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Abstract

Neutrophils are the most abundant human white blood cell and constitute a first line of defense in 

the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal 

aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. 

Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from 

young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels. 

We identify widespread regulation of neutrophil ‘omics’ landscapes with organismal aging and 

biological sex. In addition, we leverage our resource to predict functional differences, including 
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changes in neutrophil responses to activation signals. To date, this dataset represents the largest 

multi-omics resource for neutrophils across sex and ages. This resource identifies neutrophil 

characteristics which could be targeted to improve immune responses as a function of sex and/or 

age.

Introduction

Neutrophils are the most abundant cells in human blood, representing 50–70% of 

leukocytes1. These cells are continually produced in the bone marrow and released into 

circulation2, 3. Neutrophils are short-lived, with estimated cellular lifespans of ~10–18 hours 

once released in the bloodstream4, 5, although they can survive longer4, 6. Throughout their 

cellular lifespan, neutrophils undergo “neutrophil aging”, a process distinct from organismal 

aging3, 7. Neutrophils perform many key functions, including production of antimicrobial 

granules and of “Neutrophil Extracellular Traps” [NETs]3, 8. Although neutrophils are 

essential against infections as the “first line of defense”, their aberrant activation can also 

aggravate inflammatory disease2, 3. Indeed, emerging evidence suggests that neutrophils 

play important roles in chronic inflammation9.

Organismal aging in mammals is characterized by systematic immune dysfunction and 

chronic inflammation, a phenomenon dubbed “inflamm-aging”10, which may be partially 

mediated by dysfunction of innate immune cells11. Indeed, emerging evidence suggests that 

neutrophils from aged organisms are dysfunctional12, 13, 14, 15, 16. Observed age-related 

dysfunctions in neutrophils include decreased NETosis in TNFα-primed conditions13, 14, 

reduced chemotaxis to sites of inflammation15 and secretion of intracellular granule 

proteases15, 17. Although gene expression changes throughout lifespan have been reported 

across many cell types18, 19, how organismal aging (rather than “daily” cell aging) affects 

neutrophil landscapes remains largely unknown.

Females and males present with many biological differences, which may underlie lifelong 

health disparities between sexes20 and could result from differential “omic” regulation21, 22. 

Although transcriptional differences between young female and male murine neutrophils 

have been profiled by ImmGen22, how these differences interplay with organismal aging, 

and whether they are accompanied by other phenotypical differences remains largely 

unknown. Accumulated studies suggest that aspects of neutrophil biology are sex-dimorphic, 

e.g. inflammatory mediators production9, or functional modulation by testosterone23. 

However, the pathways underlying sex-dimorphism in neutrophils, as well as the extent 

of sex-dimorphism, are still unclear.

To gain insights into how neutrophils are regulated as a function of age and sex, we 

generated a “multi-omic” resource covering transcriptome, metabolome and lipidome 

profiling of primary bone marrow mouse neutrophils. We identified widespread age­

related and sex-dimorphic “omic” regulation, including transcriptional regulation of 

chromatin-related pathways. Using ATAC-seq, we showed that remodeling of chromatin­

related pathways was associated with overall differences in the chromatin architecture of 

neutrophils from young vs. old and female vs. male mice. Consistently, we observed age- 

and sex-linked differences in NETosis inducibility. Machine-learning showed that specific 
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factors could predict age-related and sex-dimorphic gene regulation in neutrophils. Finally, 

we leveraged our resource and predicted sex-differences in serum levels of neutrophil 

elastase in control and sepsis-like conditions.

Results

Multi-omics of bone marrow neutrophils with age and sex

To understand how neutrophils are regulated as a function of age and sex, we obtained 

primary bone marrow neutrophils from young (4–5 months) and old (20–21 months) 

C57BL/6Nia female and male mice (Figure 1a). Primary neutrophils were isolated from 

bone marrow using magnetic-activated cell sorting [MACS], and profiling was then 

performed on purified neutrophils: (i) transcriptome profiling by RNA-sequencing [RNA­

seq], (ii) metabolomic profiling by untargeted liquid chromatography coupled with mass 

spectrometry [LC-MS], and (iii) lipidomic profiling by targeted MS (Figure 1a).

As a first-level analysis to evaluate the similarity of our datasets, we utilized 

multidimensional scaling [MDS]. MDS analysis for RNA-seq, metabolomics and lipidomics 

datasets showed clear separation of samples by animal sex, regardless of age (Figure 

1b–d). In contrast, although young and old samples separated within each sex, global 

separation by age regardless of sex was not clearly observed for each omics (Figure 1 

b–d). To better understand the nature of differences between neutrophils from young vs. 
old [with sex as a covariate], and female vs. male animals [with age as a covariate], 

we identified transcriptional, metabolic and lipidomic features with significant age- or 

sex-related regulation at a False Discovery Rate [FDR] < 5% using multivariate linear 

modeling (Figure 1e–g and Extended Data Figure 1a–f; Supplementary Table S1A–F). We 

quality-checked our dataset for appropriate expression of sex-specific genes (Extended Data 

Figure 1b,c). Finally, we confirmed differential gene expression trends between groups 

using a small replicate RNA-seq cohort (Extended Data Figure 2a,b), and comparing our 

data with published datasets from female vs. males mouse spleen neutrophils22 and human 

blood neutrophils24 (Extended Data Figure 2a). Thus, our analyses suggest that observed 

transcriptional differences with respect to organismal age and sex in neutrophils are robust.

Consistent with MDS, we identified genes, metabolic features and lipids with significant 

differential regulation with respect to sex (FDR < 5%; Figure 1e–g and Extended Data 

Figure 1a–d; Supplementary Table S1B,D,E). Differentially expressed genes with respect 

to sex were located throughout the genome, suggesting that sex-dimorphic gene expression 

was not just a byproduct of genomic location (Extended Data Figure 1a,e). Importantly, 

we observed no biases in the purity of MACS-purified neutrophils across groups (Extended 

Data Figure 3a–b), and no difference in neutrophil abundance in bone-marrow (Extended 

Data Figure 3c) across groups. Thus, sex-dimorphic and age-related “omic” phenotypes are 

unlikely to result from a systematic purification bias between groups.

Although aging led to clear changes in neutrophil gene expression profiles (Extended Data 

Figure 1a,f; Supplementary Table S1), few to no metabolomic and lipidomic changes were 

observed (Extended Data Figure 1a; Supplementary Table S1C,F). This is consistent with 

overall poorer age-related separation observed for metabolomics and lipidomics (Figure 
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1c–d). Higher biological variability in metabolites and lipids might explain the lack of 

changes with age. Alternatively, it is possible that the paucity of age-related metabolic 

and lipidomic differences may stem from biological specificities of neutrophils (e.g. short 

cellular lifespan). When female and male neutrophils were analyzed separately, we found 

that the transcriptional impact of aging on neutrophils correlated strongly between sexes 

(Spearman Rho = 0.593 and p ~ 0 in significance of correlation test; Extended Data Figure 

1g). Thus, although neutrophils show clear sex differences throughout life, the trajectories of 

neutrophils with aging are highly similar regardless of sex. To note, we observed a greater 

number of transcriptional changes with organismal age in male vs. female neutrophils 

(Extended Data Figure 1h), suggesting that male neutrophils are more susceptible to aging. 

Together, our results indicate that neutrophils are highly sex-dimorphic at the molecular 

level, and that these sex differences persist (or may be amplified) with organismal aging.

Finally, since bone marrow neutrophils can be heterogenous, we evaluated the composition 

of MACS-purified neutrophils across groups (Extended Data Figure 4a–d; Supplementary 

Table S2A,B). We leveraged flow cytometry markers to estimate the proportions of 

neutrophil progenitors (i.e. pre- and pro-neutrophils), immature vs. mature neutrophils, 

and fresh vs. “aged” neutrophils in our population. Neutrophil progenitors were extremely 

rare among MACS-purified cells (i.e. pre- and pro-neutrophils represent < 0.5% of 

cells; Extended Data Figure 4a; Supplementary Table S2A), and are unlikely to drive 

large “omic” differences. Importantly, we did not observe significant differences in the 

presence of mature vs. immature neutrophils across groups (Extended Data Figure 4a,c; 

Supplementary Table S2). Finally, we observed a significant trend for the increased presence 

of senescent/aged neutrophils (CD62L−) among the mature neutrophils (Extended Data 

Figure 4a,d; Supplementary Table S2A). Our observation is consistent with a previous report 

of accumulation of senescent/aged neutrophils in old mice due to decreased clearance by 

efferocytosis25. Based on previous studies of senescent/aged neutrophils, changes in the 

relative proportion of “fresh” vs. “aged” neutrophils among bone marrow neutrophils may 

have functional impacts on inflammation, chemotaxis, and NETosis26, 27.

Age-associated changes in chromatin pathways in neutrophils

We first focused on the impact of organismal aging on neutrophils using pathway 

enrichment analysis (Figure 2a–c and Extended Data Figure 5a–b; Supplementary Table 

S3). To note, we only analyzed age-related functional remodeling at the transcriptomic level, 

since metabolomics and lipidomics showed little changes with aging (Extended Data Figure 

1a).

We assessed the coordination of age-related changes by performing a network analysis 

(Figure 2a). The network was constructed using age-regulated genes and protein-protein 

interaction [PPI] information from IMEx/InnateDB. Our analysis revealed that significantly 

age-regulated genes form a clearly interconnected network (Figure 2a). The strong 

interconnection of age-related genes is consistent with the notion that coordinated shifts 

occur in neutrophils with organismal aging, rather than stochastic changes, and suggests that 

these genes are co-regulated or are involved in common processes.
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We then asked which pathways were regulated with aging (Figure 2b and Extended 

Data Figure 5a,b; Supplementary Table S3). Immune-related pathways were significantly 

upregulated according to Gene Set Enrichment Analysis [GSEA] (Figure 2b and 

Extended Data Figure 5a,b; Supplementary Table S3A–C) and Ingenuity Pathway Analysis 

[IPA] (Supplemental Table S3E). This suggests that neutrophil-associated immunity in 

older animals could have different characteristics, consistent with age-related immune 

dysfunction10.

Intriguingly, the top downregulated pathways with organismal aging were overwhelmingly 

related to chromatin and cell cycle (Figure 2b and Extended Data Figure 5a,b; 

Supplementary Table S3A–C,E). Specifically, 18 histone-encoding genes were significantly 

downregulated with aging (Supplemental Table S1A). Importantly, we did not observe 

significant differences in the cell-cycle phase distribution of MACS-isolated neutrophils 

across groups (Extended Data Figure 6a,b), suggesting that differential expression of cell­

cycle pathways is not a byproduct of differential proliferation.

Changes in the regulation of chromatin components are especially relevant to neutrophil 

biology. Indeed, neutrophils have a unique chromatin organization28, with increased 

chromatin compaction or “supercontraction”29. In addition, neutrophils can extrude their 

chromatin to produce NETs in response to pathogens30. The extrusion of chromatin directly 

participates in pathogen killing, notably thanks to antimicrobial properties of histones31. 

Chromatin relaxation can also be potentiated by nuclear-translocated granule-derived 

proteases (e.g. Elane), ultimately helping bacterial killing32. Finally, although neutrophils 

are post-mitotic, cell-cycle genes can control NET production33. Thus, our analysis suggests 

that neutrophils may experience changes in chromatin organization with organismal aging, a 

feature that may impact their ability to respond to infection.

We also observed that several autophagy-related pathways were upregulated in old 

neutrophils (Figure 2b; Supplementary Table S3B,C,E). This is consistent with loss of 

proteostasis being a “hallmark of aging”34. Control of autophagy is critical for neutrophil 

differentiation35, regulation of NET formation36 and of degranulation37.

To identify candidate upstream regulators, we investigated whether target genes of 

specific transcription factors [TFs] were differentially regulated with aging (Figure 2c; 

Supplementary Table S3D). We obtained lists of TF target genes derived from ChEA, 

JASPAR or GEO through the Harmonizome (see methods). Importantly, we restricted 

our testing to TFs with detectable expression in neutrophils according to RNA-seq. To 

note, the GEO “TF” set from Harmonizome includes several non-TF regulators (e.g. 
chromatin-remodeling enzymes, signaling receptors), which are referred to hereafter as TFs 

for simplicity. Consistent with functional pathway enrichments, we observed significant 

age-related downregulation of E2f7 targets, which are known to regulate cycle-related 

expression38, 39 (Figure 2c). Although E2f7 has not been studied in neutrophils, it is 

highly expressed in committed progenitors40. Targets of Foxo1 were also significantly 

downregulated with aging in neutrophils (Figure 2c). Foxo TFs are the primary targets of 

the aging-regulating insulin/insulin-like growth factor 1 signaling41, and Foxo1 regulates 

neutrophil-mediated bacterial immunity42. Finally, known targets of Padi4 were significantly 
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downregulated with aging (Figure 2c). Padi4 is a peptidylarginine deaminase, catalyzing 

histone citrullination, which plays a key role in NETosis in vivo43, 44. Transcript levels of 

Padi4 were significantly upregulated with aging (FDR = 6.9×10−3; Extended Data Figure 5c; 

Supplementary Table S1B). Protein levels of Padi4 were also significantly upregulated with 

aging regardless of sex (p = 8.5×10−3; Extended Data Figure 5d,e). This is consistent with 

reports of histone citrullination associating to transcriptional repression45, 46, 47, although 

the directionality of regulation may depend on cofactors and cell types48. Together, our 

functional pathway analysis suggests that major aspects of chromatin metabolism are 

shifting in aging bone marrow neutrophils.

Sex-dimorphism in chromatin pathways in neutrophils

We next analyzed the functional impact of neutrophil sex-dimorphism at the transcriptomic, 

metabolomic and lipidomic levels (Figure 3a–f and Extended Data Figure 7a–c; 

Supplementary Table S4). We first assessed the interconnection of sex-dimorphic genes 

by constructing putative PPI networks for female vs. male-biased gene expression 

(Figure 3a,b). Sex-biased gene programs showed clear interconnection, suggesting coherent 

differences with likely functional impact (Figure 3a,b). The top connected node in the 

female-biased gene network, Iqcb1, encodes a primary cilia component and has been linked 

to severe kidney disease49 (Figure 3a). Interestingly, Irf8 was the top connected node in 

the male-biased gene network (Figure 3b). Although not specifically studied in neutrophils, 

Irf8 is an interferon signaling-related TF that regulates myeloid fate determination, usually 

suppressing neutrophil differentiation50, 51. In this context, Irf8 is likely to accomplish 

functions unrelated to myeloid differentiation (e.g. cytokine production)52, since no 

significant changes in relative bone marrow neutrophil abundances were observed (Extended 

Data Figure 3c).

