lower proliferative capacity compared to 

CD57− NK cells [126].

Methods of utilizing NK cells during treatment of breast cancer include treating patients 

with therapeutic drugs/cytokines that stimulate patients’ NK cells and administering ex vivo 
stimulated NK cells into the patient. Several cytokines have been used to stimulate NK cell 

proliferation and activity in patients, including IL-2 [127,128], IL-15 [129,130], and IL-12 

[131,132]. Trastuzumab, a humanized mAb targeting HER2, utilizes antibody-dependent 

cellular cytotoxicity (ADCC) by recruiting NK cells to trastuzumab-bound HER2+ tumor 

cells via the FcγIII receptor on NK cells [133,134]. Indeed, NK activity was correlated with 

both early (6 months post-treatment) and long-term response (12 months post-treatment) 

of HER2+ breast cancer patients receiving trastuzumab therapy [133]. On the other hand, 

ADCC function was only associated with early response (6 months post-treatment). Apart 

from stimulating NK cells within the patient, different therapeutic strategies are employed 

that utilize adoptively transferred NK cells to induce antitumor activity. In Phase I clinical 

trial, NK cells stimulated ex vivo with IL-2 were given to ovarian and breast cancer patients 

that had undergone a lymphodepleting regimen of cyclophosphamide and fludarabine, along 

with 200 cGy in some patients [135]. Of the 20 patients, 20% achieved a partial response 

and 60% achieved stable disease with treatment. However, success of treatment was limited 

by poor NK cell expansion in the patient after NK cell infusion, possibly due to a highly 

immunosuppressed environment and rejection of the infused NK cells by effector T cells. 

Recent studies have shown success in vitro and in vivo by taking a similar approach to CAR­

T therapy and directing NK cells towards a tumor-associated antigen through the addition 

of a chimeric antigen receptor (CAR) [136,137]. Potential advantages of CAR-NK therapy 

over CAR-T therapy include lower negative side effects by reducing the risk of inducing 

graft-versus-host disease [138,139], promotion of DC migration into the tumor [140], and 

broader clinical applications from a single construct [141]. A similar approach that targets 

HER2+ cells by conjugating trastuzumab onto NK cells, rather than adapting its surface 
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receptor to redirect it as CAR-NK cells do, is currently in clinical trials (NCT04319757) 

[142].

B cells

As opposed to the cell-mediated immunity induced by T cells, B cells play a key role in 

the development of humoral immunity through the germinal center (GC) reaction [143]. 

CCR7-stimulated DCs migrate to secondary lymphoid organs and present antigens via 

MHCII to naïve T cells, promoting their differentiation into T-follicular helper (Tfh) cells 

[143,144]. The interaction between Tfh cells, follicular DCs, and B cells leads to the 

activation and maturation of B cells into memory B cells and long-living plasma cells [145], 

as indicated by the induction of Ig antibody production after Tfh and B cell interaction 

[62]. Specifically, during maturation, B cells can undergo B cell receptor (BCR) selection, 

class switch recombination, and clonal expansion in the GC reaction [146]. Plasma cells, 

which are responsible for secreting the antibodies that induce adaptive humoral immunity, 

develop from the pool of memory B cells formed from the GC reaction [147-149]. Affinity 

maturation of B cells can occur intratumorally in breast tumors, leading to production of 

high-affinity antibodies against tumor antigens [150]. In breast cancer, human B cells and 

plasma cells tend to aggregate around the neoplasia and fibrotic areas that result from CD8+ 

effector T cell function [151]. This suggests that the T cell immune response acts first, 

followed by the infiltration of B lymphocytes.

B cells impact breast cancer growth and metastasis in a variety of opposing ways. Tumor 

antigen-specific immunoglobin G antibodies (IgG) secreted by activated B cells can induce 

lysis of tumors cells by apoptosis (Fig. 1) [152]. Additionally, adoptively transferred 

activated B cells can stimulate antitumor T-cell immunity by the host. Levels of MUC1­

specific IgG antibodies are significantly associated with better overall survival in breast 

cancer patients after endocrine therapy or chemotherapy with or without trastuzumab [153]. 

