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Abstract

DNA methylation plays crucial roles in many biological processes and abnormal DNA methylation patterns are often
observed in diseases. Recent studies have shed light on cis-acting DNA elements that regulate locus-specific DNA
methylation, which involves transcription factors, histone modification and DNA secondary structures. In addition, several
recent studies have surveyed DNA motifs that regulate DNA methylation and suggest potential applications in diagnosis
and prognosis. Here, we discuss the current biological foundation for the cis-acting genetic code that regulates DNA
methylation. We review the computational models that predict DNA methylation with genetic features and discuss the
biological insights revealed from these models. We also provide an in-depth discussion on how to leverage such knowledge
in clinical applications, particularly in the context of liquid biopsy for early cancer diagnosis and treatment.
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Introduction
DNA methylation in the mammal genomes is the addition of
a methyl group to cytosines to form 5-methylcytosine (5mC),
primarily at CG and also at CH (CH=CA, CT, CC) sites. DNA methy-
lation in specific loci plays important roles in many biological
functions. For example, DNA methylation in promoters represses
gene transcription, and DNA methylation in gene bodies is asso-
ciated with transcription elongation and splicing [1–3],. The syn-
ergy between DNA methylation and local histone modification is
also locus-specific in development, somatic cell reprogramming
and tumorigenesis [4,5]. Understanding how DNA methylation
is established, maintained and removed in a particular locus is
thus critical.

Locus-specific DNA methylation or demethylation depends
on the recruitment of specific enzymes such as TET and DNMTs
to the target genomic regions [6–8] (Figure 1A). DNA methylation
is catalyzed by DNA methyltransferases (DNMTs) [9]. De novo
methylation on both DNA strands involves DNMT3A/3B/3 L.
Existing DNA methylation is maintained by a complex of
DNMT1 and UHRF1, which recognizes half-methylated DNA
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strand (hemimethylation) after replication. Removal of the
methyl group from cytosines is catalyzed by the ten-eleven-
translocation enzymes (TET1/2/3), which can oxidize 5mC to
5-hydroxymethylcytosine (5hmC) and other oxidized cytosines
(5-formylcytosine, 5fC, and 5-carboxylcytosine, 5caC), and then
demethylate to cytosine through various pathways [10].

Emerging evidence has suggested that enzymes like DNMTs
and TETs are recruited to specific genomic regions by factors
recognizing certain DNA sequences [6,11]. Recently, we have
systematically identified 313 DNA motifs that regulate DNA
methylation from 34 whole-genome methylomes. We show that
these motifs are functional and can be applied to improve cancer
prognosis and diagnosis [12]. In this review, we first survey
the mechanisms proposed in the literature that orchestrate
DNA methylation. We also review machine learning models that
derive the genetic features of DNA methylation and discuss
the biological insights revealed from these models. Finally, we
propose to combine DNA methylation associated motifs and
genetic mutations in clinical applications for liquid biopsy and
early cancer diagnosis. We show how this approach improves the
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Figure 1. Mechanisms of locus-specific DNA methylation and demethylation.

current paradigm where the discovery of biomarkers is focused
on a small number of genes.

The Emerging DNA Features of Locus-specific
Methylation

Accumulating evidence has shown that certain DNA sequence
patterns are associated with local DNA methylation levels, such
as lower GC content, enrichment of short nucleotide combi-
nations (2–6 bp) and longer DNA motifs [13–23]. However, a
puzzling observation is that the modifying enzymes includ-
ing TETs and DNMTs do not have high recognition specificity
of DNA motifs [6,11]. While TET1, TET3 and DNMT1 all pos-
sess a CXXC domain [24] interacting with DNA sequences, the

CXXC domain mainly recognizes unmodified CpG dinucleotide.
Recently, Xu et al. [25] identified four groups of DNA sequences
bound by CXXC domains, all of which are at the CpG candidates
for DNA methylation. Importantly, the DNA preference of the
CXXC domains cannot explain how ∼80% of the 28 million CpGs
in the human genome are methylated (or how ∼20% of the CpGs
are unmethylated).

Furthermore, numerous reports have confirmed the exis-
tence of DNA sequences that dictate where DNA methyla-
tion/demethylation occurs. For example, Lienert et al. [26] have
identified methylation-determining regions, which mediate de
novo methylation and demethylation. Interestingly, these regions
contain cis-regulatory motifs that can be recognized by DNA-
binding factors (SP1, CTCF, Rfx), and mutating these motifs alters
the methylation pattern. Stadler et al. [27] have shown that
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introducing CTCF motifs is necessary and sufficient to lower
methylation of nearby CpGs.