Next, we asked which pathways were regulated in a sex-dimorphic fashion in neutrophils 

(Figure 3c and Extended Data Figure 7a,b;` Supplementary Table S4). Functional 

enrichment analysis revealed that significant female-biased pathways encompassed extra­

cellular matrix [ECM] and cell surface-related pathways (Figure 3c and Extended Data 

Figure 7a,b; Supplementary Table S4A–D). Indeed, collagen-encoding genes Col1a1 and 

Col1a2 were expressed at higher levels in female neutrophils (Supplementary Table S1B). 

Collagen production, usually from fibroblasts, is a key event in fibrosis53, and neutrophils 

play an important role in the development of fibrotic lesions54. Alternatively, differential 

expression of cell surface-related genes may also impact the ability of neutrophils to migrate 

through endothelial barriers55. Interestingly, autophagy-related gene sets were female-biased 

in our dataset (Supplementary Table S4A,C,E). As mentioned above, autophagy control is 

critical for neutrophil biology35, 36, including neutrophil degranulation37.

Intriguingly, chromatin- and cell cycle-related pathways were overwhelmingly biased 

for higher expression in male neutrophils (Figure 3c; Extended Data Figure 7a,b; 

Supplementary Table S4A–C). Consistently, 21 histone-encoding genes showed significant 

male-biased expression (Supplementary Table S1B). The sex-dimorphic regulation of 

chromatin-related pathways suggests that sex may lead to differences in neutrophil 

chromatin metabolism.
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We next investigated whether sex-dimorphic expression was correlated with predicted 

activity of TFs in neutrophils (Figure 3d; Supplementary Table S4D). Consistent with 

pathway analysis, targets of cell cycle related E2f7 and Mybl139, 56 were more highly 

expressed in male neutrophils (Figure 3d). Female neutrophils showed higher expression of 

Foxo4 targets (Figure 3d). Interestingly, the Insulin/Igf1 signaling pathway, which regulates 

Foxo TF activity, has been linked to multiple sex-dimorphic phenotypes57, 58.

We next examined sex-dimorphism based on metabolomics and identified a number of 

pathways with significant sex-bias (Figures 3e; Extended Data Figure 7c; Supplementary 

Table S4F). Interestingly, metabolic pathways related to nucleotide metabolism were 

differentially regulated between sexes (Figures 3e; Extended Data Figure 7c; Supplementary 

Table S4F). Indeed, a number of sex-dimorphic metabolic peaks were predicted to represent 

nucleotide species (e.g. AMP, ATP, GMP; see Supplementary Table S1D). Sex-differences 

in nucleotide pools are consistent with transcriptomic observations of sex-dimorphism in 

(i) pathways directly related to nucleotide metabolism, which could lead to direct changes 

in nucleotide pools, and (ii) pathways responsive to nucleotide levels, such as signaling 

by Rho-GTPases, which can regulate neutrophil recruitment59 (Supplementary Table S4A–

C,E). Among nucleotides, the impact of adenine derivatives in neutrophils has been studied 

most extensively. ATP/ADP levels are regulated in neutrophils as a function of activation 

and ‘cellular age’60. Adenine nucleotides from neutrophils exert anti-inflammatory effects61, 

increase endothelial barrier function, attenuate neutrophil adhesion to endothelial cells, 

and modulate transendothelial migration62. Functional analysis of metabolomic data also 

suggested significant sex-differences in amino-acid metabolism, such as tryptophan and 

arginine/proline metabolism (Figures 3e; Extended Data Figure 7c). Interestingly, arginine 

and tryptophan metabolism play important immunoregulatory roles63. However, the final 

effect of differential metabolite levels from these pathways between sexes will need further 

investigation.

We then used the Lipid Ontology [LION] framework to analyze sex-dimorphism in 

lipidomic profiles (Figures 3f, Extended Data Figure 1d, Supplemental Table S4G). 

Interestingly, male neutrophils were strongly enriched for triacylglycerols [TAG], stored in 

lipid droplets, whereas female neutrophils were enriched for diacylglycerols [DAG] (Figures 

3f; Supplemental Table S4G; Extended Data Figure 1d). Consistently, genes associated to 

the GO term “negative regulation of lipid storage” were expressed at significantly higher 

levels in female neutrophils (FDR = 4.33×10−3; Supplemental Table S4C). Lipid droplets are 

crucial during neutrophil differentiation and as a source for inflammatory mediators35, 64. 

Adipose triglyceride lipase (Atgl), encoded by Pnpla2, regulates neutral lipid storage into 

lipid droplets in neutrophils65. Interestingly, Pnpla2 is expressed at higher levels in female 

neutrophils (FDR = 0.01; Extended Data Figure 7d; Supplemental Table S1B). Indeed, 

Atgl catalyzes the conversion of TAG to DAG, consistent with higher levels of DAG in 

female neutrophils and of TAG in male neutrophils (Figure 3f, Extended Data Figure 1d and 

Extended Data Figure 7e). Lower levels of Pnpla2 (mimicking a “masculinized” state) can 

lead to abnormal neutral lipid accumulation in neutrophils, increased chemotactic ability, 

and reduced release of proinflammatory lipids65. In addition, Atg7 is crucial for generation 

of free fatty acids [FFA] from lipid-droplets in neutrophils, and Atg7-deficient neutrophils 

show increased lipid-droplet storage35. Consistently, Atg7 is expressed at higher levels 
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in female neutrophils (FDR = 0.03; Extended Data Figure 7d; Supplemental Table S1B). 

Finally, Lpin1 is crucial for synthesis of DAG from phosphatidic acid, and plays a role in the 

regulation of inflammation66. Consistent with increased DAG levels, Lpin1 is also expressed 

at higher levels in female neutrophils (FDR = 0.03; Extended Data Figure 7d; Supplemental 

Table S1B). Thus, both lipidomics and transcriptomics data suggest that male vs. female 

neutrophils have increased neutral lipid storage (or decreased usage) (Extended Data Figure 

7e). Because of the functional importance of lipid droplets, these observations are likely to 

have deep functional consequences on neutrophil function.

Finally, we performed an integrated analysis using IMPaLA, combining information 

from transcriptomics, metabolomics and lipidomics (Supplementary Table S4H). We 

observed joint enrichment of male-biased molecules in pathways linked to cell cycle, 

DNA metabolism and chromatin-related pathways (Supplementary Table S4H), further 

supporting the notion that neutrophil chromatin architecture may be regulated in a sex­

dimorphic manner. In contrast, female-biased pathways were enriched for lipid-metabolism 

(Supplementary Table S4H). These joint observations provide an integrated confirmation 

of our observations for individual “omic” layers. Together, our analyses suggest that major 

aspects of neutrophils are regulated in a sex-dimorphic fashion and may ultimately underlie 

sex-differences in immune responses.

Neutrophil chromatin organization changes with sex and age

Our enrichment analyses revealed that chromatin-related pathways were significantly 

modulated by sex and organismal age in neutrophils, which is expected to result in profound 

changes in chromatin architecture. Neutrophils hold their chromatin in a compacted 

polylobular nuclear architecture, which earned them the name of “polymorphonuclear” 

cells28, 29. More than just a gene expression regulatory layer, neutrophil chromatin 

directly participates in antimicrobial responses through NETs30, 31. Thus, chromatin­

metabolism differences could lead to profound changes in neutrophil biology. To directly 

evaluate neutrophil chromatin, we utilized the Assay for Transposon-Accessible Chromatin 

followed by sequencing [ATAC-seq]67. ATAC-seq takes advantage of adapter-loaded Tn5 

particles inserting into accessible chromatin, yielding information about local chromatin 

accessibility67 and higher-order organization68.

To evaluate chromatin landscapes, we isolated neutrophils from an independent cohort 

of young (4–5 months) and old (20–21 months) C57BL/6Nia female and male mice 

and performed ATAC-seq (Figure 4a; Extended Data Figure 8a–h). In contrast with 

transcriptomic, metabolomic and lipidomic data, MDS analysis on ATAC-seq showed 

that aging led to better sample separation than sex when examining local differences in 

chromatin accessibility (Extended Data Figure 8d). In addition, there were substantially 

more regions with age-related vs. sex-dimorphic differential accessibility (Extended Data 

Figure 8e–h), consistent with numbers of differentially expressed genes with respect to 

age and sex (Extended Data Figure 1a). Interestingly, enriched GO terms associated to 

differentially accessible regions with respect to organismal age (FDR < 5%) were mostly 

associated to regions with increased accessibility, and encompassed terms related to immune 

response (Supplementary Table S3F). Significantly enriched GO terms for differential 
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regions with respect to sex (FDR < 5%) were all female-biased, and featured terms related to 

MAPK signaling and chromatin (Supplementary Table S4I).

Since enrichment analyses suggested that overall aspects of chromatin are differentially 

regulated with organismal age and sex, we leveraged NucleoATAC68 to analyze neutrophil 

chromatin architecture. Interestingly, nucleosome “v-plots” generated revealed a region at 

~145–150bp which captured more reads in male vs. female neutrophils, regardless of animal 

age, suggesting global differences in nucleosome packaging (Extended Data Figure 8a). 

Next, we leveraged indicators linked to chromatin compaction and organization around 

nucleosomes: (i) nucleosome occupancy, which indicates how frequently a position is 

occupied by a nucleosome across cells, where higher occupancy is associated to tighter 

chromatin structure, (ii) nucleosome fuzziness, which indicates how well-positioned the 

nucleosome is, where fuzzier nucleosomes correspond to looser chromatin, and (iii) 

inter-dyad distance, which measure DNA length between neighboring nucleosomes, with 

increased distance associated to looser chromatin.

Occupancy metaplots around transcriptional start sites [TSS] of expressed genes revealed 

that, regardless of age, male neutrophils showed higher median nucleosomal occupancy 

compared to female neutrophils (Figure 4b). Similarly, regardless of sex, aging was 

associated to increased median nucleosomal occupancy (Figure 4c). More generally, male 

neutrophils had a slight, but significant, increase in nucleosomal occupancy compared 

to female neutrophils, and median nucleosomal occupancy also slightly increased with 

organismal age (Figure 4d, Extended Data Figure 8i). We observed decreased nucleosome 

fuzziness in male vs. female neutrophils, as well as in old vs. young neutrophils (Figure 4e). 

Finally, we observed shorter inter-dyad distance in male vs. female, as well as old vs. young 

neutrophils (Figure 4f). Together, small (but consistent) increases in occupancy, decreases in 

fuzziness and decreases in inter-dyad distance, are indicative of an overall more compacted 

chromatin architecture in male vs. female and old vs. young neutrophils. Finally, when 

analyzing ATAC-seq fragments at accessible regions (including subnucleosomal fragments), 

we observed lower median fragment length in male and old neutrophils (Extended Data 

Figure 8j). While this observation may seem contradictory, overall shorter ATAC-seq 

fragments in the libraries may result from relatively “more accessible” nucleosome-free 

regions in the context of overall tighter chromatin.

To independently evaluate chromatin compaction, we leveraged our RNA-seq to examine 

transcription of repeats (Extended Data Figure 8k–l; Supplementary Table S1G,H). 

Eukaryotic genomes contain large proportions of repeats, including transposons, whose 

transcription is usually tightly repressed through compaction69. Consistent with a more 

compact chromatin architecture, male neutrophils showed lower transcription of repeats 

vs. females (350 female-biased elements vs. 12 male-biased; Extended Data Figure 8l; 

Supplementary Table S1H). Similarly, old neutrophils also showed lower transcription 

of repeats vs. young neutrophils (115 elements downregulated vs. 27 upregulated with 

age; Extended Data Figure 8k; Supplementary Table S1G). Interestingly, chromatin 

decompaction is a limiting step of NETosis70, suggesting that baseline differences in 

chromatin compaction in neutrophils of different ages and sex may impact the dynamics 
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and timeline of NETosis. However, chromatin profiling alone cannot predict the direction in 

which NETosis could be affected.

Based on transcriptome and ATAC-seq results, we predicted that NETosis inducibility 

should be regulated as a function of sex and organismal age. We evaluated NETosis 

inducibility in neutrophils isolated from young vs. old, female vs. male mice (Figure 4g–

i). We used flow cytometry to quantify cells with extracellularized DNA (i.e. NETosed or 

NETosing cells), after a 2h incubation in the presence of Phorbol 12-myristate 13-acetate 

[PMA], a known activator of NETosis, compared to vehicle (Figure 4g). We first evaluated 

NETosis induction on unstimulated neutrophils (Figure 4h). NETosis inducibility was 

significantly increased with organismal age in female cells (p = 4.5×10−5), while higher 

animal-to-animal variability and no significant change were observed in male cells (Figure 

4h). Young male neutrophils showed higher NETosis capacity than young female neutrophils 

(p = 0.057), a trend reversed with organismal aging, with old female neutrophils showing 

highest NETosis inducibility (p = 0.029; Figure 4h).

Increased NETosis in neutrophils from older female mice may seem contradictory with 

previous reports of decreased NETosis with organismal aging13, 14. To note, previous studies 

evaluated NETosis after in vitro TNFα priming13 or in conditions known to mimic TNFα 
priming14, 71, and did not evaluate sex as a biological variable. TNFα is a pro-inflammatory 

cytokine and a potent inducer of NETosis13. To evaluate how TNFα-priming may impact 

NETosis across groups, we also performed NETosis experiments on cells pre-treated 

with 10ng/mL TNFα (Figure 4i). Although TNFα-priming yielded noisier data, NETosis 

inducibility was blunted with organismal age in female cells stimulated with TNFα (Figure 

4i). In contrast, TNFα-primed male neutrophils trended towards decreased inducibility of 

NETosis with organismal age (p = 0.092; Figure 4i). In TNFα-primed conditions, young 

male vs. female neutrophils no longer showed differences in NETosis inducibility, but 

old female neutrophils still showed the highest overall NETosis inducibility (Figure 4i). 

Together, we find that NETosis is differentially modulated as a function of organismal age 

and sex, consistent with observed differences in chromatin architecture.

Machine-learning predicts features of neutrophils regulation

To understand whether age-related and sex-dimorphic gene expression can be predicted from 

genomic sequence, chromatin and/or regulation by TFs, we took advantage of machine­

learning (Figure 5a–c, Figure 6a–c, Extended Data Figure 9a–f). Machine-learning can 

help (i) to determine whether features contain information predictive of a state of interest 

(e.g. sex-dimorphic or age-regulated expression), and (ii) to identify predictive features of 

such states. We used seven algorithms to learn models discriminating between (i) up- and 

down-regulated expression with age, and (ii) male- or female-biased gene expression (i.e. 
conditional inference Trees [cTree], Linear Discriminant Analysis [LDA], neural networks 

[NNET], Logistic Regression [LogReg], random forests [RF], support vector machines 

[SVM], and gradient boosting [GBM]). The models were trained with features related to (i) 

genomic sequence (e.g. GC-richness), (ii) chromatin accessibility (e.g. changes in ATAC-seq 

promoter accessibility), and (iii) TF target genes (i.e. same as used with GSEA).
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We first evaluated our ability to discriminate between genes upregulated vs. downregulated 

during aging in neutrophils (Figure 5a). Our models assigned genes to the correct 

transcriptional change with age >64% of the time on testing data (Figure 5b; Supplementary 

Table S5A), significantly above random (50%). High accuracy suggests that clear biological 

features differentiate between genes that tend to be up- vs. downregulated with aging. 