IgG antibodies can also promote proliferation of CD4+ and CD8+ T cells by facilitating 

the internalization of tumor antigens by DCs that are then presented to activate T cells, 

demonstrated in mice [154]. However, the antigen that the antibody is directed towards is 

important for prognosis. For example, HSPA4 membrane protein-specific IgG antibodies 

promote tumor metastasis upon binding to the HSPA4 antigen via the NF-κB pathway, and 

consequently are associated with poor prognosis of breast cancer patients [155]. B cells can 

also act as APCs by presenting antigens to CD4+ and CD8+ T cells [156]. In vitro, murine 

antigen-presenting B cells activate either effector T cells or Tregs depending on if they are 

in an activated or exhausted state. B cells can also differentiate to regulatory B cells (Bregs) 

by CD40 or Toll-like receptor (TLR) engagement, or by other pro-inflammatory cytokines 

[157,158]. An in vivo study in mice showed that tumor-evoked Bregs reserve the ability to 

induce TGF-β-dependent conversion of naïve CD4+ T cells to immunosuppressive Tregs, 

which plays a role in the metastasis of breast cancer to the lungs [159]. Similar to Tregs, 

Bregs secrete IL-10, TGF-β, and IL-35 immunomodulating cytokines that restrict CD8+ 

effector T cell activation and proliferation (Fig. 1) [160-162]. Thus, it is essential to consider 

the impact of treatment on separate B cell subsets when designing therapies that target B 

cells directly.
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B cells are found to infiltrate tumors at high levels in about 20% of breast cancer patients 

and can represent up to 40% of all TILs [163,164,9]. The prognostic value of B cells has 

not always been clear; several earlier studies were contradictory in defining the relationship 

between tumor-infiltrating B cells and prognosis [165-168]. In TNBC patients, plasma cell 

infiltration, along with Ig gene expression, is positively associated with disease-free survival 

(DFS), demonstrating the importance of humoral immunity on treatment response [169]. 

Infiltrating CD20+ (B cells) and PD-L1+ TILs are significantly associated with improved 

survival and pCR after neoadjuvant chemotherapy in inflammatory breast cancer patients, 

suggesting that a combination of PD-1/PD-L1 immunotherapy and an immunomodulatory 

therapy that stimulates B cell responses may improve prognosis for these patients [170]. 

Recent clinical studies that demonstrate a correlation between B cell infiltration and poor 

prognosis focus on the Breg subset [10,171]. Bregs with a CD19+CD24hiCD38hi phenotype 

are increased in the peripheral blood of IDC breast cancer patients compared to healthy 

controls and correlate with levels of circulating Tregs [171]. A separate study of breast 

cancer patients also showed this correlation between Bregs and Tregs, and also found 

that the coexistence of these cells within TIL aggregates was associated with a shorter 

metastasis-free survival (MFS) [10]. Similar to the relationship between regulatory T cells 

and effector T cells, B cells can produce antitumor or protumor effects depending on their 

subtype and IgG specificity. However, more research needs to be done to better characterize 

B cell subsets both functionally and phenotypically.

Immunotherapies that target B cells directly are not nearly as established as those that target 

T cells, possibly because of their less understood phenotypic characteristics and mechanisms 

of action [172]. In an in vivo mouse model of breast cancer, ex vivo LPS and CD40­

stimulated B cells were able to restrict lung metastasis upon adoptive transfer, particularly 

when combined with adoptively transferred T cells [152]. Additionally, treatment of mice 

with anti-CD20 antibody results in increased metastasis if treatment started after tumor 

establishment, whereas mice treated with anti-CD20 before tumor challenge have reduced 

metastasis, indicating that the timing of B-cell targeted therapy plays a key role in treatment 

efficacy [173]. This phenomenon is likely to due to anti-CD20-mediated enrichment of 

CD20lo Bregs after depletion of the CD20hi B cells that have immunostimulatory properties. 