Taken together, these reports suggest the locus-specificity
of DNA methylation is encoded in the genomic sequence,
recognized, and mediated by locus-specific factors. Here,
we review the emerging mechanisms of locus-specific DNA
methylation guided by cis-acting DNA sequences, through cross-
talks between transcription factors (TFs), DNMTs, TETs, DNA
secondary structures and histone modifications (Figure 1B).

TFs recruit TETs for active demethylation

TET1 and TET3 can contain DNA-binding CXXC-zinc finger
domain [25]. TETs prefer CpG-rich sequences such as CpG
island (CGI) which spans several kilobases [28] and can bind
CpG-rich DNA sequences [6] in mammals to maintain stable
demethylation [29]. In addition, TET recruitment through locus-
specific TF binding has been widely reported. For example,
introducing a CTCF binding site at a particular locus leads
to TET recruitment and local DNA demethylation [27]. PPARG
binds to promoters and recruits TET for demethylation [30].
In a recent study, Suzuki et al. [31] have designed a method to
screen for TFs that can facilitate DNA demethylation in a site-
directed manner. In particular, they transduced selected TFs
in sub-cloned vectors to cells and evaluated the methylation
levels using the HumanMethylation450 methylation array near
the TF binding sites (estimated by the motif locations) with
and without ectopic expression of the TFs. Using this strategy,
Suzuki et al. [31] have shown that RUNX1 site-specific binding
correlates with demethylation in hematopoietic cells, and they
have further confirmed recruitments of critical proteins involved
in DNA demethylation, including TET2, TET3, TDG and GADD45,
using co-immunoprecipitation. Suzuki et al. [32] further scaled-
up this strategy and found that eight (RUNX3, GATA2, CEBPB,
MAFB, NR4A2, MYOD1, CEBPA and TBX5) out of 15 (plus NANOG,
HNF1A, PAX4, Nkx2–5, SOX2, POU5F1, HNF4A) tested TFs can
facilitate demethylation of DNA in a site-directed manner.

TFs block DNMT3s and prevent de novo methylation

Many TFs can maintain low methylation by blocking the access
of DNMTs to specific regions. For example, SP1 preferentially
binds to CpG-rich promoters, preventing de novo methylation
in mice [33,34]. Proteins containing a CXXC domain (CFP1,
MLL, KDM2A/2B, IDAX) can bind to unmethylated CpGs to
keep the region from being methylated [24,35,36]. Interestingly,
DNMT1 has a CXXC domain, which may facilitate its binding
to hemimethylated CpGs [37]; TET1 and TET3 also have a CXXC
domain, which has been shown to contribute to their locus-
specificity [38,39]. However, other studies have shown that
the CXXC domain failed to restrain the activity of Dnmt1 on
unmethylated CpG sites [40].

TFs recruit DNMTs for de novo methylation

Similarly, many TFs have been reported to facilitate DNA methy-
lation in particular loci. For example, NR6A1 (or GCNF) can
silence Oct-3/4 by binding to its promoter and recruit Dnmt3a
and Dnmt3b in the mouse, facilitating methylation [41]. Dnmt3a
has been reported to interact with Myc and specifically target
the promoter of p21Cip1, leading to transcription repression [42].
Dnmt3b is recruited by the TF E2F6 to silence germ-line genes in
murine somatic tissues [43].

DNA secondary structure shape DNA methylation

Besides TF-directed locus-specific methylation, DNA sec-
ondary structure has also been reported to shape local
DNA-methylation. For example, Clark and Smith [44] showed
that variable number tandem repeats (VNTR) at a non-B DNA
structure contributes to abnormal DNA methylation in human
breast cancers. Mao et al. [45] reported G-quadruplex (G4) DNA
secondary structures are associated with hypomethylation at
the CGI in the human genome. This is because G4 sites are
enriched with DNMT1 binding but inhibit DNMT1 enzymatic
activity, leading to the inhibition of local CpG methylation.
Other studies have shown a certain group of G4 structures
play roles in both DNA methylation and histone modification
[46]. Meanwhile, G4 secondary structures are characterized
by strong telomeric repeats, with cis-acting DNA motifs such
as (GGGGCC)(n), TG (4)T(2)G(4) T and GGGCT(4) GGGC [47–49],
which are GC-rich motifs that associate recruitment of TETs and
hypomethylation [12,13,50]. Taken together, the DNA secondary
structure provides another mechanism of how DNA sequence
maintains and alters local methylation.