To assess which features were most predictive of age-related changes, we examined 

predictor contribution from RF and GBM models, which provide native evaluation of feature 

importance (Figure 5c; Supplementary Table S5B). Consistent with the tight link between 

chromatin and gene expression72, the average promoter ATAC-seq signal (i.e. describing 

how “open” the promoter is), as well as the fold difference in ATAC-seq signal between 

young and old neutrophils (i.e. age-related changes in openness) were among the top 

predictors for age-related changes (Figure 5c; Supplementary Table S5B). Key predictors 

also included CG/CpG content in the promoter and gene sequences (Figure 5c), which is 

consistent with our previous work identifying promoter CpG content as a top predictor of 

age-related gene expression in mouse tissues18. Cytosines in CpG configuration are the 

primary targets of DNA methylation73. CpG DNA methylation [DNAme], catalyzed by 

DNA-methyltransferases (i.e. writers), can be removed by TET family proteins (i.e. erasers) 

and is interpreted through recognition by methyl-CpG binding proteins (i.e. readers)73. 

Consistent with the notion that the predictive power of CpG content is related to changes in 

CpG methylation regulation, RNA-seq revealed significant downregulation with organismal 

aging of DNA-methyltransferase encoding Dnmt1, demethylation-catalyzing TET encoding 

Tet1 and Tet2, as well as methyl-CpG binding domain proteins encoding Mbd4 and Mbd5 
(FDR < 5%; Supplementary Table S1A). The presence of putative age-related changes in 

DNAme is consistent with the notion that DNAme patterns can serve as “aging clocks”74.

Key predictors of age-related expression changes also included whether a gene was a target 

of specific TFs: Stat5a, Mtf2, Sirt6, Foxo1, etc. (Figure 5c; Supplementary Table S5B). 

Although causality cannot be inferred from machine-learning, predictors provide a list of 

candidate drivers/mediators of programs related to organismal aging. Only a subset of top 

TF predictors were themselves differentially regulated with aging (e.g. Stat5a, Mtf2, Nod2; 

Extended Data Figure 9g; Supplementary Table S1A). Thus, it is possible that the activity of 

TF predictors without RNA-level regulation may occur through post-translational regulation. 

Interestingly, Stat5a mediates the effects of GM-CSF on granulocyte differentiation75, and 

is crucial for mature neutrophils survival76. Although the role of Mtf2 in neutrophils has 

not been studied, Mtf2 interacts with Jarid2 (another top predictor) to promote repressive 

H3K27 methylation77, which mediates recruitment to unmethylated CpGs78. Nod2 is a 

pattern recognition receptor that recognizes muramyl dipeptide, the minimal common motif 

of bacterial peptidoglycans79. Although Nod2 is not a TF, it has profound transcriptional 

effects on gene expression, with target genes including cytokines and chemokines80, 81. 

Indeed, Nod2 is an important contributor of neutrophil-mediated innate immunity81. 

Sirt6 is a histone deacetylase tightly linked to the regulation of mammalian aging and 

longevity82, 83. Sirt6 can limit inflammation by deacetylating the promoters of NF-kB 

targets84 and reducing cytokine production85. Consistently, Sirt6 knockout mice show liver 

inflammation with neutrophil infiltration86. Thus, changes in activity for top predictive TFs 

may drive aspects of age-related transcriptional remodeling.
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We next asked whether sex-dimorphic gene expression could be predicted from genomic 

information, local chromatin states and/or TF regulation (Figure 6a). Importantly, as 

an additional feature, we also included the chromosomal location of a gene (i.e. sex­

chromosomes vs. autosomes). Our models assigned genes to the correct sex-based 

expression bias >70% of the time on held-out testing data (Figure 6b; Supplementary 

Table S5C), consistent with the notion that sex-biased genes share a common regulatory 

signature. To understand which features were most predictive of male- or female-biased 

expression, we again examined predictor contribution from RF and GBM models (Figure 

6c; Supplementary Table S5D). Importantly, being located on a sex chromosome (X or 

Y) was a poor predictor of sex-dimorphic gene expression (166th combined importance 

rank; Supplementary Table S5D), consistent with the fact that genetic context was not a 

crucial driver (Extended Data Figure 1a). Similar to our age-related models, the average 

promoter ATAC-seq signal and the fold change between females vs. males in ATAC-seq 

signal were also top predictors for sex-biased gene expression (Figure 6c; Supplementary 

Table S5D). The GC/CpG content of promoter and genes sequences also showed strong 

predictive power, consistent with the sex-dimorphic expression of DNAme regulators (i.e. 
male-biased expression for Dnmt1 and Tet3; Supplementary Table S1B).

Finally, we asked which TFs were most predictive of sex-dimorphic gene expression in 

neutrophils (Figure 6c; Supplementary Table S5D). Being a known target of Foxm1, 

Sirt6, Mtf2 or Mybl2 was highly predictive of male vs. female neutrophil-biased gene 

expression, suggesting that these may drive aspects of the sex-dimorphic neutrophil biology. 

Similar to above, only a small subset of top predictors from our models were themselves 

significantly regulated at the transcriptional level (e.g. Foxm1, Irf8; Extended Data Figure 

9h; Supplementary Table S1B). Although its role hasn’t been explored in neutrophils, 

Foxm1 regulates the expression of cell cycle-related genes87 and is highly expressed in 

late committed neutrophil precursors40. The transcription factor Mybl2 also regulates cell 

cycle-related genes88, and can modulate differentiation and cell fate decision of myeloid 

progenitors89. Thus, top predictors of sex-dimorphic neutrophil gene expression Foxm1 and 

Mybl2 might be linked to observed sex-dimorphic expression of cell cycle and chromatin­

related genes (Figure 3, Extended Data Figure 7). Being a target of Sirt6 was also predictive 

of sex-dimorphic gene expression, in line with sex-dimorphic phenotypes of Sirt6 knock­

out and overexpression mice82, 83. In addition, consistent with sex-dimorphism in lipid 

storage (Figure 3f), Sirt6 is tightly linked to lipid metabolism90, and can limit lipid droplet 

accumulation in foam cells91. In addition, Sirt6 activity can be directly regulated by FFAs 

(e.g. myristic, oleic and linoleic acid)92. Consistently, female neutrophils have higher levels 

of FFAs, including FFA(14:0) and FFA(18:2) (i.e. myristic and linoleic acid), and may thus 

have higher basal Sirt6 activity levels (Supplementary Table S1E,F). Thus, our machine­

learning analysis reveals candidate regulators that may drive neutrophil sex-dimorphism and 

will deserve further investigation.

Primary granule differences in female vs. male neutrophils

Intriguingly, when analyzing the top genes with the largest fold-difference between male vs. 
female neutrophils, we noticed that genes encoding primary neutrophil granule components 

showed top male-biased expression (e.g. Elane, Mpo, Prtn3 and Ctsg; Supplementary 
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Table S1B), suggesting potential sex differences in granule loading. Thus, we investigated 

potential differences in granule biogenesis (Figure 7a–b, Extended Data Figure 10a–

d). Neutrophils store a number of proteases and antimicrobial proteins in (i) primary/

azurophilic granules, (ii) secondary/specific granules, and (iii) tertiary/gelatinase granules. 

To unbiasedly assess whether neutrophil granule biology is sex-dimorphic, we compiled 

a list of granule components from the literature (Supplementary Table S6). Consistent 

with our first observation, GSEA revealed a robust trend for increased RNA expression 

of primary granule-related genes in male vs. female neutrophils, regardless of age (Figure 

7a–b). In contrast, no significant enrichments were observed for genes encoding components 

of secondary or tertiary granules (FDR > 5%; Extended Data Figure 10a–d). Importantly, 

we confirmed that protein levels of neutrophil elastase Elane were higher in young males 

vs. young females by Western blot (p = 3.9×10−3 in two-sided Wilcoxon’s test between 

young females and male samples), although this sex-difference disappeared in older animals 

(Extended Data Figure 5d,e).

Neutrophil degranulation is a key aspect of the response of neutrophils to pathogens93, 

and mice without a functional copy of Elane have increased mortality upon sepsis94. 

However, excessive levels of circulating neutrophil elastase can be deleterious, amplifying 

septic shock95. Based on RNA-seq, we hypothesized that higher Elane expression in 

neutrophils could lead to increased Elane circulating levels, both in basal conditions and 

upon an immune challenge. To test this hypothesis, we obtained female and male young 

adult C57BL/6J mice, and injected them with sterile PBS or LPS (a major component 

of gram-negative bacteria cell wall), for 1–6 hours, to mimic a septic state96 (Figure 7c). 

Interestingly, males showed significantly higher levels of serum neutrophil elastase at 3 and 

6 hours post LPS exposure (Figure 7d), and in the PBS-injected controls (Figure 7d,e). Thus, 

young males had overall higher serum protein levels of Elane.

Finally, we then took advantage of a published proteomics dataset of human blood 

neutrophils from 68 healthy donors97. Since the biological sex of human donors was not 

specified, we used the reported protein levels of DDX3Y, a protein encoded on the Y 

chromosome, as a proxy for the likelihood that the sample was derived from a male donor 

(i.e. higher levels of DDX3Y associated with males). Consistent with our mouse RNA-seq 

and serum ELISA, we found significant correlation between DDX3Y levels (i.e. likelihood 

of the sample coming from a male donor) and expression of primary granule proteins 

ELANE, MPO and CTSG, although not of PRTN3 (Figure Extended Data Figure 10e–g). 

Thus, our results suggest that neutrophils derived from human males have higher protein 

expression of key primary granule components. These observations suggest that, at least for 

these components, transcriptomic trends are predictive of protein-level trends, and that the 

male-bias in primary granule components observed in our mouse data may be conserved in 

humans.

Discussion

A resource for the study of neutrophils across sex and aging

We have generated transcriptomic, metabolomic, lipidomic and epigenomic datasets using 

bone marrow neutrophils from young and old, female and male animals. To our knowledge, 
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this dataset is the largest multi-omic dataset for the study of neutrophils and is one of the 

rare cases to include both sexes and organismal aging, rather than focusing only on one 

sex or age group. Using this resource, we observed that (i) neutrophils are extremely sex­

dimorphic, and that (ii) organismal age leads to large scale transcriptomic and epigenomic 

remodeling of neutrophils. Interestingly, when analyzed separately, males had > 10-fold 

more significantly regulated genes with age than females, suggesting that the molecular rate 

of neutrophil aging differs between sexes. Observed changes may likely be downstream 

of signals that drive aging itself, but these changes will impact immune responses in aged 

animals, participating in immune dysfunction.

We then predicted increased release of neutrophil elastase in males in control and sepsis-like 

conditions. Excess release of neutrophil elastase is known to exacerbate inflammation and 

cause tissue damage98. Thus, this resource should help open new avenues of research 

and identify candidate mediators that underlie sex-differences in lifelong immunity. Future 

studies should investigate how the differences in bone marrow neutrophils are maintained, 

erased or amplified in circulating blood neutrophils.

Sex and aging influence neutrophil chromatin metabolism

We observed that regulation of chromatin metabolism is a hallmark of neutrophil aging, and 

a key aspect with sex-dimorphic regulation. Far from being a mere regulatory layer for gene 

expression, chromatin organization has profound implications on NETosis8. Our analyses 

suggest that female neutrophils have an overall “looser” chromatin, associated to the 

transcriptional upregulation of a number of transposable elements [TEs]. Conversely (and 

regardless of sex), neutrophils from old individuals show increased chromatin condensation 

accompanied by reduced TE transcription. This contrasts with observation of age-related TE 

derepression in other contexts19, and may reflect the unique neutrophil biology. Thus, it will 

be important to elucidate the mechanism driving differences in NETosis between sexes and 

throughout lifespan, with implications in aberrant chronic age-related inflammation10.

Machine-learning as a powerful candidate-identification tool

By using machine-learning, we showed that both age-regulation and sex-dimorphism in 

gene expression can be predicted accurately. The high accuracy of our models supports 

the notion of coordinated differences between (i) genes induced vs. repressed during 

aging, and (ii) genes expressed in a sex-dimorphic manner. Among important predictors 

of transcriptional states, we identified regulators whose activity change during organismal 

aging may underlie “omic” profile remodeling throughout life (e.g. Foxo1, Sirt6). We also 

identified putative mediators of sex-biased gene expression of neutrophils (e.g. Foxm1, 

Mybl2). Although machine-learning does not provide information about causality, predictors 

represent candidate mediators that could help shape neutrophil landscapes with aging or as a 

function of sex. Thus, it will be important to elucidate the potential role of these predictors 

to understand the emergence of age-related and sex-dimorphic phenotypes.

Neutrophils as mediators for sex-differences in immune aging

Accumulating evidence has shown that, even outside of reproduction, mammalian biology 

is extremely sex-dimorphic99. This is especially relevant to aging, with large sex-differences 
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in baseline lifespan and in response to pro-longevity interventions58. Although this has 

not been broadly investigated with aging, pioneering studies have started to compare male 

and female cells, revealing profound sex-dimorphism in gene regulation21, 22. Consistently, 

accumulating evidence has shown that immune responses differ between sexes100, 101.

Sex-dimorphism in immunity is exemplified in the current health crisis, with men 

representing the majority of severe cases and deaths from COVID-19102. Interestingly, 

NETs may drive aspects of inflammatory disease, lead to tissue damage8, 30, and contribute 

to severe COVID-19103. In addition, neutrophil dysfunction has been linked to the 

pathogenesis of a number of chronic diseases (e.g. macular degeneration104, stroke105, 

obstructive pulmonary disease106, atherosclerosis107, cancer108, etc.). Thus, sex differences 

in neutrophils could constitute targets to optimize immune responses throughout life and 

help tailor therapeutics to men and women.

Methods

Mouse husbandry

All animals were treated and housed in accordance with the Guide for Care and Use 

of Laboratory Animals. All experimental procedures were approved by the University of 

Southern California’s Institutional Animal Care and Use Committee (IACUC) and are in 

accordance with institutional and national guidelines. Samples were derived from animals on 

approved IACUC protocols #20770, #20804 and #21004.