Some therapies are designed to specifically inhibit Breg cell activity, such as the use of 

CXCR5-targeted CpG-ODN [173], Stat3-inactivating resveratrol [174], or IL-10 depletion 

[175]. This strategy leads to the inhibition of Breg-dependent Treg conversion and improves 

the efficacy of adoptively transferred effector B cells. While these strategies show in vivo 
efficacy in mice, the lack of clinical trials using B-cell targeted therapy in breast cancer 

indicates that more work needs to be done in determining the role that B cells play in breast 

cancer and methods of stimulating B effector cells while inhibiting Breg activity.

TIL composition across breast cancer subtypes

The TNBC subtype, followed by HER2+, displays the highest levels of total tumor­

infiltrating lymphocytes, whereas hormone-receptor (HR) positive breast cancers have much 

lower infiltration levels [176]. In fact, hormone receptor expression is negatively associated 

with TIL level, Treg/Th2 ratio, and CD8+ effector T cells and Tregs present at the tumor 

edge [177]. Although higher levels of total TILs are generally associated with better clinical 
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outcomes, TNBC and HER2+ breast cancer patients exhibit lower survival rates compared 

to HR+ patients [178], indicating other factors (e.g., TIL subtypes) are also involved. 

For example, both TNBC and HER2+ tumors have a lower intratumoral CD8/Treg ratio 

compared to HR+/HER2− tumors, indicating higher levels of immunosuppression in the 

TME [176,177]. Additionally, the high genomic instability of TNBC and HER2+ tumor cells 

that allow for better recognition of foreign antigens by the immune system simultaneously 

increases the chances of developing abnormal signaling pathways, like EGFR, MET, and 

PI3K, that would otherwise control their proliferation and survival [176]. Although breast 

cancer subtypes can trend toward higher or lower TIL levels, TIL levels can vary greatly 

within each subtype [179,180]. Lymphocyte infiltration levels are associated with better 

clinical outcome in several types of breast cancer, including TNBC [179,19], HER2+ [19], 

and ER− breast cancer [180]. Additionally, incremental increases in TIL levels in both the 

tumor and the surrounding stroma area in TNBC patients leads to corresponding increases 

in chemotherapy response and overall survival [181,19]. In luminal breast cancer, a greater 

tumor burden is associated with increased intratumoral CD8+ effector cells, Tregs, and TIL 

level [177]. Similarly, stage I breast cancer patients tend to have lower levels of these 

parameters compared to stage II+ patients.

Classifying cancer into six distinct subtypes (Wound healing, IFN-γ dominant, 

Inflammatory, Lymphocyte depleted, Immunologically quiet, and TGF-β dominant) can 

help provide a clearer picture of patients’ TIL level and composition [182]. These immune 

subtypes are based off cluster analysis of immune gene expression signatures across 33 types 

of cancer using data from The Cancer Genome Atlas (TCGA). As reviewed by Gatti-Mays 

et al., the IFN-γ dominant subtype, followed by wound healing and inflammatory, represents 

the most common subtype in breast cancer, comprising 60% of basal-like breast cancers 

and just under half of HER2+ and luminal B breast cancers [23]. A higher lymphocyte 

signature leads to a better prognosis in IFN-γ dominant and wound healing subtypes, 

whereas it leads to a worse outcome in the inflammatory subtype, possibly indicative of 

an already balanced immune response [182]. The IFN-γ dominant subtype is characterized 

by strong CD8+ levels, TCR diversity, and a high M1/M2 macrophage ratio, which is 

associated with improved OS. However, the IFN-γ dominant subtype also has the least 

favorable prognosis, indicating either that the immune response could not keep up with 

tumor growth or that tumor cells were able to escape immune recognition. Although breast 

cancer was traditionally considered immunologically quiescent, no breast cancers were 

identified as immunologically quiet in this analysis [182,23]. With further research of these 

immune subtypes in breast cancer, characterizing patients by immune subtype may serve 

as an important tool for better predicting patients’ outcome and identifying ideal treatment 

regimens.