Same factors involved in both methylation and
demethylation

Some factors are involved in both site-specific methylation and
demethylation. For example, SPI1 can mediate both de novo
methylation (by interacting with DNMT3B) and demethylation
(by interacting with TET2) in a site-specific manner [51,52].
CTCF is another example that has opposite roles in regulating
DNA methylation. CTCF can promote unmethylation through
blocking DNMTs. For example, Schoenherr et al. [53] showed
that mutating CTCF-binding sites resulted in the recruitment
of DNMTs, leading to increased methylation at the imprinting
control region of Igf2/H19 locus in mouse. Stadler et al. [27]
reported that CTCF binding creates a low methylation region
through the presence of TETs. Other studies showed that CTCF
facilitates histone modification and open chromatin, although
the causality in relation to DNA methylation remains unclear
[54–56].

Crosstalk with histone modification

The maintenance of DNA methylation also involves crosstalk
with histone modification. For example, studies have estab-
lished DNA maintenance on Uhrf1, where Dnmt1 and ubiqui-
tination of histone H3 are involved to convert hemimethylated
DNA to fully methylated DNA [57]. DNA methylation is also
linked to H3K9me3 and H3K27me3, where the H3K9 methyl-
transferase SETDB1 interacts with DNMT3A and 3B [58,59]. Inter-
estingly, SETDB1 does not bind to DNA but forms a repression
complex with TRIM28 and zinc fingers such as ZNF274 to achieve
locus-specificity [59,60]. Furthermore, Viré et al. [61] showed
that the H3K27 methyltransferase EZH2, a component of the
polycomb repressive complex PRC2, can interact with DNMT1,
DNMT3A and DNMT3B. A more recent study by Baubec et al. [62]
using genome-wide ChIP-seq and methylome measurements
confirmed that DNMT3A and DNMT3B are localized to methy-
lated CpG-dense regions in mouse stem cells; notably, they
found that the PWWP domain of DNMT3B recognizes the SETD2-
mediated H3K36 methylation, leading to DNMT3B preferential
binding and methylation of the bodies of actively transcribed
genes [62].
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DNA methylation can also be co-repressed by TF binding
and H3K4 methylation. Cfp1 has been reported to recruit H3K4
methyltransferases to promote H3K4me3, preventing CGI from
methylation in mouse embryonic stem cells. However, Cfp1
knockout is insufficient to remove local hypomethylation,
suggesting other factors are involved in this process [35,63]. In
another study, unmethylated H3K4 tails were shown to interact
with the de novo methylation machinery, such as Dnmt3L and
Dnmt3a [64]. The association between H3K4 methylation and
allele-specific DNA methylation has been shown at imprinted
loci as well [65], guided by factors like KDM1B [66].

Cell-type specificity and methylation dynamics

The above-mentioned evidence showed that locus-specific
methylation is tied to genetic features. Although the DNA
sequences remain unchanged for a given genome, the readout of
the motifs is dynamic and dependent upon cellular conditions.
For example, the expression of a modifying enzyme (e.g. TETs
and DNMTs) or the activity of a DNA-binding regulator and its
access to DNA is cell-type/condition-dependent, which leads to
the dynamic and cell-type-specific modification of epigenome
[67]. Such recognition is similar to the binding of TFs to their
motifs: the TF motifs in the promoters and enhancers remain
the same, but the transcriptional regulation is tissue-specific
and dynamic. However, although we have seen increasing
evidence for motif-directed recruitment of effectors that can
both promote and inhibit DNA methylation [68,69], further
study is required toward a systematic characterization of the
relationship between the expression of these effectors and
cell-type-specific methylation level of their interacting regions.

The Models: Prediction and Revelation
The molecular mechanisms described above have laid the foun-
dation for many studies that use genetic features to predict
local DNA methylation. These studies have shed light on the
sequence features of locus-specific methylation and demethy-
lation. Below, we review the development of these studies and
discuss the perspectives (Supplementary Table S1).