For ‘omics’ analyses, male and female C57BL/6Nia mice (4–5 and 20–24 months old 

animals) were obtained from the National Institute on Aging (NIA) colony at Charles 

Rivers. For the sepsis assays in young animals, male and female C57BL/6J mice (3–4 

months old animals) were obtained from Jackson Laboratories. Both Charles Rivers and 

Jackson Laboratories have specific-pathogen-free (SPF) facilities. Animals were acclimated 

at the SPF animal facility at USC for 2–4 weeks before any processing. The facility is 

on a 12-hour light/dark cycle, and animal housing rooms are maintained at 72°F and 30% 

humidity. All animals were euthanized between 8–11am for ‘omics’ experiments, flow 

cytometry and NETosis assays. For the sepsis model experiments, animals were injected in 

the morning, and euthanized between 4–6pm. In all cases, animals were euthanized using a 

“snaking order” across all groups to minimize batch-processing confounds due to circadian 

processes (including potential confounds due to neutrophil cellular “age”). All animals were 

euthanized by CO2 asphyxiation followed by cervical dislocation.

Isolation of primary neutrophils from mouse bone marrow

The long bones of each mouse were harvested and kept on ice in D-PBS (Corning) 

supplemented with 1% Penicillin/Streptomycin (Corning) until further processing. Muscle 

tissue was removed from the bones, and the bone marrow from cleaned bones was collected 

into clean tubes110. Red blood cells from the marrow were removed using Red Blood Cell 

Lysis buffer (Miltenyi Biotec #130–094-183), according to the manufacturer’s instructions, 

albeit with no vortexing step to avoid unscheduled neutrophil activation. The suspension 

was filtered on 70μm mesh filters (Miltenyi Biotec #130–110-916) to retain only single 
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cells for downstream processing. Neutrophils were isolated from other bone marrow cells 

using magnetic-assisted cell sorting (Miltenyi Biotec kit #130–097-658). Viability and yield 

were assessed using trypan blue exclusion and an automated COUNTESS cell counter 

(Thermo-Fisher Scientific). Purified cells were pelleted at 300g and snap-frozen in liquid 

nitrogen until processing for RNA, lipid or metabolite isolation.

Neutrophil purity estimates by flow cytometry

We used aging C57BL/6Nia mice from two independent cohorts to estimate potential 

differences in neutrophil purity with respect to sex and age. After an Fc-blocking step 

(Miltenyi Biotec #130–092-575), MACS-purified neutrophils were then stained using APC­

Ly6G (Invitrogen #17–9668-80) and Vioblue-Cd11b (Miltenyi Biotec #130–113-238) at 

a 1:50 dilution according to the manufacturer’s instructions. Stained cells were then 

analyzed by flow cytometry on a MACS Quant Analyzer 10 (Miltenyi Biotec). Flow 

cytometry results were processed using the FlowLogic V7 software. Purity of MACS­

isolated bone marrow neutrophils in young and aged male and female animals are reported 

in Extended Data Figure 3. Raw cytometry data was deposited on Figshare (doi.org/10.6084/

m9.figshare.14043932.v1).

Purified neutrophil heterogeneity estimate by flow cytometry

We used flow cytometry analysis to evaluate the heterogeneity/maturity of our 

isolated neutrophils from two independent cohorts of aging C57BL/6Nia mice. 

We used a panel of antibodies designed to evaluate population heterogeneity 

of cells purified by MACS based on defined subpopulations of neutrophils 

in the literature111, 112, 113 (see below). Specifically, among live cell singlets, 

pro-neutrophils were defined as c-Kit+Ly6g−Cd81+, with subpopulations of pro­

neutrophil 1 defined as c-Kit+Ly6G−Cd81+CD11b−CD106− and pro-neutrophil 2 as 

c-Kit+Ly6G−Cd81+CD11b+CD106+. Pre-neutrophils were defined as Cd11b+Ly6G+c­

Kit+Cxcr4+ cells. Immature neutrophils were defined as CD11b+Ly6G+c-Kit−Cxcr4−Cxcr2− 

cells, and mature neutrophils as CD11b+Ly6G+c-Kit−Cxcr4−Cxcr2+. Fresh vs. 
“aged” subsets of mature neutrophils were defined respectively as CD11b+Ly6G+c­

Kit−Cxcr4−Cxcr2+CD62L+ vs. CD11b+Ly6G+c-Kit−Cxcr4−Cxcr2+CD62L− cells.

Prior to analyzing compositional heterogeneity on MACS-purified neutrophils, to account 

for spill over from different lasers, compensation was performed using appropriate 

compensation beads (Miltenyi Biotec #130–104-693 for Miltenyi antibodies; ThermoFisher 

# 01–3333-42 for others). The compensation file was saved and loaded prior to analyzing 

neutrophils. Compensation was rerun anytime at least one fresh vial of antibody had to be 

used for the staining experiment.

Antibodies used for this heterogeneity panel were:

• CD184 (CXCR4) - PE-Vio770 (clone REA107; Miltenyi Biotec 130–102-914) at 

1:10 dilution

• CD81 - PE (clone EAT2; Miltenyi Biotec 130–102-632) at 1:10 dilution
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• CD11b – Vioblue (clone REA592; Miltenyi Biotec 130–113-810) at 1:50 

dilution

• Ly6G - PerCP-Vio700 (clone REA526; Miltenyi Biotec 130–117-500) at 1:50 

dilution

• CD182 (CXCR2) - APC-Vio770 (clone REA942; Miltenyi Biotec 130–115-637) 

at 1:50 dilution

• CD62L – FITC (clone REA828; Miltenyi Biotec 130–112-835) at 1:50 dilution

• CD106 (VCAM-1) – APC (clone REA971; Miltenyi Biotec 130–116-324) at 

1:50 dilution

• CD117 (c-kit) – Brilliant Violet 510 (clone ACK2; Biolegend 135119) at 1:20 

dilution

After isolation by MACS, 2.5×105 cells were washed once by adding 1mL of PBS/EDTA 

0.1% BSA (i.e. MACS resuspension buffer) in a 5mL polystyrene round bottom tube 

(Falcon #352054), then centrifuged 300g for 10 minutes at 4°C. After an Fc-blocking 

step (Miltenyi Biotec #130–092-575), MACS-purified neutrophils were then stained with 

antibodies for 20 minutes at 4°C, and excess antibody was washed away using resuspension 

buffer. Stained cells were then analyzed by flow cytometry on a MACS Quant Analyzer 

10 (Miltenyi Biotec), and flow cytometry data was analyzed using FlowLogic V7. Gating 

was determined using fluorescence-minus-one [FMO] controls for each color used in the 

experiment to ensure that positive populations were solely associated with the antibody 

for that specific marker (Extended Data Figure 4a). Due to the low amount of c-kit+ 

events in MACS-purified neutrophils, we also ran whole bone marrow (pooled by group 

in one cohort) with the same scheme to confirm that positive labelling by this antibody 

occurs normally on bone marrow cells prior to purification (Extended Data Figure 

4b). Both sets of raw cytometry data, including FMO controls and compensation files, 

were deposited to Figshare (doi.org/10.6084/m9.figshare.14043929.v1, doi.org/10.6084/

m9.figshare.14043938.v1).

Estimate of neutrophil proportion in bone marrow in young female and male mice

We used aging C57BL/6Nia mice from two independent cohorts to estimate potential 

differences in neutrophil proportions within nucleated bone marrow cells with respect to 

sex and age. An aliquot of bone marrow cell suspension was obtained after bone marrow 

extraction, red blood cell lysis and filtration on 70μm mesh filters (see above). Cell 

composition analysis was obtained using the Hemavet 950FS at the USC Leonard Davis 

School of Gerontology mouse phenotyping core. Percentage of cells was used instead of 

absolute cell numbers to avoid confounding results due to animal size.

Evaluation of cell-cycle patterns of MACS-purified neutrophils by flow cytometry

We used aging C57BL/6Nia mice from two independent cohorts to estimate cell cycle 

proportions of MACS-purified neutrophils with respect to sex and age. We utilized a 

standard method using DNA content, as measured by propidium iodide staining of fixed 

cells, to estimate the phases of the cell cycle (i.e. G0/G1, S and G2/M). For each biological 
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sample, 5×105 cells were aliquoted and fixed with 70% Ethanol at −20°C overnight. The 

next day, cells were washed with DPBS [Corning], and nuclear DNA was stained for 30 

minutes at room temperature in labelling buffer (50μg/mL propidium iodide [Alfa Aesar], 

100μg/mL RnaseA [Invitrogen], 0.05% Triton X-100 [Sigma] in DPBS [Corning]). Stained 

cells were then analyzed by flow cytometry on a MACS Quant Analyzer 10 (Miltenyi 

Biotec), and flow cytometry data was analyzed using FlowLogic V7. Raw cytometry data 

was deposited to Figshare (doi.org/10.6084/m9.figshare.14043926.v1).

RNA purification and RNA-seq library preparation

For RNA isolation, frozen cell pellets were resuspended in 1mL of Trizol reagent (Thermo­

Fisher), and total RNA was purified following the manufacturer’s instructions. RNA quality 

was assessed using the Agilent Bioanalyzer platform at the USC Genome Core using 

the RNA Integrity Number (RIN). 500ng of total RNA was subjected to ribosomal-RNA 

depletion using the NEBNext rRNA Depletion Kit (New England Biolabs), according to 

the manufacturer’s protocol. Strand specific RNA-seq libraries were then constructed using 

the SMARTer Stranded RNA-seq Kit (Clontech), according to the manufacturer’s protocol. 

Libraries were quality controlled on the Agilent Bioanalyzer 2100 platform at the USC 

Genome Core before multiplexing the libraries for sequencing. Paired-end 75bp reads were 

generated on the Illumina NextSeq500 platform at the SC2 Core at CHLA (original cohort) 

or paired-end 150bp reads were generated on the Illumina HiSeq-Xten platform at the 

Novogene Corporation (USA) (replicate cohort).

RNA-seq analysis pipeline

To best mimic the first RNA-seq cohort, paired end 150bp reads from the replicate cohort of 

neutrophil RNA-seq were hard-trimmed to 75bp using Fastx Trimmer. Both sets of paired­

end reads were processed using Trimgalore 0.4.4 (github.com/FelixKrueger/TrimGalore) (i) 

to retain only high-quality bases with phred score > 15, and (ii) to eliminate biases due 

to priming by hard clipping the first 6 bases of each read. Only pairs with both reads 

retaining a length of > 45bp after trimming were retained for further processing. Trimmed 

reads were mapped to the mm10 genome reference using STAR 2.5.0a114. Read counts 

were assigned to genes from the UCSC mm10 reference using subread1.5.3115 and were 

imported into R to perform differential gene expression analysis. Based on general RNA-seq 

processing guidelines, only genes with mapped reads in at least 6/16 RNA-seq libraries were 

considered to be expressed and retained for downstream analysis. Due to high sample-to­

sample variability, we used surrogate variable analysis to estimate and correct for unwanted 

experimental noise116. R package ‘sva’ v3.34 was used to estimate surrogate variables, and 

the removeBatchEffect function from ‘limma’ v3.42.2 was used to regress out the effects of 

surrogate variables and RNA-integrity differences (RIN scores) from raw read counts. The 

‘DESeq2’ R package (DESeq2 1.26.0) was used for further processing of the RNA-seq data 

in R117. Importantly, sex was encoded as a categorical variable (female vs. male), and age 

was encoded as a continuous numerical variable. Genes with a false discovery rate < 5% 

were considered statistically significant and are reported in Supplementary Table S1A–B.
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Dimensionality reduction for exploratory data analysis

To perform Multidimensional Scaling (MDS) analysis118, we used a distance metric 

between samples based on the Spearman’s rank correlation value (1-Rho), which was then 

provided to the core R command ‘cmdscale’. Dimensionality reduction was applied to 

pre-normalized data, as described in relevant sections.

Replicate and public neutrophil RNA-seq comparison

To assess the robustness of transcriptional changes linked to biological sex and/or 

organismal age, we used (i) a small replicate RNA-seq cohort of primary bone marrow 

neutrophils with all four conditions, (ii) a dataset from mouse spleen neutrophils from 

young adult female vs. males from the ImmGen consortium (6 weeks-old animals; GEO 

Datasets GSE124829)22 and (iii) a dataset from human blood neutrophils (ages unknown; 

GEO Datasets GSE145231)24 (Extended Data Figure 2a,b). Reads were mapped to mm10 

and hg38 respectively using STAR, and reads were summarized to genes using subread 

as before. DESeq2 normalized fold-changes were then used to estimate differential gene 

expression as a function of age and of sex. For mouse datasets, the comparison directly 

assessed the DESeq2 normalized fold-changes for genes with FDR <5% in the original 

cohort RNA-seq. For the human dataset, orthologs of significant mouse genes in humans 

were identified using the R ‘biomaRt’ 2.42.1 package (accessed 2020–12-18), and DESeq2 

normalized fold-changes were then compared.

Putative Protein-Protein Interaction [PPI] network analysis

Genes with significant regulation according to our DEseq2 analysis (FDR < 5%) were used 

as input for network analysis with NetworkAnalyst 3.0119. For age-related gene regulation, 

significant genes and DEseq2 calculated log2(fold-change) were used as input for a single 

network analysis. For sex-dimorphic gene regulation, the female- and male-biased gene 

lists were used as separate inputs for the analysis. To avoid network clusters due to 

sex-chromosome encoded genes, only significant autosomal genes were included in the 

sex-dimorphism gene expression networks. In both cases, NetworkAnalyst was set up to use 

PPI information derived from IMEx/InnateDB data, a knowledgebase specifically geared for 

analyses of innate immune networks109, to construct putative PPI networks. In each case, the 

largest subnetwork determined by NetworkAnalyst was used in figures and analyses.

Functional enrichment analysis (transcriptomics)

We used the Gene Set Enrichment Analysis (GSEA) paradigm120 through the ‘phenotest’ 

1.34.0 R package. Gene Ontology term annotation were obtained from ENSEMBL through 

Biomart (Ensembl 99; downloaded on 2020–04-10), and gene-term association with only 

author statement support (GO evidence codes ‘TAS’ and ‘NAS’) or unclear evidence (GO 

evidence code ‘ND’) were filtered out. Other annotations were obtained from the Molecular 

Signature Database v7.0 (e.g. Reactome, KEGG)120, 121 and the Harmonizome Database 

(e.g. ChEA, JASPAR, ENCODE, GEO TF targets; accessed 2020–03-25)122. To improve 

target coverage, we summarized putative transcription factor [TF] targets, including FOXO 

TF targets compiled in our previous study18, so as to have a reduced, unique, and non­

redundant list of TF targets summarized from all these sources. The DEseq2 t-statistic was 
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used to generate the ranked list of genes for functional enrichment analysis, both for the 

sex and aging effects. For ease of reading, only the top 10 most significant pathways with 

negative NES and top 10 most significant pathways with positive NES are shown in figures 

if more than that pass the FDR < 5% significance threshold. All significant gene sets are 

reported in Supplementary Tables S3 (aging) and S4 (sex). In parallel, functional enrichment 

was also independently assessed using the Ingenuity Pathway Analysis portal, using genes 

with a significant male or female bias (FDR < 5%).