Impact of therapeutics on TIL levels and composition

Many breast cancer treatments achieve clinical benefit in patients through reversal of the 

immunosuppressive TME to an immune-permissive environment, either by directly targeting 

immune cells or by indirectly affecting these cells (Table 1). With HER2-targeted therapies, 

such as trastuzumab and T-DM1 (trastuzumab conjugated to the chemotherapeutic agent 

emtansine), an increase in TILs is observed upon treatment, possibly reflecting some HER2­

Nelson et al. Page 11

Cancer Metastasis Rev. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dependent immunosuppression prior to therapy [183,184]. Additionally, in HER2+ patients 

treated with docetaxel, trastuzumab, and pertuzumab, another HER2-targeting antibody, 

every 10% increase in stromal TILs is associated with a longer overall survival [6]. HER2+ 

breast cancer patients that respond to trastuzumab therapy are also more likely to have 

higher levels of NK cells and ADCC activity [133]. Radiotherapy can have both immune­

suppressing and immune-stimulating effects via a higher proportion of radioresistant 

immunomodulatory cells like Tregs after therapy and induction of immunogenic cell 

death that leads to maturation of APCs and activation of antitumor CD8+ effector T 

cells [185,186]. Additionally, a HER2-derived peptide administered along with GM-CSF 

designed to enhance CD8+ T cell response demonstrates an increased ability to elicit 

cytotoxic T lymphocytes in vaccinated patients [187].

PD-L1 is expressed in up to 60% of breast cancer patients and its expression is positively 

correlated with a high level of TILs [194,195]. PD-L1 is also expressed in HR− and 

TNBC patients at greater levels, indicating a large subset of patients that may benefit 

more from PD-1/PD-L1 blockade therapy [194]. Indeed, both anti-PD-1 and anti-PD-L1 

antibodies have demonstrated success when used as an immunotherapy in TNBC patients 

[190,188,192]. Anti-PD-L1 therapy can also induce greater levels of plasma cytokines and 

CD8+ T cell proliferation compared to baseline levels [196]. Further, clinical benefit is 

augmented in patients with PD-L1+ tumors when compared to patients with PD-L1− tumors, 

reflecting a biomarker that may be useful in determining potential therapeutic benefit 

[188,190]. PD-1/PD-L1 blockade is also effective in other breast cancer subsets as well, 

such as one study that observed a 4% overall response rate and 19% clinical benefit (ORR 

+ stable disease > 24 weeks) rate in ER+ patients after treatment with vorinostat (HDAC 

inhibitor), tamoxifen (ER modulator), and pembrolizumab (anti-PD-1 mAb) [18]. Currently, 

atezolizumab (anti-PD-L1 mAb) plus nab-paclitaxel and pembrolizumab (anti-PD-1 mAb) 

plus nab-paclitaxel are the only approved regimens with immunotherapy for breast cancer, 

and are currently only approved for TNBC patients.

CTLA-4 is expressed on activated T cells and its inhibition is hypothesized to increase 

counts of CD8+ effector T cells through the inactivation of FoxP3+CD4+ Tregs [197,77]. 

Breast cancer patients typically have higher levels of CTLA-4 expression compared to 

healthy volunteers, indicating enhanced immunosuppressive function in these patients [198]. 