Earlier methylation studies typically employ enzymatic
fractionation assays. For example, McrBC digests methy-
lated sequences while many methylation-sensitive restriction
endonucleases remove unmethylated sequences [70]. Due to
the limited data coverage and resolution, these studies tend to
focus on the methylated CGIs. The CGIs reside in the promoters
and their demethylation facilitates the binding of TFs [71].
To distinguish unmethylated CGI (non-CGI) from methylated
CGI, a variety of predictive features have been found using
machine learning methods. For example, Yamada et al. [19]
have determined the methylation status of CGIs (from fully
methylated to fully unmethylated) using the HpaII-McrBC PCR
method in human peripheral blood leukocytes, and then used
Support Vector Machine (SVM) and random forest to identify
the enriched nucleotide k-mers. They showed CG, CT and CA
are the most predictive dinucleotide features for human CGI
states. Similarly, Das et al. [15] have separated methylated and
unmethylated CpGIs using methylation-sensitive restriction
endonucleases and McrBC in the normal human adult brain, and
showed that Alu coverage and certain hexamers are the most
predictive (86% accuracy) among ∼100 predefined features such
as CG content, dinucleotide counts and trinucleotide counts.
Performance is further improved when including non-sequence
features such as trinucleotide physicochemical properties

[16] (i.e. bendability, nucleosome rigidity and nucleosome
positioning), histone modification [18,72] and the methylation
states of flanking CpGs [22]. Note that while both studies ([72]
and [18]) used multiple mammalian tissues and cell lines, the
prediction accuracy and selected sequence features generalize
well across them, with top predictive features being CpGI
properties, DNA sequence composition, DNA structure patterns
and histone modification status.

Recent studies take advantage of genome-wide methylation
assays, such as 450 K array, RRBS and WGBS. The expanded cov-
erage of methylomes has profoundly changed the locus-specific
analysis of DNA methylation in several ways. For example, func-
tional motifs have been found outside of CGIs, extending into
non-coding regions [12, 23]. In addition, genomic and epigenomic
data from multiple cell lines and tissues have been made avail-
able by consortium efforts such as ENCODE [73], ROADMAP [74],
TCGA [75] and iHEC [76]. Methylation levels are compared across
multiple tissues, cell lines and species to establish variability.
For example, Zeng et al. [23] have analyzed 50 RRBS +1 WGBS
datasets and established the impact of DNA variants on local
methylation. Wang et al. [12] have identified genomic regions and
motifs associated with common and variable methylation across
34 WGBS, validated in 32 450 K array data sets. Scala et al. [77]
examined variance and aberration of CpGs from various cancer
types and blood samples across 450 K data sets in TCGA [75]
and the Epic cohort [78], and have identified motifs associated
with methylation stability, instability and aberration in cancers.
More datasets have also allowed more sophisticated machine
learning models, such as neural networks [17, 21, 23], to outper-
form previously best-performing machine learning models like
SVM and random forest [15, 19, 22, 72]. DNA sequence features
have shifted from using predefined sequences and short k-mer
combinations (usually 2–5 bp) [15, 18, 19, 21, 22, 72] to using
longer de novo motifs (>9 bp) [12, 13, 17, 23, 79, 80]. These studies
revealed novel perspectives on how certain genetic patterns can
play important roles in regulating DNA methylation.

The most fundamental change in methylation motif studies
is from making predictions to exploring the functional mech-
anisms of DNA motifs. A natural first step to illustrate the
functions of the found de novo motifs is to match them to
known TFs [12, 13, 17, 23, 79, 80]. As a result, while earlier studies
have associated hypomethylation with high GC contents [18, 19],
recent studies have revealed that the contributing DNA motifs
with repeating GC tandems are matched to known TFs associ-
ated with TET recruitment, such as CTCF, SP family and WT1 [12,
23]. Furthermore, contrary to the previous belief that methylated
regions have aberrant TF binding, some TFs have also been found
to preferentially bind to highly methylated regions. For example,
Wang et al. [12] have identified 92 motifs associated with high
methylation in WGBS with enriched bindings of DNMTs. Xuan-
lin et al. [80] cross-referenced ChIP-seq of TFs and WGBS to
characterize over 500 known TFBS with cell-type-specific CpG
methyl-level in their motifs, and have shown some TFs, such
as ZBTB33, have high binding affinity to methylated DNA. Ngo
et al. [79] have proposed a high-throughput pipeline that not
only revealed de novo methylated motifs but also discovered
known TFs like CEBPB, NRF1, CTCF and EGR1 that can bind to
highly methylated motif patterns (e.g. [GT]ATT [AG]mCGCAAT
for CEBPB) which are sequentially and locationally distinct from
their canonical motifs. Whitaker et al. [13] have further provided
a computational framework to identify DNA motifs representing
cis-acting elements with the site-specific DNA-binding factors
that establish and maintain epigenomic modifications, includ-
ing DNA methylation and six histone modifications, and have
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shown that motifs like CFP1 are found to prefer the center of
DNA methylation valleys, with a specific association to H3K4me3
and H3K27me3 modification. Finally, recent studies have high-
lighted crosstalk between DNA methylation and histone modi-
fication among these motifs, especially between H3K36me3 and
methylation motifs, as well as between H3K27ac/H3K4me3 and
unmethylation motifs [12, 81]. It is worth noting that many de
novo motifs found relevant to DNA methylations do not match
any known motif [12] and the mechanisms of these motifs await
further investigation.