Western blot analysis of Padi4 and Elane protein levels

To prepare neutrophil lysates, ~5 million cells were collected from aging C57BL/6Nia mice 

from two independent cohorts (n = 9 animals per group). Flash frozen cell pellets were 

resuspended in 200 μL ice-cold lysis buffer (10 mM Tris-HCl pH 8.0, 1% SDS, 1x Halt 

Protease and Phosphatase Inhibitor Cocktail [Life Technologies # 78442]) and incubated on 

ice for 30 minutes. Samples were sonicated (Fisher Scientific # FB120; 60% power, 30 sec 

ON/ 120 sec OFF, 4 cycles) and centrifuged at 16,000g for 20 minutes at 4°C. Supernatant 

was collected and boiled in 4x Laemmli Sample Buffer (Biorad # 1610747). Proteins 

were separated on 10% SDS-PAGE gels and wet-transferred onto PVDF membranes (GE 

Healthcare # 10600021). To assess loading and transfer efficiency, membranes were stained 

using the Ponceau S solution (Sigma P7170) for 2 minutes at room temperature. Membranes 

were blocked using 5% milk (Carnation) in 1xTBST buffer (TBS [Alfa Aesar J62938], 

supplemented with 0.05% Tween-20 [Bio-rad #161–0781]) for 1 hour at room temperature. 

Membranes were incubated with primary antibodies diluted in 5% milk in TBST (anti-β­

Actin: Cell Signaling D6A8 at 1:5,000 dilution; anti-ELANE: Abcam ab68672 at 1:1,000 

dilution; and anti-PADI4: Abcam ab96758 at 1:3,000 dilution) for 16 hours at 4°C. After 

three-5 minute washes using 1xTBST buffer, membranes were incubated with an HRP­

conjugated secondary antibody (Goat Anti-Rabbit IgG H&L, Abcam ab205718 at 1:10,000 

dilution) for 1 hour at room temperature. For visualization, membranes were treated with 

chemiluminescence solution according to manufacturer’s manual (Biorad # 1705062 and 

Thermo Scientific # 34580) and images were taken using Azure Biosystems c280.

For band intensity quantification, ImageJ (version 1.53) was used. Grayscale converted 

images were imported to ImageJ and intensity was measured from all bands. Background 

intensity was subtracted from each measurement. Anti-β-Actin-relative values from each 

membrane were normalized by the median value of the specific membrane to mitigate 

membrane-specific variations.

All raw original images and cropped equivalents, as well as ImageJ quantification, have 

been made available on Figshare (https://doi.org/10.6084/m9.figshare.14154665.v1) and as a 

source data file for Extended Data Figure 5.

Chemicals for LC-MS

LC-MS-grade solvents and mobile phase modifiers were obtained from Fisher Scientific 

(water, acetonitrile, methanol, methyl tert-butyl ether) and Sigma−Aldrich (ammonium 

acetate).
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Metabolite and lipid extraction from neutrophils.

Metabolites and lipids were extracted from neutrophil cell pellets and analyzed in a 

randomized order. Extraction was performed using a biphasic separation protocol with 

ice-cold methanol, methyl tert-butyl ether (MTBE) and water123. Briefly, 300μL of methanol 

spiked-in with 54 deuterated internal standards provided with the Lipidyzer platform 

(SCIEX, cat #5040156, LPISTDKIT-101) was added to the cell pellet, samples were 

vigorously vortexed for 20 seconds and sonicated in a water bath 3 times for 30 seconds 

on ice. Lipids were solubilized by adding 1000μL of MTBE and incubated under agitation 

for 1h at 4°C. After addition of 250μL of ice-cold water, the samples were vortexed for 1 

min and centrifuged at 14,000g for 5 min at 20°C. The upper phase containing the lipids was 

then collected and dried down under nitrogen. The dry lipid extracts were reconstituted with 

300μL of 10 mM ammonium acetate in 9:1 methanol:toluene for analysis. The lower phase 

containing metabolites was subjected to further protein precipitation by adding 4 times of 

ice-cold 1:1:1 isopropanol:acetonitrile:water spiked in with 17 labeled internal standards 

and incubating for 2 hours at −20°C. The supernatant was dried down to completion under 

nitrogen and re-suspended in 100μL of 1:1 MeOH:Water for analysis.

Untargeted LC-MS metabolomics.

Data acquisition.—Metabolic extracts were analyzed four times using hydrophilic liquid 

chromatography (HILIC) and reverse phase liquid chromatography (RPLC) separation in 

both positive and negative ionization modes as previously described124. Data were acquired 

on a Thermo Q Exactive plus mass spectrometer equipped with a HESI-II probe and 

operated in full MS scan mode. MS/MS data were acquired on pool samples consisting of 

an equimolar mixture of all the samples in the study. HILIC experiments were performed 

using a ZIC-HILIC column 2.1×100 mm, 3.5μm, 200Å (Merck Millipore) and mobile phase 

solvents consisting of 10mM ammonium acetate in 50/50 acetonitrile/water (A) and 10 

mM ammonium acetate in 95/5 acetonitrile/water (B). RPLC experiments were performed 

using a Zorbax SBaq column 2.1 × 50 mm, 1.7 μm, 100Å (Agilent Technologies) and 

mobile phase solvents consisting of 0.06% acetic acid in water (A) and 0.06% acetic 

acid in methanol (B). Data quality was ensured by (i) injecting 6 and 12-pool samples to 

equilibrate the LC-MS system prior to run the sequence for RPLC and HILIC, respectively, 

(ii) sample randomization for metabolite extraction and data acquisition, and (iii) checking 

mass accuracy, retention time and peak shape of internal standards in every samples.

Data processing.—Data from each mode were independently analyzed using Progenesis 

QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t 

show sufficient linearity upon dilution were discarded. Only metabolic features present in 

>33% of the samples in each group were kept for further analysis and missing values 

were imputed by drawing from a random distribution of small values in the corresponding 

sample125.

Metabolic feature annotation.—Annotation confidence levels for each metabolite 

were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. 

Peak annotation was first performed by matching experimental m/z, retention time 

and MS/MS spectra to an in-house library of analytical-grade standards (Level 1). 
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Remaining peaks were identified by matching experimental m/z and fragmentation spectra 

to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://

mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package 

‘MetID’ (v0.2.0)126 (Level 2). Briefly, metabolic feature tables from Progenesis QI were 

matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and 

±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a 

single metabolic feature, all matched MS/MS spectra were used for the identification. Next, 

MS1 and MS2 pairs were searched against public databases and a similarity score was 

calculated using the forward dot–product algorithm which takes into account both fragments 

and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 

corresponds to unknown metabolites.

Targeted lipidomics with the Lipidyzer platform.

Data acquisition.—Lipid extracts were analyzed using the Lipidyzer platform that 

comprises a 5500 QTRAP System equipped with a SelexION differential mobility 

spectrometry (DMS) interface (SCIEX) and a high flow LC-30AD solvent delivery unit 

(Shimazdu). A full description of the method is available elsewhere123. Briefly, the lipid 

molecular species were identified and quantified using multiple reaction monitoring (MRM) 

and positive/negative switching. Two acquisition methods were employed covering 10 lipid 

classes; method 1 had SelexION voltages turned on, while method 2 had SelexION voltages 

turned off. Lipidyzer data were reported by the Lipidomics Workflow Manager (LWM) 

v1.0.5.0 software, which calculates concentration in nmol/g for each detected lipid as 

average intensity of the analyte MRM/average intensity of the most structurally similar 

internal standard MRM multiplied by its concentration. Data quality was ensured by (i) 

tuning the DMS compensation voltages using a set of lipid standards (SCIEX #5040141) 

after each cleaning, more than 24 hours of idling or 3 days of consecutive use, (ii) 

performing a quick system suitability test (QSST) (SCIEX #50407) before each batch to 

ensure acceptable limit of detection for each lipid class, iii) sample randomization for 

lipid extraction and data acquisition, and iv) triplicate injection of lipids extracted from a 

reference plasma sample (SCIEX #4386703) at the beginning of the batch.

Data pre-processing.—Lipids detected in less than 66% of the samples in each group 

were discarded and missing values were imputed in each class by drawing from a random 

distribution of small values in the corresponding sample125.

Differential analysis of metabolomics and lipidomics data

Metabolomics and lipidomics datasets were first normalized to the total protein content 

as determined by BCA assay (Pierce #23225) to account for differential starting material 

quantity. Then, Variance Stabilizing Normalization was applied to the data using ‘limma’ 

3.42.2, as recommended by previous studies127, 128. Differential analysis for metabolomic or 

lipidomic features was performed using ‘limma’ in R. Features with a false discovery rate 

(FDR) < 5% were considered statistically significant.

For analysis of the lipidomics data by lipid class (Extended Data Figure 1; Supplementary 

Table S1F), lipids were summarized by class after BCA and VSN corrections. To determine 

Lu et al. Page 22

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hmdb.ca/
http://mona.fiehnlab.ucdavis.edu/
http://mona.fiehnlab.ucdavis.edu/
http://www.massbank.jp/


regulation at the class level, because of the small number of analyzed classes, a basic linear 

model approach was used through base R ‘lm’ function, and FDR correction was applied 

using the base R ‘p.adjust’ function. Lipid classes with a false discovery rate (FDR) < 5% 

were considered statistically significant.

Functional enrichment analysis for metabolomics

Since only 1 metabolite was significantly regulated with aging, we focused on analyzing 

differentially regulated metabolite sets with respect to sex. To analyze the directional 

regulation of metabolic pathways from untargeted metabolomics, we used R package 

‘MetaboAnalystR’ 2.0.4129 to perform Phenotype Set Enrichment analysis (PSEA)130 of 

KEGG metabolic pathways. Using the ‘mummichog’ method131, we provided an input 

table of metabolic peaks represented by mass over charge ratios (m/z) and retention time, 

limma-derived p-value and t-scores, and analysis mode (negative or positive ion) to have 

maximum sensitivity for the functional enrichment analysis of untargeted metabolomic data. 

All significant gene sets (FDR < 5%) are reported in Supplementary Table S4F.

Integrated functional enrichment analysis for RNA-seq and metabolomics using IMPaLA

Based on the differential analyses results in RNA-seq and metabolomics, we focused on 

analyzing differentially regulated genes and metabolites with respect to sex. To provide an 

integrated view of RNA-seq and metabolomics results, we took advantage of the IMPaLA 

paradigm132. We used the IMPaLA v12 web interface (http://impala.molgen.mpg.de/), 

which evaluates overrepresentation of genes and metabolites across 5055 annotated 

pathways from 12 databases, with default parameters. For the joint analysis, we used genes 

with FDR < 5% with respect to biological sex, using gene symbols as input IDs. For 

metabolic features, we selected only the manually validated species (Levels 1 and 2) with 

FDR < 5% with respect to biological sex. Finally, we also selected lipid species FDR < 

5% with respect to biological sex. Importantly, we used HMDB IDs as input IDs for the 

metabolomic/lipidomic side of the analysis, thus analyzing only features with corresponding 

HMDB IDs. Joint analysis of significant features with a male bias, or, separately, those 

with female bias, were uploaded separately to the server (server access on 06–30-2020). All 

pathways with an overall combined FDR < 5% are reported in Supplementary Table S4H.

Functional enrichment analysis for lipidomics

Since there was no significant difference in lipid composition with aging, we focused on 

analyzing differentially regulated lipid sets with respect to sex. The Lipid Ontology (LION) 

website was used to perform functional enrichment analysis of lipids133. Lipid features with 

FDR < 5% with a male or female bias were uploaded to the server (access on 03–24-2020). 

For ease of reading, only the 10 most significant pathways with male and with female bias 

are shown in Figure 3f. All significant LION terms are reported in Supplementary Table 

S4G.

Neutrophil ATAC-seq library generation

An independent cohort of C57BL/6Nia mice was used to assess age- and sex-related 

differences in chromatin architecture using ATAC-seq. To assay potential differences in the 
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chromatin landscape of mouse bone marrow neutrophils across age and sex, we used the 

omni-ATAC protocol starting from 50,000 MACS-purified cells134. Libraries were quality 

controlled on the Agilent Bioanalyzer 2100 platform at the USC Genome Core before 

pooling. Libraries were multiplexed and sequenced on the Illumina HiSeq-Xten platform as 

paired-end 150bp reads at the Novogene Corporation (USA).

ATAC-seq preprocessing pipeline

Paired-end ATAC-seq reads were adapter-trimmed using NGmerge0.2135, which clips 

overhanging reads in a sequence-independent fashion and has been recommended for use 

in ATAC-seq preprocessing. Trimmed paired-end were mapped to the mm10 genome build 

using bowtie2 (2.2.6)136. After alignment, PCR duplicates were removed using the ‘rmdup’ 

function of samtools (1.5). To minimize analytical artifacts from uneven sequencing depth 

between biological samples/libraries, libraries were randomly downsampled to the same 

depth for downstream analyses using PicardTools (2.20.3) or samtools (1.5). We used the 

peak finding function of HOMER (4.11) to identify ATAC-seq accessible regions137.

Differential accessibility analysis with ATAC-seq

We extracted a normalized read count matrix from our the downsampled bam files over 

merged HOMER regions using R package ‘Diffbind’ 2.14 138. We used this extracted 

matrix for downstream analyses. Because of sample-to-sample variability, we used surrogate 

variable analysis 116 to estimate and correct for experimental noise, similar to the RNA­

seq analysis. R package ‘sva’ 3.34 was used to estimate surrogate variables, and the 

‘removeBatchEffect’ function from ‘limma’ 3.42.2 was used to regress out the effects 

of surrogate variables, PCR duplicate content and variation in reads mapping to peaks 

according to Diffbind (Fraction of reads in peaks). The ‘DESeq2’ R package (1.26.0) was 

used for further processing of ATAC-seq data. Regions with a false discovery rate < 5% were 

considered statistically significant.

Functional enrichment analysis of differentially accessible regions from ATAC-seq

We used the significantly differentially accessible peaks identified by DESeq2 at FDR < 5% 

to analyze functional enrichments linked to these regions. For this purpose, we leveraged 

the ‘GREAT’ 4.0.4 tool139, a tool specifically optimized to identify functional enrichment 

starting from genomic regions. We used all ATAC-seq accessible regions as the background 

for enrichment. All other options were left to default parameters. Results were exported 

as ‘tsv’ and processed in R to filter significant regions at FDR < 5%. Filtered results are 

reported in Supplementary Tables S3F and S4I.

Chromatin architecture analysis from ATAC-seq datasets

To analyze the underlying chromatin architecture differences between neutrophils isolated 

from different biological groups, we used the NucleoATAC v0.3.4 software68. Since 

NucleoATAC requires high sequencing depth to reliably measure nucleosome profiles, we 

pooled depth-matched reads from each biological group to attain this depth as recommended 

by the authors of the software 68. We extracted similar metrics from the NucleoATAC 

output to what was described in previous studies using this software to investigate chromatin 
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architecture140. All comparisons between groups were tested for statistical significance 

using two-tailed Wilcoxon rank-sum test (non-parametric test).