Early clinical trials testing anti-CTLA-4 mAb in breast cancer patients observed an increase 

in overall counts and percentages of ICOS+ CD4+ and CD8+ T cells along with a decreased 

level of FoxP3+ CD4+ Tregs in some patients after treatment [80,199]. Although none of 

the breast cancer patients achieved an objective response in these trials, some patients did 

exhibit stable disease and the toxicity profile was shown to be tolerable and consistent 

with previous studies using anti-CTLA-4 mAb in other indications. Based off the success 

of combined nivolumab (anti-PD-1 mAb) and ipilimumab (anti-CTLA-4 mAb) treatment 

compared to single-agent therapy in melanoma [200], recent studies are also testing the 

safety and efficacy of the combination of anti-PD-1 and anti-CTLA-4 mAbs in breast cancer 

patients [79,201].
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Conclusions

The presence of TILs within breast tumors can play a key role in determining clinical 

outcome. Here, we have discussed different subsets of TILs (T cells, NK cells, B cells) 

and how they interact with breast cancer and impact prognosis. Lymphocytes can have 

antitumor or protumor effects, depending on their differentiation and activation status, and 

can significantly impact a patient’s outcome. Current immunotherapeutic approaches seek 

to stimulate or inhibit lymphocyte activity based on their observed interaction with breast 

cancer. Several factors contribute to a patient’s response to immunotherapy, including TIL 

level and composition, PD-L1 expression, and receptor expression (HER2, ER, PR), but 

there remains a need to identify additional predictive biomarkers aside from PD-L1 [202]. 

It remains essential to continue developing our knowledge in how infiltrating lymphocytes 

interact with breast cancer to be able to discover new therapeutic targets and strategies.
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Fig. 1. 
Tumor-infiltrating lymphocyte subsets in the tumor microenvironment (TME). (I) Naïve 

CD8+ T cells become activated upon binding to antigen-presenting dendritic cells (DCs) 

in the lymph nodes. Once activated, CD8+ effector T cells recognize and bind to tumor 

cells, inducing apoptosis via granzyme release. (II) Regulatory T cells inhibit the antitumor 

immune response by secreting immunosuppressive cytokines and restricting the activity of 

DCs by the binding of CTLA-4 to CD80/86 on DCs. (III) NK cells recognize tumor cells 

as ‘non-self’ and bind to induce apoptosis by releasing granzymes into the cell, as well as 

secrete immunostimulatory cytokines that recruit CD8+ effector T cells into the TME. (IV) 

B cells secrete tumor antigen-specific IgG antibodies that lead to apoptosis upon binding to 

the tumor, but B cells can also secrete immunosuppressive cytokines like TGF-β, IL-10, and 

IL-35 that promote tumor growth. Figure not drawn to scale. Created with BioRender.com
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Table 1.

Summary of breast cancer immunotherapies targeting tumor-infiltrating lymphocytes in clinical trials.

Targeted
population Drugs Immunological

Molecular Target

Breast 
Cancer 
Subtype

Key Outcome Clinical Status Ref

CD8+ T cells

Atezolizumab + nab­
paclitaxel

PD-L1 on tumor 
cells and DCs TNBC

Median OS
a
 was 

21.3 months vs. 17.6 
months in placebo 
plus nab-paclitaxel

FDA approved in 
2019 (Phase III 
NCT02425891)

[188]

Avelumab PD-L1 on tumor 
cells and DCs TNBC

3% ORR
b
 overall 

and 5.2% ORR in 
TNBC patients

Phase III 
(NCT02926196) [189,190]

Pembrolizumab
PD-1 receptor on 

CD8+ T cells
TNBC

Median OS was 
12.7 months vs. 11.6 
months with standard 

chemotherapy in 
patients with high 
PD-L1 expressing 

tumors

Phase III 
NCT02555657 [191,192]

Pembrolizumab + 
nab-paclitaxel

PD-1 receptor on 
CD8+ T cells

TNBC

Median PFS
c
 was 

9.7 months vs. 5.6 
months with nab­
paclitaxel only in 
patients with high 
PD-L1 expressing 

tumors

FDA approved in 
2020 (Phase III 
NCT02819518)

[193]

Pembrolizumab + 
vorinostat (HDAC 

inhibitor) + tamoxifen 
(ER inhibitor)

PD-1 receptor on 
CD8+ T cells ER+

4% ORR and 19% 
clinical benefit rate 

(ORR + SD
d
 > 24 

weeks)

Phase II 
(NCT04190056) [18]

GP2 peptide vaccine 
+ GM-CSF

HLA-A2 on CD8+ 

T cells GM­
CSF receptor on 
myeloid cells and 

lymphocytes

All subtypes

5-year estimated 

DFS
e
 rate was 88% 

vs. 81% in GM-CSF­
only patients

Phase II 
(NCT00524277) [187]

p53 peptide-loaded 
DC vaccine + IL-2

HLA-A2 on CD8+ T 
cells

- 8/19 patients had SD 
during therapy

Phase II 
(NCT00019916) [38]

HER2 peptide-loaded 
DC vaccine + anti­

estrogen compounds

HLA-A2 on CD8+ T 
cells ER+/HER2+

28.6% pCR
f
 rate vs. 

4.0% in patients that 
did not receive anti­
estrogen treatment

Phase I 
(NCT001070211 

and 
NCT02061332)

[40]

Tumor cell-pulsed DC 
vaccine

HLA-A2 on CD8+ T 
cells ER−/PR−

3-year PFS of 76.9% 
vs. 31.0% without 

DC vaccine
- [42]

MUC1-targeting CAR 
T

MUC1 antigen on 
tumor cells All subtypes In progress Phase I 

(NCT04020575) [36]

CD4+ 

regulatory T 
cells

Ipilimumab + 
nivolumab

CTLA-4 on CD4+ 

and CD8+ cells PD-1 
on CD8+ T cells

Metaplastic 
breast 
cancer

In progress; 12% 
ORR in metaplastic 
breast cancer cohort

Phase II 
(NCT02834013) [79]

Tremelimumab 
+ Exemestane 

(Aromatase inhibitor)

CTLA-4 on CD4+ 

and CD8+ cells
HR+ 42% of patients had 

SD
Phase II 

(NCT02997995) [80]

Daclizumab + 
hTERT/Survivin 

multi-peptide vaccine

CD25 on CD4+ 

Tregs HLA-A2 on 
CD8+ T cells

All subtypes

Median OS of 27.8 
months vs. 20.9 

months in hTERT­
only study

Phase I 
(NCT00573495) [81]
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Targeted
population Drugs Immunological

Molecular Target

Breast 
Cancer 
Subtype

Key Outcome Clinical Status Ref

NK cells

IL-2 + trastuzumab IL-2Rβ subunit on 
NK cells HER2+ No observed ORR Phase II 

(NCT00006228) [72]

IL-2 stimulated 
donor NK cells 
+ fludarabine + 

cyclophosphamide + 
200 cGy irradiation

IL-2Rβ subunit on 
NK cells -

NK cell expansion 
was not induced in 
evaluable patients

Phase I 
(NCT00376805) [135]

Anti-HER2 oNK cells 
+ cyclophosphamide + 

fludarabine
HER2 on tumor cells HER2+ In progress Phase I 

(NCT04319757) [142]

IL-12 + trastuzumab + 
paclitaxel IL-12R on NK cells HER2+

CR
g
 observed in 

1/21 patients and 

PR
h
 in 4/21 patients.

Phase I 
(NCT00028535) [131]

IL-12 + trastuzumab IL-12R on NK cells HER2+ CR observed in 1/15 
patients

Phase I 
(NCT00004074) [132]

a
OS = overall survival

b
ORR = overall response rate

c
PFS = progression-free survival

d
SD = stable disease

e
DFS = disease-free survival

f
pCR = pathologic complete response

g
CR = complete response

h
PR = partial response
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