Along with the mechanistic insights on the shaping of the
methylome, recent studies also highlight the functional valida-
tion of the identified motifs through DNA variants. For example,
Wang et al. [12] have shown motifs with enriched methylation
quantitative trait loci (mQTL) and expression quantitative trait
loci (eQTL), and somatic mutation on the motifs correlates with
altered local CpG methylation. Similarly, Banovich et al. [82] have
characterized the mQTL in relation to TF binding and expres-
sion, and shown that STAT5 and ZNF274 have positive asso-
ciations between TF expression and DNA methylation nearby
binding sites. Further, Zeng et al. [23] have proposed a deep
learning framework, CpGenie, to systematically predict methy-
lation change from sequence variant, given the neighboring
methylation and DNA sequences.

Taken together, we have observed explosive growth of
computational models that explain DNA methylation based on
sequence features, in combination with the traditional usage of
physicochemical properties, nearby CpG states, TF occupancies
and histone states. The improved model performance and the
revealed genetic-epigenetic association have made the clinical
application possible.

Clinical Application
DNA methylation is closely linked to development, aging and
cancer [83, 84]. A common observation in cancer is that methy-
lation on the promoter of a tumor suppressor gene often results
in transcriptional repression and phenotypic alteration [1, 85].
Such DNA methylation patterns can thus be used for diagnosis
and prognosis purposes. Notably, the recent development of
early cancer diagnosis and treatment guidance has been enabled
by liquid biopsy [86, 87], whose successful application depends
on differentiating the tumorous circulating tumor DNA (ctDNA)
from the ‘normal’ call-free DNA (cfDNA) fragments [86, 87]. How-
ever, the major challenge is that ctDNA is a small fraction
(0.01%–10%) of the total cfDNA [86–88]. Therefore, to achieve
sensitive and selective tumor variant detection, current strate-
gies rely heavily on carefully selecting a collection of features
(or biomarkers) combinatorically most predictive of the target
phenotypes.

Over the years, the choice of biomarkers has shifted from
focusing on genetic mutations on tumor suppressors (such as
TP53 [89] and PTEN [90]) to leveraging epigenetics signatures
[91]. For example, BRCA1, PTEN, HRK, APC and RASSF1A have
been found methylated in cancer, and some related to prognosis
and reflect on the efficacy of therapy [92–94]. DNA methylation
patterns derived from RRBS have also been used as a predictor
for breast cancer dissemination [95]. Other studies have reported
success with DNA methylation cfDNA assay outside plasma for
specific cancer types, such as urine-based assays for prostate
cancer [96, 97] and stool-based assays for colorectal cancers [98].
Guo et al. [99] reported segments of DNA methylation (termed
haplotype blocks) from plasma DNA can aid the deconvolu-
tion of heterogeneous tissue samples. A more recent study by

Grail has successfully mapped and identified tumor origin by
cfDNA methylation in 25 human tissues and cells [100]. Notably,
Shen et al. [101] have developed an immunoprecipitation-based
genome-wide cfDNA methylome screening protocol (cfMeDIP–
seq). They showed sensitive tumor detection and classifica-
tion among several tumor types, using differentially methylated
regions and CpGs. Overall, the adoption of cfDNA methylation
analysis has greatly improved the diagnosis power in previously
low-performing cancer types.

A natural progression is combining both genetic and
epigenetic signals to further improve performance and detection
limit in early cancer diagnosis and personalized treatment.
Indeed, Westesson et al. [102] have recently shown that with
combined genomic, methylation and fragmentomic signals in
162 early-stage colorectal cancer patients; they achieved an
overall sensitivity of detection at 90.3% (90% Stage I; 88% Stage
II; 96% Stage III) and specificity at 96.6%. The rapid adoption
of the multi-omics approach evokes an emerging strategy
where the knowledge of how cis-acting DNA variants impact
disease-associated epigenome leads to improved diagnostics
and prognostics. For example, the presence of a single-
nucleotide polymorphism (SNP) at the MGMT promoter negates
the promoter’s methylation in glioblastoma, correlates with
worse temozolomide treatment outcome [103]. An SNP at the
CpG site located at the ARPC3 promoter is associated with
hypertriglyceridemia in overweight patients [104]. Three CpG-
SNP pairs have been reported significant for the prognosis of
breast cancer patients [105]. Multiple studies have reported DNA
variants are particularly found in the CGI at the promoter of
genes related to cancer [106–109]. Zeng et al. [23] have reported
a model to accurately quantify how DNA variants can impact
local CpG methylation and gene expression. Recently, we have
discovered and characterized 313 DNA motifs that regulate
DNA methylation and unmethylation and showed that DNA
mutation overlapping with these motifs impacts local CpG
methylation (Figure 2A). Moreover, we have demonstrated that
profiling somatic mutations in cancer patients based on which
DNA motifs they overlap, providing a significant performance
improvement over using these somatic mutations alone, both
for diagnosis and prognosis [12] (Figure 2B). Taken together,
these results suggest understanding how non-coding DNA-
variants change methylation can improve the re-evaluation of
the existing DNA biomarkers and provide new perspectives on
biomarker discovery.

Outlook
Current research for liquid biopsy benefits from two contribut-
ing factors: the quickly increasing sequencing power [110], and
clinical studies linking molecular profile to early pan-cancer
diagnosis, as well as treatment outcome of late-stage cancer
patients [111–113]. Therefore, while currently available assays
have relatively small numbers of features (i.e. 10–100 biomark-
ers) due to limited variant data [114], future studies can use
many more features. Furthermore, the large data set will allow
the development of more powerful deep learning models to
improve the prediction power. Both trends require a deeper
understanding of the interplay between the existing features (i.e.
DNA methylation and DNA variant).

Ideally, cancer diagnosis and prognosis could benefit from
combining a diverse set of relevant molecular signatures, includ-
ing DNA variants, methylome, transcriptome, proteome, HLA
signature and chromatin structure. However, given the limited
resources, the major challenge to distinguish between cancer
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Figure 2. Clinical application. A. An example of altered cis-acting DNA motif changes local methylation level. B. Evidence that combining the prior knowledge of

DNA motifs that regulates DNA with somatic mutation significantly improves performance for both cancer diagnosis (left) and prognosis (right). (reprinted from

Wang et al. 2019).

and normal cfDNA is the limited number of biomarkers, and
how to detect them frugally. As a result, we would argue that the
most cost-effective strategy is to adopt the prior knowledge of
how DNA sequence and methylation interact with each other to
further improve accuracy and sensitivity. Recent technological
advances have made it possible to simultaneously detect DNA

variants and methylation variants on cfDNA [101]. The synergis-
tic interplay between DNA variants and DNA methylation makes
using DNA motifs advantageous and versatile in many clinical
settings.

In addition to DNA methylation, we have recently discovered
DNA motifs that regulate histone modifications [13, 81] and



Deciphering the genetic code of DNA methylation 7

showed that the altered DNA motif leads to abolished histone
modification, which is also important in cancer [115]. These
cis-acting motifs can be leveraged to reveal information on the
state of histones, which is not readily available in cfDNA [87].
Furthermore, DNA patterns are also important in establishing
local DNA secondary structures, which have been reported as
an epigenetic determinant of cancer genome [116]. Clark et al.
[44] have reported a sequence pattern in the DNA secondary
structures as a hotspot for DNA methylation in human breast
cancer patients.

Taken together, we believe the ever-growing research reveal-
ing genetic-epigenetic interplay has opened doors to previously
underexplored strategies in biomarker selection and points to
new perspectives in characterizing DNA variants in combination
with epigenetic signatures.

Key Points
• Increasing evidence has shown locus-specific DNA

methylation is regulated by cis-acting DNA elements.
• Recently, computational models are used to predict

genetic features of DNA methylation patterns.
• Biological insights have been revealed from these

models.
• Future application of methylation biomarkers con-

sidering liquid biopsy for early cancer diagnosis and
treatment are discussed.
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