Repetitive element transcription analysis

To evaluate potential differential regulation of transposable elements, we used the 

‘analyzeRepeats.pl’ functionality of the HOMER software to count STAR-mapped reads 

over repetitive elements137. To allow for whole library normalization, reads mapping over 

transcript were also counted using the same HOMER script. Read counts were imported into 

R to estimate differential repeat expression using the ‘DESeq2’ (1.26.0) R package117.

Neutrophil NETosis assay

We used a flow-cytometry based NETosis assay protocol using extracellularized DNA 

staining by SYTOX Green to quantify cells undergoing NETosis, adapted from a flow 

cytometry-based protocol141 and a 96-well plate plate-reader protocol142, both with 

neutrophils in suspension. Briefly, MACS-purified neutrophils were resuspended in a 

concentration of 2×106 cells/mL in neutrophil culture medium (RPMI 1640 without phenol 

red [Hyclone], supplemented with 1% Pennicilin/Streptomycin [Corning] and 0.1% BSA 

[Akron Biotechnology]). We then used 1×106 cells, aliquoted into sterile microcentrifuge 

tubes, one per starting biological sample. SYTOX green (ThermoFisher Scientific # 

S7020) was added to each sample to a final concentration of 200nM. Neutrophil media 

supplemented with DMSO [Vehicle] or 50nM Phorbol 12-myristate 13-acetate [PMA] 

(Sigma # P1565) was added to each tube. Tubes were slowly inverted three times to mix. 

Then, 2×105 cells were seeded in technical quadruplicates in wells of a sterile black 96-well 

plate [Greiner Bio-One] and incubated in a humidified incubator with 5% CO2 at 37°C for 

2 hours. The fraction of cells positive for SYTOX Green in each well was quantified using 

the MACSQuant10 and analyzed using Flowlogic V7. To account for differences in basal 

levels of NETosis across samples, NETosis was expressed as induction of NETosis: (median 

of PMA technical quadruplicates) / (median of DMSO technical quadruplicates). The raw 

cytometry dataset was deposited to Figshare (doi.org/10.6084/m9.figshare.14043923.v1).

TNFα-primed NETosis analysis

To compare our results with previously published results on NETosis in aged 

neutrophils13, 14 [which were obtained with direct TNFα priming13 or in conditions known 

to mimic TNFα priming14 (i.e. thioglycolate elicitation of peritoneal neutrophils71)], we 

also performed NETosis analysis in primed conditions, using a slightly modified protocol 

from above to include a priming step. Specifically, the MACS-purified neutrophils cells 

were resuspended in neutrophil culture medium and first pre-warmed after isolation 

in a humidified incubator with 5% CO2 at 37°C for 15 minutes. Then, 2×106 cells 

were aliquoted into a sterile microcentrifuge tube, and primed with 10ng/mL mouse 

TNFα (PeProTech # 315–01A) in a humidified incubator with 5% CO2 at 37°C for 15 

minutes. Cells were then further aliquoted, supplemented with SYTOX green, DMSO/PMA, 

incubated and analyzed as above. The raw cytometry dataset was deposited to Figshare 

(doi.org/10.6084/m9.figshare.14043923.v1).
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Feature extraction for machine-learning analysis

For each significantly age-regulated or sex-dimorphic gene in neutrophils according to 

DEseq2 (FDR < 5%), we extracted a number of features associated to that gene. First, we 

took advantage of our ATAC-seq data to evaluate the chromatin architecture of neutrophils 

(see above). For each gene, we extracted (i) the average promoter accessibility by ATAC­

seq in FPKM across all 4 conditions (promoters were defined as −500bp;+150bp with 

regards to annotated transcriptional start sites in mm10 build according to HOMER), 

as well as (ii) the average log2(Fold Change) in accessibility between old and young 

neutrophils (age-regulation models) or the average log2(Fold Change) in accessibility 

between female and male neutrophils (sex-dimorphism models). Second, we took advantage 

of gene sets coverage known of predicted targets of transcriptions factors: ChEA, ENCODE, 

JASPAR and GEO TF perturbation information from the Harmonizome database122 and 

transcriptional targets of FOXO transcription factors from GEO experiments compiled in our 

previous study18. To reduce extraneous features, we engineered a TF target feature following 

these steps: (i) TF targets were summarized from all putative sources, (ii) only TFs with 

evidence of expression in primary neutrophils according to RNA-seq were retained as 

features, and (iii) only TFs with at least 25 targets across significant age-related genes (age­

regulation models) or sex-dimorphic genes (sex-dimorphism models) were retained. This 

process yielded 357 (age-regulation models) and 249 (sex-dimorphism models) TF target 

sets used as features for model training. Finally, we included several DNA sequence features 

to each gene: the percentage of CG nucleotide and the percentage of CpG dinucleotide 

in promoters and exons, computed using HOMER. To note, HOMER was only able to 

provide information for 3,421 of the 3,653 genes with significant age regulation, and 

1,636 of the 1,734 genes with significant sex-dimorphic regulation. Finally, to determine 

whether location of the gene on autosomes vs. chromosomes was a key predictive factor 

for sex-dimorphic gene expression, we also included for the sex-dimorphic gene expression 

models a feature encoding whether the gene is located on autosomes or sex chromosomes (X 

or Y).

Machine-learning analysis for age-regulated or sex-dimorphic genes

We trained machine-learning classification models for 2 questions: (i) models for age­

regulated gene expression, and (ii) models for sex-dimorphic gene expression. For (i), 

age-regulation machine-learning models were built to learn whether up- or down-regulated 

genes could be discriminated using genomic features and predict potential master regulators. 

For (ii), sex-dimorphism machine-learning models were built to learn whether female and 

male biased genes could be discriminated using genomic features and predict potential 

master regulators.

In both cases, we built classification models using 7 classification algorithms as 

implemented through R package ‘caret’ (caret 6.0–86). Auxiliary R packages were used 

with ‘caret’ to implement neural networks (NNET; ‘nnet’ 7.3–13), random forests (RF; 

‘randomForest’ 4.6–14), gradient boosting (GBM; ‘gbm’ 2.1.5), radial kernel support vector 

machines (SVM; kernlab 0.9–29), sparse Linear Discriminant Analysis (LDA; ‘sparseLDA’ 

0.1–9), conditional inference Trees (cTree; ‘party’ 1.3–4), Regularized Logistic Regression 

(LogReg; ‘LiblineaR’ 2.10–8). ‘Caret’ was allowed to optimize final model parameters 
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on the training data using 10-fold cross validation. Accuracies, sensitivities, specificities 

and AUC (using package ‘pROC’ 1.16.2) for all trained classifiers were estimated using 

a test set of randomly held out 1/3 of the data (not used in the training phase) obtained 

using the ‘createDataPartition’ function. Feature importance estimation was only done using 

tree-based RF and GBM methods, since other algorithms do not natively allow for it. The 

feature importance was computed and scaled by ‘caret’ for the RF and GBM models.

Reanalysis of DIA proteomics data from human neutrophils

We obtained DIA proteomics results from the supplemental material of a recent study97. 

We used normalized expression values from the article’s supplemental material and used 

the reported “donor-specific Spectronaut protein expression values” for further analysis. To 

exclude potential confounds linked to disease, we only used data from the 68 healthy donors 

[HD] and excluded the data from diseased patients. Since the article did not report the 

biological sex of donors, we used detected expression levels of DDX3Y, a Y-chromosome 

encoded protein, as a proxy for the likelihood of the sample belonging to a male donor. We 

then examined rank correlation statistics between protein expression of DDX3Y compared 

to that of human orthologs of top male-biased primary granules genes from our mouse 

RNA-seq data (i.e. ELANE, MPO, PRTN3 and CTSG). Significance of the Spearman rank 

correlation is reported.

Mouse sepsis model through intra-peritoneal LPS injection

Young adult (3–4 months) C57BL/6J mice were exposed to LPS, a pathogen-associated 

molecular pattern (PAMP) found in the cell-wall of Gram-negative bacteria, to elicit a 

sepsis-like response96. Briefly, mice were injected intra-peritoneally with 2μg of LPS per 

gram of body weight, using a sterile LPS stock (Sigma #L5293) diluted in PBS, and control 

animals were injected with sterile PBS96. Animals were monitored hourly for up to 6 hours 

after injection for the occurrence and severity of endotoxemia96. We did not observe gross 

differences in the state of female vs. male animals injected with LPS over the course of 

the experiment, although it is possible that such differences would have emerged at longer 

time-points. After euthanasia by CO2 asphyxiation and cervical dislocation at 1, 3 and 6 

hours post injection, blood was collected from the heart. A total of 80 animals across 3 

independent experimental days were used (n = 8 animals per sex, age and time group for 

LPS injections; n = 5 animals per sex, age and time group for control PBS injections). 

To obtain serum for downstream analysis, the blood was left to clot for ≥1 hour at room 

temperature in MiniCollect Serum SeparatorTubes (Greiner Bio-One). The serum was then 

separated from the clot using centrifugation at 2,000g for 10 minutes, and frozen at −80°C 

until further use.

Quantification of serum neutrophil elastase (ELANE) by ELISA

Quantitative evaluation of circulating ELANE levels was performed from serum. ELISA 

quantification of serum ELANE levels was performed using Abcam’s Mouse Neutrophil 

Elastase SimpleStep ELISA Kit (ab252356) according to the manufacturer’s instructions. 

Technical replicates from the same sample were averaged as one value before statistical 

analysis and plotting.
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Statistics and reproducibility

All statistical analyses were conducted using R version 3.6.0–3.6.3. For all ‘omic’ analyses, 

results were corrected for multiple testing by the use of False Discovery Rate [FDR] 

significance correction. All statistical analyses were performed as specified in the figure 

legends and in the corresponding methods section. We used non-parametric statistical 

tests whenever possible to avoid assuming normality of data distributions. No statistical 

methods were used to predetermine sample size, since effect sizes and variance were not 

known a priori. No data passing quality control checks were excluded from the analyses. 

All ‘omic’ samples were performed on independent biological samples, usually from one 

cohort of animals to minimize known issues linked to batch effects in such analyses143. 

As one exception, RNA-seq of bone marrow neutrophils was independently replicated on a 

smaller cohort, since neutrophils are known to be RNA-poor, which could add more than 

usual biological variability (Extended Data Figure 2). With the exception of a test of the 

heterogeneity flow cytometry panel on bone marrow cells (used to validate c-kit staining; 

Extended Data Figure 4b; Supplementary Table S2B), all other experiments were performed 

on animals from at least 2 independent cohorts.

For each experiment, animals were processed in an alternating/snaking order rather than in 

large homogeneous groups to minimize group, batch and circadian effects. For observational 

aging studies, no randomization is possible since groups are biologically determined. For 

LPS injection experiments, animals were randomly allocated to the PBS or LPS group for 

a euthanasia time point, on a cage-level basis (i.e. animals from the same cage randomly 

attributed to LPS vs. PBS injections; for each cohort, co-housed animals were used for the 

same time point; cages attributed to a specific euthanasia time point randomly). This process 

was performed independently for each of the 3 cohorts for LPS-induced endotoxemia. 

Blinding was not relevant to the studies conducted here, as the data are collected by 

automated systems (i.e. sequencing, mass-spectrometry, flow cytometry) or in numeric form 

(i.e. ImageJ quantification of Western Blot bands, ELISA absorbance values), which cannot 

be influenced by subjectivity from the experimenter.

Data Availability

Sequencing data has been submitted to the Sequence Read Archive (SRA) 

accessible through BioProject PRJNA630663. Untargeted metabolomics data was 

uploaded to metabolomics workbench DataTrack ID 2089. The lipidomics data is 

available as Supplemental Table S7 and was deposited in Figshare (https://doi.org/

10.6084/m9.figshare.14524278). Raw flow cytometry data was deposited to Figshare 

(doi.org/10.6084/m9.figshare.14043938.v1, doi.org/10.6084/m9.figshare.14043932.v1, 

doi.org/10.6084/m9.figshare.14043929.v1, doi.org/10.6084/m9.figshare.14043926.v1, and 

doi.org/10.6084/m9.figshare.14043923.v1). Western Blot raw and cropped images have been 

deposited to Figshare (https://doi.org/10.6084/m9.figshare.14154665).

We reanalyzed publicly available neutrophil RNA-seq data from GEO 

Datasets GSE1248296 (6 weeks-old mouse spleen neutrophil samples), 

and GSE145231 (human blood neutrophil samples), and human neutrophil 

DIA proteomics data (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442368/bin/
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141289_1_supp_251888_pjqfps.xlsx). Functional gene annotations were obtained 

from ENSEMBL Biomart (https://www.ensembl.org/biomart/martview/), the Molecular 

Signature Database (http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp) and the 

Harmonizome (https://maayanlab.cloud/Harmonizome/download). Mass-spectrometry peaks 

were identified by matching experimental m/z and fragmentation spectra to 

publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://

mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/).

Code Availability

The analytical code is available on the Benayoun lab Github repository (https://github.com/

BenayounLaboratory/Neutrophil_Omics_2020). All R code was run using R version 3.6.0–

3.6.3.
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Extended Data

Extended Data Figure 1: A multi-omic analysis of primary mouse bone marrow neutrophils 
during aging and with respect to sex (continued).
(a) Table of significant “omic” features as a function of organismal age and sex in our 

datasets based on DEseq2 (RNA-seq) or limma (Metabolomics and lipidomics), at FDR < 

5%. For the analysis of sex-dimorphism in gene expression, the number of significant genes 

located on autosomes (i.e. not on chromosomes X or Y) is also reported. (b-c) Barplot of 

DESeq2-normalized log2 counts for Xist (b) and Ddx3y (c), showing the expected pattern 
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between male and female samples, which acts as a quality check for our dataset. (d) 

Heatmap of lipidomic changes summarized by lipid classes. Significance of difference as a 

function of age or sex was evaluated using a linear model, and the significance of the sex 

coefficient (as reported by the R ‘lm’ function) is reported on the line of the heatmap. *: p < 

0.05; ** : p < 0.01; n.s. : p ≥ 0.05. See also Supplementary Table S1F. (e) Circular genome 

plot of the positions of genes with significant sex-biased gene expression in neutrophils 

(FDR < 5%). (f) Heatmap of significant age-regulated genes (DESeq2 FDR < 5%). (g-h) 

Correlation plot of age-related gene expression change according to DESeq2 in female 

vs. male neutrophils from RNA-seq, showing genes with (g) significant and concordant 

age-regulation in both sexes at FDR 5%, or (h) genes with divergent age-regulation between 

sexes (FDR < 5% in one sex, and FDR >15% in the other). Spearman Rank correlation 

(Rho), and significance of this correlation are reported in (g). Importantly, age was inputted 

into the DEseq2 model as a continuous numerical variable (expressed in months), which 

yields fold change values per month of life.
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Extended Data Figure 2: Comparison to other neutrophil RNA-seq datasets.
(a) DESeq2 normalized log2 fold changes as a function of biological sex for differentially 

expressed mouse genes from our original cohort (FDR <5%) (and their human orthologs) 

across datasets [see Methods]. The original mouse bone marrow neutrophil cohort data are 

plotted for comparison as the leftmost panel. On the right are plotted corresponding log2 fold 

change values from our own smaller replication cohort of mouse bone marrow neutrophils 

(n = 3 per group), from mouse spleen neutrophils from ImmGen23 and a human blood 

neutrophil cohort25. P-values were calculated using a two-sided Wilcoxon test between 

female-biased and male-biased genes from our original cohort across new datasets, to test 

the robustness of such differences between our original cohort and new datasets. (b) DESeq2 

normalized log2 fold changes per month during aging for differentially age-regulated mouse 

genes from our original cohort (FDR <5%). The original mouse bone marrow neutrophil 
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cohort data are plotted for comparison as the leftmost panel. On the right are plotted 

corresponding log2 fold change values from our own smaller replication cohort of mouse 

bone marrow neutrophils (n = 3 per group). P-values were calculated using a two-sided 

Wilcoxon test between upregulated vs. downregulated genes, to test the robustness of such 

differences between our original cohort log2 fold changes and a new dataset. The center line 

represents the sample median, the box limits consist of the 25th and 75th percentiles, the 

whiskers span 1.5x the interquartile range, and each RNA-seq sample is represented by a 

point on the graph.

Extended Data Figure 3: Bone marrow neutrophil purity is not impacted by animal sex or 
organismal age.
(a) Representative flow cytometry gating strategy of bone-marrow neutrophils purified using 

MACS from a young female mouse. Neutrophils are expected to be double positive for 
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Cd11b and Ly6G. (b) Neutrophil purity from 2 independent cohorts of aging male vs. 

female mice (n = 8 for old females, and n = 10 per group for all other groups), determined as 

the Cd11b+ Ly6G+ population. (c) Proportion of neutrophils among bone marrow nucleated 

cells according to the Hemavet 950FS from 2 independent cohorts of aging male vs. female 

mice (n = 9 for old females, and n = 10 per group for all other groups). Statistical analysis 

for (b) and (c) derived from a linear modeling analysis with sex and age as covariates, 

similar to our “omic” analysis models, with significance of coefficients as reported by the 

R ‘lm’ function. The center line represents the sample median, the box limits consist of the 

25th and 75th percentiles, the whiskers span 1.5x the interquartile range, and each RNA-seq 

sample is represented by a point on the graph.
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Extended Data Figure 4: Analysis of MACS-purified bone marrow neutrophil heterogeneity.
(a) Representative flow cytometry gating strategy of bone-marrow neutrophils 

purified using MACS from a young female mouse. Populations were defined 

according to previously published markers136, 137, 138. Specifically, among live cell 

singlets, pro-neutrophils were defined as c-Kit+Ly6g−Cd81+, with subpopulation of 

pro-neutrophil 1 defined as c-Kit+Ly6G−Cd81+CD11b−CD106− and pro-neutrophils 2 

as c-Kit+Ly6G−Cd81+CD11b+CD106+. Pre-neutrophils were defined as Cd11b+Ly6G+c­

Kit+Cxcr4+ cells. Immature neutrophils were defined as CD11b+Ly6G+c-Kit−Cxcr4−Cxcr2− 
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cells, and mature neutrophils as CD11b+Ly6G+c-Kit−Cxcr4−Cxcr2+. Fresh vs. 
“aged” subsets of mature neutrophils were defined respectively as CD11b+Ly6G+c­

Kit−Cxcr4−Cxcr2+CD62L+ vs. CD11b+Ly6G+c-Kit−Cxcr4−Cxcr2+CD62L− cells. The gate 

from which cells are plotted is indicated above each flow cytometry plot. (b) Representative 

flow cytometry gating strategy of RBC-lysed bone marrow cells from a young female 

mouse. The gate from which cells are plotted is indicated above each flow cytometry 

plot. This analysis was run as a control for the presence/abundance of cKit+ cells, as 

MACS-purified cells had extremely low numbers of these cells. (c) Amounts of immature 

(left) vs. mature (right) neutrophil among all MACS-purified cells from 2 independent 

cohorts of aging male vs. female mice (n = 10 per group). (d) Proportion of “fresh” vs. 

“aged” neutrophils among mature neutrophils from 2 independent cohorts of aging male 

vs. female mice (n = 10 per group). Statistical analysis for (c) and (d) derived from a 

linear modeling analysis with sex and age as covariates, similar to our “omic” analysis 

models, with significance of coefficients as reported by the R ‘lm’ function. The center line 

represents the sample median, the box limits consist of the 25th and 75th percentiles, the 

whiskers span 1.5x the interquartile range, and each RNA-seq sample is represented by a 

point on the graph. Also see Supplementary Table S2 for quantifications of all populations.
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Extended Data Figure 5: Regulated pathways in bone marrow neutrophils during aging reveals 
downregulation of chromatin-related pathways (continued).
(a-b) Top enriched gene sets from Gene Ontology (a) and KEGG (b) using GSEA for 

differential RNA expression. Only the top 10 most up- and top 10 most downregulated 

gene sets are plotted for readability. Full lists and statistics available in Supplementary 

Table S2. Shown pathways with FDR < 5%. (c) Boxplot of Padi4 transcriptional levels 

from RNA-seq. Significance: DESeq2 FDR values for regulation as a function of aging or 

biological sex. The center line represents the sample median, the box limits consist of the 
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25th and 75th percentiles, the whiskers span 1.5x the interquartile range, and each RNA-seq 

sample is represented by a point on the graph (n = 4 RNA-seq samples per group). (d) 

Representative Western Blot images for primary bone marrow neutrophils for Elane, Padi4 

and β-actin (loading control), as well as Ponceau S staining of PVDF blotting membrane. 

The membrane was cut along predicted molecular weights, and each strip was probed for 

each specific protein in that range. (e) Boxplot of quantification of Western Blot for Padi4 

(left) and Elane (right) from primary bone marrow neutrophils. Data from 2 independent 

cohorts of aging male vs. female mice (n = 9 per group). Two concentrations of the same 

sample were loaded side by side for each biological sample. Statistical analysis derived from 

a linear modeling analysis with sex and age as covariates, similar to our “omic” analysis 

models, with significance of coefficients as reported by the R ‘lm’ function. The center line 

represents the sample median, the box limits consist of the 25th and 75th percentiles, the 

whiskers span 1.5x the interquartile range, and each RNA-seq sample is represented by a 

point on the graph. All uncropped western blot images and quantification data is been made 

available on Figshare (https://doi.org/10.6084/m9.figshare.14154665.v1). NES: Normalized 

Enrichment Score (for GSEA analysis). FDR: False Discovery Rate.

Extended Data Figure 6: The distribution of cell cycle phases of MACS-purified bone marrow 
neutrophil is not impacted by animal sex or organismal age.
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(a) Representative flow cytometry gating strategy of bone-marrow neutrophils purified using 

MACS from a young male mouse stained using Propidium Iodide to assess cell-cycle phase 

based on DNA content. Neutrophils are expected to be largely post-mitotic. (b) Boxplots of 

MACS-purified bone marrow neutrophil cell cycle distribution (G0/G1, S or G2/M) from 

2 independent cohorts of aging male vs. female mice (n = 9 for old males, and n = 10 

per group for all other groups), determined by DNA content. The overwhelming majority 

of samples have > 90% cells in G0/G1, and there are no trends associated to organismal 

age or biological sex. Statistical analysis for (b) derived from a linear modeling analysis 

with sex and age as covariates, similar to our “omic” analysis models, with significance 

of coefficients as reported by the R ‘lm’ function. The center line represents the sample 

median, the box limits consist of the 25th and 75th percentiles, the whiskers span 1.5x the 

interquartile range, and each RNA-seq sample is represented by a point on the graph.
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Extended Data Figure 7: Sex-dimorphic pathways in bone marrow neutrophils reveal differential 
regulation of chromatin-related pathways (continued).
(a-b) Top enriched gene sets from Gene Ontology (a) and KEGG (b) using GSEA 

for differential RNA expression as a function of sex. Only the top 10 most up- and 

top 10 most downregulated gene sets are plotted for readability. Full lists and statistics 

available in Supplementary Table S2. All shown pathways and genes such as FDR < 

5%. (c) MetaboAnalyst PSEA scatterplot for KEGG pathways from metabolomics. NES: 

Normalized Enrichment Score (for GSEA analysis). FDR: False Discovery Rate. (d) 
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Boxplot of transcriptional levels from our RNA-seq for Pnpla2/Atgl, Atg7 and Lpin1, 

which are sex-dimorphic lipid metabolism-related genes. The significance is derived from 

DESeq2, and we report the corresponding FDR values for regulation as a function of aging 

or biological sex. The center line represents the sample median, the box limits consist of the 

25th and 75th percentiles, the whiskers span 1.5x the interquartile range, and each RNA-seq 

sample is represented by a point on the graph (n = 4 RNA-seq samples per group). (e) 

Summary scheme of discussed lipid usage in female vs. male neutrophils based on lipidomic 

and transcriptomic data. Catalyzed reactions are derived from Wikipathway WP3901 (Lipid 

droplet metabolism) and 37.
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Extended Data Figure 8: ATAC-seq analysis reveals age- and sex-related differences in the 
chromatin architecture of bone marrow neutrophils (continued).
(a) NucleoATAC v-plots. The light green box overlay reveals a v-plot region where males 

have higher signal than females, regardless of age, suggesting differences in nucleosomal 

architecture.

(b-c) Barplot of DESeq2-normalized log2 counts at ATAC-seq peaks associated to Xist 
(b) or situated on the Y chromosome (c), showing the expected pattern between male and 

female samples. (d) Multidimensional Scaling analysis results of chromatin accessibility 
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from ATAC-seq. (e) Table of significantly differentially accessible ATAC-seq peaks as a 

function of organismal age and sex. The number of significant peaks located on autosomes 

(i.e. not on chromosomes X or Y) is also reported. (f-g) Heatmap of accessibility at peaks 

with significant age-regulated (f) or sex-dimorphic (g) change in accessibility (FDR < 5%). 

(h) Circular genome plot of the genomic positions of peaks with significant sex-bias in 

neutrophil ATAC-seq (FDR < 5%). (i) Boxplot of nucleosome occupancy as calculated by 

NucleoATAC for all called nucleosomes across groups. Also see Figure 4d. (j) Boxplot 

of median ATAC-seq fragment length at ATAC-seq peaks across experimental groups. The 

horizontal red line in panels (i,j) shows the median value in neutrophils from young females 

for ease of comparison. Significance in non-parametric two-sided Wilcoxon rank-sum tests 

are reported for panels (i,j). Black p-values represent differences between male vs. female 

neutrophils in each age group; pink (blue) p-values represent age-related differences in 

female (male) neutrophils. For boxplots in panels (i,j), the center line represents the sample 

median, the box limits consist of the 25th and 75th percentiles, the whiskers span 1.5x 

the interquartile range, for readability and consistent with practices in genomics, outliers 

are not shown on the graph although they are always taken into account for the statistics. 

(k-l) Heatmap of repetitive elements with significant age-regulated (k) or sex-dimorphic (l) 

change in transcription from RNA-seq (FDR < 5%).
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Extended Data Figure 9: Machine-learning analysis reveals that age-regulated and sex­
dimorphic gene expression can be predicted by genomic and epigenomic features.
(a-c) Age-related machine-learning model performance metrics: balanced classification 

accuracy over the 10 cross-validation folds during model training (a), balanced classification 

accuracy on held-out testing data (b), and Area Under the Curve [AUC] on held-out testing 

data (c). Also see Supplementary Table S5A. (d-f) Sex-dimorphism machine-learning model 

performance metrics: balanced classification accuracy over the 10 cross-validation folds 

during model training (d), balanced classification accuracy on held-out testing data (e), and 
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Area Under the Curve [AUC] on held-out testing data (f). Also see Supplementary Table 

S5C. (g-h) Heatmap of RNA-seq expression level for top TF predictors in age-regulated (g) 

or sex-dimorphic (h) gene expression models with FDR < 10%. DESeq2 FDR is reported on 

each line, with # : FDR < 0.1; * : FDR < 0.05; ** : FDR < 0.01; *** : FDR < 0.001. FDR: 

False Discovery Rate. For boxplots in panels (a,d), the center line represents the sample 

median, the box limits consist of the 25th and 75th percentiles, the whiskers span 1.5x the 

interquartile range.

Lu et al. Page 45

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 10: Male neutrophils express higher levels of primary granule genes but 
not secondary and tertiary granule genes.
(a-c) Heatmap of normalized gene expression for primary (a), secondary (b) and tertiary 

(c) granule-related gene expression in our RNA-seq dataset. The estimated False Discovery 

Rate [FDR] using GSEA for each gene set is reported. (d) Heatmap of normalized gene 

expression for X-linked (Kdm5c, Kdm6a, Xist) and Y-linked (Uty, Ddx3y, Eif2s3y) genes in 

our RNA-seq dataset. Panel (a) is identical to Figure 7a to help direct comparison between 

sex-bias expression patterns of different granule types as well as canonical sex-biased 

genes. (e-h) Scatterplots of protein levels of DDX3Y (as a proxy for likely of a sample 

being derived from a male donor), compared to protein levels for primary granule-related 

proteins ELANE (e), MPO (f), PRTN3 (g) and CTSG (h) in neutrophils from healthy human 

donors. Normalized data was obtained from the supplementary material of 117. Estimates 

of Spearman Rank correlation (Rho) and significance of correlation are reported for each 

correlation on the scatterplot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to thank Dr. Daniel Campo and Suchi Patel at the USC genome core for assistance in NGS-library 
quality control on the Agilent Bioanalyzer platform; Dr. Fan Li at the SC2 Core at CHLA for help with sequencing 
of transcriptomic libraries on the Illumina NextSeq550; Erin Christensen from Miltenyi Biotec for help designing 
and optimizing the flow cytometry panel. We thank Dr. Todd Morgan and Gerald Navarette from the USC Leonard 
Davis School of Gerontology mouse phenotyping core for assistance with CBC analyses on the Hemavet 950FS. 
We acknowledge the use of the HPC resource at USC for computational analyses. We thank Dr. Changhan 
Lee (USC), Dr. Kelvin Yen (USC), Dr. Sean P. Curran (USC), Dr. Marc Vermulst (USC), Dr. Helen Goodridge 
(Cedars-Sinai Medical Center) and Dr. Elsa Bou Ghanem (University at Buffalo) for helpful insights and feedback 
on our study. Finally, we thank lab members Ari Adler, Chan Boriboun, Cassandra McGill, Emily K. Wang and for 
helpful discussions and feedback on the study. We apologize for any papers not cited.

This work was supported by a Diana Jacobs Kalman/AFAR Scholarships for Research in the Biology of Aging 
(to R.J.L.), GCRLE-2020 post-doctoral fellowship from the Global Consortium for Reproductive Longevity and 
Equality at the Buck Institute, made possible by the Bia-Echo Foundation, (to M.K.), NIA T32 AG052374 
and NSF graduate research fellowship DGE-1842487 (to J.I.B.), and NIA R00 AG049934, Pew Biomedical 
Scholar award #00034120, an innovator grant from the Rose Hills foundation, and the Kathleen Gilmore Biology 
of Aging research award (to B.A.B). This work was also partially supported by NCI Cancer Center Support 
Grant P30 CA014089 through the use of shared resources. The authors acknowledge the Center for Advanced 
Research Computing [CARC] at the University of Southern California for providing computing resources that have 
contributed to the research results reported within this publication (URL: https://carc.usc.edu).

References

1. Nah EH, Kim S, Cho S & Cho HI Complete Blood Count Reference Intervals and Patterns of 
Changes Across Pediatric, Adult, and Geriatric Ages in Korea. Ann Lab Med 38, 503–511 (2018). 
[PubMed: 30027692] 

2. Furze RC & Rankin SM Neutrophil mobilization and clearance in the bone marrow. Immunology 
125, 281–288 (2008). [PubMed: 19128361] 

3. Shah B, Burg N & Pillinger MH Chapter 11 - Neutrophils. In: Firestein GS, Budd RC, Gabriel SE, 
McInnes IB & O’Dell JR (eds). Kelley and Firestein’s Textbook of Rheumatology (Tenth Edition). 
Elsevier, 2017, pp 169–188.e163.

4. Ballesteros Iet al.Co-option of Neutrophil Fates by Tissue Environments. Cell183, 1282–1297 e1218 
(2020). [PubMed: 33098771] 

Lu et al. Page 46

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://carc.usc.edu/


5. Lahoz-Beneytez Jet al.Human neutrophil kinetics: modeling of stable isotope labeling data supports 
short blood neutrophil half-lives. Blood127, 3431–3438 (2016). [PubMed: 27136946] 

6. Pillay Jet al.In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood116, 
625–627 (2010). [PubMed: 20410504] 

7. Zhang Det al.Neutrophil ageing is regulated by the microbiome. Nature525, 528–532 (2015). 
[PubMed: 26374999] 

8. Sollberger G, Tilley DO & Zychlinsky A Neutrophil Extracellular Traps: The Biology of Chromatin 
Externalization. Dev Cell 44, 542–553 (2018). [PubMed: 29533770] 

9. Soehnlein O, Steffens S, Hidalgo A & Weber C Neutrophils as protagonists and targets in chronic 
inflammation. Nat Rev Immunol 17, 248–261 (2017). [PubMed: 28287106] 

10. Franceschi C & Campisi J Chronic inflammation (inflammaging) and its potential contribution 
to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 Suppl 1, S4–9 (2014). [PubMed: 
24833586] 

11. Lu RJ, Wang EK & Benayoun BA Functional genomics of inflamm-aging and immunosenescence. 
Briefings in Functional Genomics (2021).

12. Tseng CW & Liu GY Expanding roles of neutrophils in aging hosts. Current Opinion in 
Immunology 29, 43–48 (2014). [PubMed: 24776646] 

13. Hazeldine Jet al.Impaired neutrophil extracellular trap formation: a novel defect in the innate 
immune system of aged individuals. Aging Cell13, 690–698 (2014). [PubMed: 24779584] 

14. Tseng CWet al.Innate immune dysfunctions in aged mice facilitate the systemic dissemination of 
methicillin-resistant S. aureus. PLoS One7, e41454 (2012). [PubMed: 22844481] 

15. Sapey Eet al.Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: 
toward targeted treatments for immunosenescence. Blood123, 239–248 (2014). [PubMed: 
24191150] 

16. Simmons SR, Bhalla M, Herring SE, Tchalla EYI & Bou Ghanem EN Older but not wiser: The 
age-driven changes in neutrophil responses during pulmonary infections. Infect Immun (2021).

17. McLaughlin ME, Kao R, Liener IE & Hoidal JR A quantitative in vitro assay of 
polymorphonuclear leukocyte migration through human amnion membrane utilizing 111in-oxine. 
J Immunol Methods 95, 89–98 (1986). [PubMed: 3097158] 

18. Benayoun BAet al.Remodeling of epigenome and transcriptome landscapes with aging in mice 
reveals widespread induction of inflammatory responses. Genome Res29, 697–709 (2019). 
[PubMed: 30858345] 

19. Lai RWet al.Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB 
Rep52, 86–108 (2019). [PubMed: 30526773] 

20. Klein SL & Flanagan KL Sex differences in immune responses. Nat Rev Immunol 16, 626–638 
(2016). [PubMed: 27546235] 

21. Marquez EJet al.Sexual-dimorphism in human immune system aging. Nat Commun11, 751 (2020). 
[PubMed: 32029736] 

22. Gal-Oz STet al.ImmGen report: sexual dimorphism in the immune system transcriptome. Nat 
Commun10, 4295 (2019). [PubMed: 31541153] 

23. Markman JLet al.Loss of testosterone impairs anti-tumor neutrophil function. Nat Commun11, 
1613 (2020). [PubMed: 32235862] 

24. Gupta Set al.Sex differences in neutrophil biology modulate response to type I interferons and 
immunometabolism. Proc Natl Acad Sci U S A117, 16481–16491 (2020). [PubMed: 32601182] 

25. Frisch BJet al.Aged marrow macrophages expand platelet-biased hematopoietic stem cells via 
interleukin-1B. JCI Insight4 (2019).

26. Kolaczkowska EThe older the faster: aged neutrophils in inflammation. Blood128, 2280–2282 
(2016). [PubMed: 28829751] 

27. Adrover JM, Nicolas-Avila JA & Hidalgo A Aging: A Temporal Dimension for Neutrophils. 
Trends Immunol 37, 334–345 (2016). [PubMed: 27083489] 

28. Chen Xet al.ATAC-see reveals the accessible genome by transposase-mediated imaging and 
sequencing. Nat Methods13, 1013–1020 (2016). [PubMed: 27749837] 

Lu et al. Page 47

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Denholtz Met al.Upon microbial challenge, human neutrophils undergo rapid changes in nuclear 
architecture and chromatin folding to orchestrate an immediate inflammatory gene program. Genes 
Dev34, 149–165 (2020). [PubMed: 31919189] 

30. Papayannopoulos VNeutrophil extracellular traps in immunity and disease. Nat Rev Immunol18, 
134–147 (2018). [PubMed: 28990587] 

31. Brinkmann Vet al.Neutrophil extracellular traps kill bacteria. Science303, 1532–1535 (2004). 
[PubMed: 15001782] 

32. Papayannopoulos V, Metzler KD, Hakkim A & Zychlinsky A Neutrophil elastase and 
myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191, 677–691 
(2010). [PubMed: 20974816] 

33. Amulic Bet al.Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps. 
Developmental Cell43, 449–462.e445 (2017). [PubMed: 29103955] 

34. Lopez-Otin C, Blasco MA, Partridge L, Serrano M & Kroemer G The hallmarks of aging. Cell 
153, 1194–1217 (2013). [PubMed: 23746838] 

35. Riffelmacher Tet al.Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal 
Neutrophil Differentiation. Immunity47, 466–480 e465 (2017). [PubMed: 28916263] 

36. Park SYet al.Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during 
Sepsis. Am J Respir Crit Care Med196, 577–589 (2017). [PubMed: 28358992] 

37. Bhattacharya Aet al.Autophagy Is Required for Neutrophil-Mediated Inflammation. Cell 
Reports12, 1731–1739 (2015). [PubMed: 26344765] 

38. Mitxelena Jet al.An E2F7-dependent transcriptional program modulates DNA damage repair and 
genomic stability. Nucleic acids research46, 4546–4559 (2018). [PubMed: 29590434] 

39. Yuan Ret al.Cyclin F-dependent degradation of E2F7 is critical for DNA repair and G2-phase 
progression. The EMBO Journal38, e101430 (2019). [PubMed: 31475738] 

40. Kim M-Het al.A late-lineage murine neutrophil precursor population exhibits dynamic changes 
during demand-adapted granulopoiesis. Scientific reports7, 39804–39804 (2017). [PubMed: 
28059162] 

41. Brown AK & Webb AE Regulation of FOXO Factors in Mammalian Cells. Curr Top Dev Biol 127, 
165–192 (2018). [PubMed: 29433737] 

42. Dong Get al.FOXO1 Regulates Bacteria-Induced Neutrophil Activity. Front Immunol8, 1088 
(2017). [PubMed: 28928749] 

43. Thiam HRet al.NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4­
mediated chromatin decondensation and nuclear envelope rupture. Proceedings of the National 
Academy of Sciences117, 7326 (2020).

44. Rohrbach AS, Slade DJ, Thompson PR & Mowen KA Activation of PAD4 in NET formation. 
Front Immunol 3, 360–360 (2012). [PubMed: 23264775] 

45. Cuthbert GLet al.Histone deimination antagonizes arginine methylation. Cell118, 545–553 (2004). 
[PubMed: 15339660] 

46. Li Pet al.Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4. Molecular 
and Cellular Biology28, 4745 (2008). [PubMed: 18505818] 

47. Denis Het al.Functional connection between deimination and deacetylation of histones. Mol Cell 
Biol29, 4982–4993 (2009). [PubMed: 19581286] 

48. Christophorou MAet al.Citrullination regulates pluripotency and histone H1 binding to chromatin. 
Nature507, 104–108 (2014). [PubMed: 24463520] 

49. Hossain D, Barbelanne M & Tsang WY Requirement of NPHP5 in the hierarchical assembly of 
basal feet associated with basal bodies of primary cilia. Cell Mol Life Sci 77, 195–212 (2020). 
[PubMed: 31177295] 

50. Marquis JFet al.Interferon regulatory factor 8 regulates pathways for antigen presentation in 
myeloid cells and during tuberculosis. PLoS Genet7, e1002097 (2011). [PubMed: 21731497] 

51. Yáñez A, Ng MY, Hassanzadeh-Kiabi N & Goodridge HS IRF8 acts in lineage-committed rather 
than oligopotent progenitors to control neutrophil vs monocyte production. Blood 125, 1452–1459 
(2015). [PubMed: 25597637] 

Lu et al. Page 48

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Salem S, Salem D & Gros P Role of IRF8 in immune cells functions, protection against 
infections, and susceptibility to inflammatory diseases. Hum Genet 139, 707–721 (2020). 
[PubMed: 32232558] 

53. Wynn TACellular and molecular mechanisms of fibrosis. J Pathol214, 199–210 (2008). [PubMed: 
18161745] 

54. Gregory ADet al.Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J 
Leukoc Biol98, 143–152 (2015). [PubMed: 25743626] 

55. Muller WATransendothelial migration: unifying principles from the endothelial perspective. 
Immunol Rev273, 61–75 (2016). [PubMed: 27558328] 

56. Oh IH & Reddy EP The myb gene family in cell growth, differentiation and apoptosis. Oncogene 
18, 3017–3033 (1999). [PubMed: 10378697] 

57. Penniman CMet al.Loss of FoxOs in muscle reveals sex-based differences in insulin sensitivity but 
mitigates diet-induced obesity. Mol Metab30, 203–220 (2019). [PubMed: 31767172] 

58. Austad SN & Bartke A Sex Differences in Longevity and in Responses to Anti-Aging 
Interventions: A Mini-Review. Gerontology 62, 40–46 (2015). [PubMed: 25968226] 

59. Baker MJ, Pan D & Welch HC Small GTPases and their guanine-nucleotide exchange factors 
and GTPase-activating proteins in neutrophil recruitment. Curr Opin Hematol 23, 44–54 (2016). 
[PubMed: 26619317] 

60. Richer BC, Salei N, Laskay T & Seeger K Changes in Neutrophil Metabolism upon Activation and 
Aging. Inflammation 41, 710–721 (2018). [PubMed: 29322364] 

61. Eltzschig HKet al.Endogenous adenosine produced during hypoxia attenuates neutrophil 
accumulation: coordination by extracellular nucleotide metabolism. Blood104, 3986–3992 (2004). 
[PubMed: 15319286] 

62. Eltzschig HKet al.ATP release from activated neutrophils occurs via connexin 43 and modulates 
adenosine-dependent endothelial cell function. Circ Res99, 1100–1108 (2006). [PubMed: 
17038639] 

63. Mondanelli G, Iacono A, Allegrucci M, Puccetti P & Grohmann U Immunoregulatory Interplay 
Between Arginine and Tryptophan Metabolism in Health and Disease. Front Immunol 10, 1565 
(2019). [PubMed: 31354721] 

64. Jarc E & Petan T A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 
169, 69–87 (2020). [PubMed: 31786231] 

65. Schlager Set al.Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate 
availability for lipid mediator synthesis. J Leukoc Biol98, 837–850 (2015). [PubMed: 26109679] 

66. Meana Cet al.Lipin-1 Integrates Lipid Synthesis with Proinflammatory Responses during TLR 
Activation in Macrophages. The Journal of Immunology193, 4614 (2014). [PubMed: 25252959] 

67. Buenrostro JD, Giresi PG, Zaba LC, Chang HY & Greenleaf WJ Transposition of native 
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins 
and nucleosome position. Nat Methods 10, 1213–1218 (2013). [PubMed: 24097267] 

68. Schep ANet al.Structured nucleosome fingerprints enable high-resolution mapping of chromatin 
architecture within regulatory regions. Genome Res25, 1757–1770 (2015). [PubMed: 26314830] 

69. Janssen A, Colmenares SU & Karpen GH Heterochromatin: Guardian of the Genome. Annu Rev 
Cell Dev Biol 34, 265–288 (2018). [PubMed: 30044650] 

70. Neubert Eet al.Chromatin swelling drives neutrophil extracellular trap release. Nature 
Communications9, 3767 (2018).

71. Itou T, Collins LV, Thoren FB, Dahlgren C & Karlsson A Changes in activation states of murine 
polymorphonuclear leukocytes (PMN) during inflammation: a comparison of bone marrow and 
peritoneal exudate PMN. Clin Vaccine Immunol 13, 575–583 (2006). [PubMed: 16682479] 

72. Consortium EPAn integrated encyclopedia of DNA elements in the human genome. Nature489, 
57–74 (2012). [PubMed: 22955616] 

73. Rausch C, Hastert FD & Cardoso MC DNA Modification Readers and Writers and Their Interplay. 
Journal of Molecular Biology 432, 1731–1746 (2020).

74. Horvath S & Raj K DNA methylation-based biomarkers and the epigenetic clock theory of ageing. 
Nat Rev Genet 19, 371–384 (2018). [PubMed: 29643443] 

Lu et al. