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Abstract

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 

cause of coronavirus disease (COVID-19), is an ideal target for pharmaceutical inhibition. Mpro is 

conserved among coronaviruses and distinct from human proteases. Viral replication depends on 

cleavage of the viral polyprotein at multiple sites. We present crystal structures of SARS-CoV-2 

Mpro bound to two viral substrate peptides. The structures show how Mpro recognizes distinct 

substrates and how subtle changes in substrate accommodation can drive large changes in catalytic 

efficiency. One peptide, constituting the junction between viral non-structural proteins 8 and 9 

(nsp8/9), has P1′ and P2′ residues that are unique among the SARS-CoV-2 Mpro cleavage sites 

but conserved among homologous junctions in coronaviruses. Mpro cleaves nsp8/9 inefficiently, 

and amino acid substitutions at P1′ or P2′ can enhance catalysis. Visualization of Mpro with 

intact substrates provides new templates for antiviral drug design and suggests that the coronavirus 

lifecycle selects for finely tuned substrate-dependent catalytic parameters.
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Developing and stockpiling pan-coronavirus antiviral drugs for pandemic prevention has 

been a goal since the SARS outbreak of 2003.1, 2 The coronavirus main protease (nsp5 

or Mpro) is a conserved drug target and a focus of these efforts. Hundreds of Mpro 

inhibitors have been reported. Most of these drugs occupy the active site cleft responsible 

for recognizing the N-terminal fragments of substrate peptides, and many form covalent 

bonds to the active site cysteine of Mpro (Cys145).3–7 A recent crystal structure of the nsp5/6 

acyl-enzyme intermediate provides one template for chemical mimicry of this essential 

catalytic step.8 We provide evidence that enzyme-substrate contacts on both sides of the 

Mpro catalytic site affect the rate of formation of the covalent complex, a characteristic that 

could be exploited by new protease inhibitors.

The nsp8/9 junction is a conserved Mpro substrate (Figure 1A–B). The nearly invariant Asn 

residues at P1′ and P2′ are unique within a given coronavirus polyprotein; Gly, Ser, or 

Ala predominate at these positions in the other substrates.9 Cleavage of nsp8/9 is slow but 

required for replication of the closely-related Murine Hepatitis Virus.10 Indeed, a recently-

determined cryo-EM structure shows that the N-terminus of nsp9 contacts nsp12, a core 

component of the viral RNA polymerase.11 In this context, the nsp8/9 P1′ to P3′ residues 

contribute to a binding site for a nucleotide that is transferred to the amino terminus of 

the P1′ residue.12 Therefore, the nsp8/9 junction has evolved to satisfy two evolutionary 

constraints required for viral replication: it must be cleaved in the Mpro active site, and 

it must serve as a substrate in a nucleotide monophosphate transfer reaction catalyzed by 

nsp12. We have used X-ray crystallography to study nsp8/9 and nsp4/5 recognition by 

Mpro. The structures show unique features of the Mpro nsp8/9 complex and highlight the 

importance of P1′-P3′ residues in catalysis.

To study Mpro activity, we monitored cleavage of labeled substrate peptides in vitro and 

derived Michaelis-Menten parameters describing the reactions. Mpro cleavage of nsp4/5 is 

more efficient than cleavage of nsp8/9 (36-fold difference in kcat/KM; Table 1, Figure S1).13 

We sought to understand the influence of the Asn residues at the P1′ and P2′ sites of the 

nsp8/9 substrate (Table 1). Altering the steric properties by alanine substitution at either 
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position approximately doubled the catalytic efficiency. The P1′ Asn-to-Ala substitution 

lowered KM and raised kcat, while P2′ substitution only raised kcat. Installation of an 

isosteric Asp residue at the P1′ position completely abrogated activity, while the analogous 

Asn-to-Asp substitution at P2′ diminished but did not abrogate activity. We suspect that 

placing additional negative charge near the active site raises the energetic barrier to attaining 

the oxyanion transition states.14, 15

Differences in kcat for the tested substrates dominated the small changes in KM and drove 

the observed changes in kcat/KM. The P5-P1 residues were constant for nsp8/9 and its 

derivatives, ruling out acyl-enzyme hydrolysis as the step that determines kcat. Therefore, 

either formation of the enzyme-substrate complex or conversion to the acyl-enzyme 

intermediate must limit kcat for the nsp8/9 substrate, and similar KM values imply the latter 

is true. These data imply kinetic competition among the 11 viral Mpro substrates during virus 

replication.

