Skip to main content
. 2021 Apr 8;22(5):bbab060. doi: 10.1093/bib/bbab060

Table 2.

Performance metrics of the transformer network trained and tested on the labeled transcription start sites obtained from RegulonDB [29], Etwiller Inline graphicInline graphic. [9] (Cap(pable)-seq), Yan Inline graphicInline graphic. [40] (SMRT-(Cappable-)seq), Ju Inline graphicInline graphic. [18] (SEnd-seq) and the curated set Inline graphic: A model has been trained (rows) and evaluated (columns) on each set of annotations. Both the Area Under the Receiver Operating Characteristics Curve (ROC AUC) and Area Under the Precision Recall Curve (PR AUC) are given for each set-up.

Train set Test set
RegulonDB Cap-seq SMRT-seq SEnd-seq Custom
ROC AUC
RegulonDB [29] 0.882 0.815 0.923 0.882 0.885
Cap-seq [9] 0.790 0.961 0.938 0.945 0.945
SMRT-seq [40] 0.749 0.899 0.958 0.961 0.956
SEnd-seq [18] 0.669 0.835 0.944 0.978 0.964
Curated 0.740 0.920 0.976 0.981 0.976
PR AUC
RegulonDB [29] 0.030 0.026 0.053 0.057 0.064
Cap-seq [9] 0.014 0.132 0.029 0.039 0.044
SMRT-seq [40] 0.029 0.044 0.086 0.081 0.089
SEnd-seq [18] 0.035 0.052 0.098 0.128 0.137
Curated 0.039 0.057 0.141 0.128 0.141

The best performances on each test set are given in boldface.