To better understand the different cleavage efficiencies, we determined crystal structures of 

Mpro bound to the nsp4/5 and nsp8/9 substrates (Figure 2). The structures were resolved to 

1.84 Å for nsp4/5 and to 1.94 Å for nsp8/9 (Table S1), which enabled detailed interpretation 

of the atomic contacts between the enzyme and both substrates. The active site Cys145Ala 

mutation trapped the intact substrates and enabled visualization of the P′ residues (Figure 

S2). The C145A mutation creates a cavity in the Mpro active site that could influence 

the position of the scissile bond. At least one previous study has used the Mpro H41A 

mutation to circumvent this potential problem.10 Nevertheless, the high resolutions of both 

structures, the unambiguous positions of both scissile bonds, and the apparent specificity of 

peptide-enzyme contacts permitted detailed analysis of substrate engagement in both cases.

11 conserved hydrogen bonds occur between Mpro and each of the substrates (Figure 

2, white dashed lines). Eight contacts between the peptide backbones of enzyme and 

substrate are shared among SARS-CoV nsp4/5, PEDV nsp4/5,16, 17 and the two SARS-

CoV-2 peptides reported here. Mpro Gly143 and Ala145 mainchain amides form the 

oxyanion hole by donating a pair of hydrogen bonds to the scissile P1 carbonyl oxygen, 

which stabilizes the developing negative charge during covalent catalysis. His163 and the 

mainchain carbonyl of Phe140 make hydrogen bonds with the invariant sidechain of the P1 

Gln, and Asn142 contacts the P1 Gln through a conserved water bridge. Neither SARS-CoV 

nor PEDV Mpro·nsp4/5 complexes show the hydrogen bonds observed with Asn142 in the 

SARS-CoV2 substrate complexes.16, 17

Substrate interactions with the Mpro Asn142 and Gln189 sidechains distinguish nsp4/5 

and nsp8/9 recognition (Figure 2, green and magenta dashed lines). Mpro Asn142 forms a 

hydrogen bond with the nsp4/5 P1′ backbone carbonyl oxygen, and Mpro Gln189 forms 

a water bridge with the nsp4/5 P2 amide nitrogen. In contrast, Mpro Gln189 engages the 

nsp8/9 P3 and P1′ side chains via an ordered water molecule. In addition to these contacts, 

the ordered waters found in the nsp8/9-bound structure could donate hydrogen bonds to the 

P1′ and P2 mainchain carbonyl oxygens. Finally, the nsp8/9 P3 Lys forms a hydrogen bond 

with the P2 carbonyl.
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The peptide recognition described above supports distinct modes of P′ fragment 

accommodation by Mpro for the nsp4/5 and nsp8/9 substrates. The near-invariant nsp8/9 P1′ 
and P2′ Asn side chains are bulkier than the P1′ (Ser/Ala) and P2′ (Gly/Ala) side chains of 

other Mpro substrates, although there is greater tolerance for P2′ diversity.18 The nsp8/9 P1′ 
Asn projects more deeply into the S1′ subsite than the nsp4/5 P1′ Ser and therefore likely 

restrains the P′ peptide to a greater degree. Mpro Asn142 and Gly143 coordinate the nsp8/9 

P2′ residue through peptide backbone interactions, and similar interactions position the 

nsp4/5 P2′ Gly. Overall, the bulkier nsp8/9 Asn side chains in the S1′ and S2′ subsites shift 

nsp8/9 relative to nsp4/5 (Figure 3A–B), and the resulting alignment with the Mpro cysteine 

nucleophile differs slightly (Figure S3). In addition to this small change in the position of 

the scissile bond, the nsp8/9 substrate bends away from the enzyme, resulting in a ~1.5 Å 

displacement of P4 and P4’ Cα positions relative to nsp4/5 (Figure S3) and widening the 

active site cleft formed between Mpro Met49 and Asn142 (7 Å to 10 Å, Figure 3A–B). 

These differences provide an explanation for reduced catalytic efficiency for the nsp8/9 

substrate. The alanine substitutions discussed above presumably restore catalytic efficiency 

by enabling nsp8/9 to adopt an overall conformation and position more like nsp4/5.

Hydrophobic interactions dictate recognition of N-terminal substrate fragments (P residues, 

excluding the invariant P1 Gln). Mpro Met49 and Met165 define the S2 subsite (Figure 3). 

The nsp4/5 P4 Ala is smaller than the ns8/9 P3 Val, allowing nsp4/5 to sit more deeply 

in the S4 subsite (Figure 3A–B). A recent crystal structure shows that the intact nsp5/6 

substrate is also shifted relative to nsp4/5 due to a bulky Phe at the P2 position (Figure 3C).8 

Indeed, Mpro cleavage is most efficient for peptides bearing P2 Leu and less efficient for 

those bearing P2 Phe.19 Like nsp8/9, cleavage of SARS nsp5/6 depends more heavily on P′ 
recognition than does nsp4/5.20, 21

The nsp8/9 P3 Lys might also limit catalysis. Water bridges connect its terminal nitrogen 

(Nζ) with the nsp8/9 P1′ Asn (mentioned above), and the resulting conformation could 

slow peptide accommodation to the Mpro active site. Therefore, diverse Mpro-substrate 

interactions contribute to finely-tuned substrate geometry that results in substrate-specific 

catalytic efficiency.22

The structures we have determined show how Mpro active site plasticity and substrate 

evolution can tune catalysis. Slow cleavage of the nsp8/9 junction, which is observed 

among disparate coronaviruses, might be a selected trait required for coordinated assembly 

of the RNA replication machinery.9, 13, 23, 24 Distinct kinetic parameters associated with 

cleavage of the viral substrate could be important for maturation of the viral polyprotein. 

The need for the nsp8/9 junction to support both Mpro cleavage and nsp12 binding (and 

subsequent nucleotide monophosphate acceptance) accounts for the near-invariance of the 

P1-P2′ residues. The sequence is therefore a compromise that satisfies the requirements of 

two unrelated catalytic mechanisms, and mimicry of the nsp8/9 junction presents a unique 

opportunity to chemically inhibit both Mpro and the viral polymerase.

The structures also present templates for new protease inhibitor scaffolds. In particular, that 

the nsp8/9 P3 sidechain can fold back to contact P1′ suggests macrocyclic inhibitors could 

mimic this interaction. Similar strategies have been pursued for Hepatitis C NS3, HIV-1, 
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and Rhinovirus 3C proteases.25–27 Kinetic analyses of nsp8/9 and its variants suggests that 

inhibitor P1′ and P2′ site contacts could influence formation of covalent inhibitor-enzyme 

adducts. While α-ketoamide warheads have been investigated as ligands for Mpro Cys145,3 

more comprehensive exploration of this warhead in combination with P′ mimicry could be 

beneficial.

METHODS

Complete methods are included in the Supporting Information file associated with this 

Report. A plasmid for recombinant expression of codon-optimized SARS_CoV-2 main 

protease (Mpro) was a gift from Zhang et al.3 Mpro expressed and purified from E. coli 
carrying this plasmid was used for peptide cleavage assays. Mpro Cys145Ala was purified 

from E. coli as a SUMO fusion protein. The N-terminus was generated by Ulp1 cleavage 

before use in crystallography experiments.

For crystallization, Mpro Cys145Ala was incubated with a 10-fold molar excels of each 

peptide (nsp4/5 – AVLQSGFRK; nsp8/9 – AVKLQNNEL) before mixing with mother 

liquor. Crystallization conditions are given in the Supporting Information file. Diffraction 

data were collected at the Advanced Photon Source on NE-CAT beamline 24-IDC.

Enzyme kinetics were determined using Förster resonance energy transfer (FRET) substrate 

peptides labeled with N-terminal fluorophore Dabcyl and C-terminal quencher Edans. 

Increasing concentrations of labeled substrates were incubated with Mpro (0.25 μM for 

nsp4/5 experiments and 0.4 μM for nsp8/9 experiments), and fluorescence was measured. 

Absolute product concentrations were determined and used to convert initial velocities to 

nM/s for triplicate reactions at each substrate concentration. Michaelis-Menten parameters 

(KM and Kcat) were determined using Prism 6 software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Viral Mpro substrates. (A) Protein sequence alignment of the 11 SARS-CoV-2 Mpro cleavage 

sites required for maturation of SARS-CoV2. (B) Protein sequence alignment of nsp8/9 

Mpro cleavage sites from representative coronaviruses.
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Figure 2. 
Differential recognition of nsp4/5 and nsp8/9 substrates by Mpro. Identical views of nsp4/5 

(A) and nsp8/9 (B) substrates in the MproCys145Ala active site. Substrate peptide P and 

P′ residues are labeled with colored numbers. Key Mpro residues mentioned in the text 

are labeled. Conserved hydrogen bonds enabling Mpro recognition of substrate mainchain 

and P1 Gln side chain atoms are shown as white dashed lines. Hydrogen bonds that 

differ between the complex with nsp4/5 and that with nsp8/9 are shown in green and 

magenta, respectively. Mpro Asn142 and Gln189 contact both substrate through bound water 

molecules, and the resulting networks of hydrogen bonds differ between the two substrates.
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Figure 3. 
Steric effects that influence substrate recognition and Mpro activity. Spheres show positions 

of atoms dictating shape complementarity between Mpro subsites and nsp4/5 (A), nsp8/9 

(B), and nsp5 (C; acyl-enzyme intermediate, PDB 7KHP). Labels show Mpro subsites and 

the distance between Mpro Met49 and Asn142 (thioether to amide nitrogen).
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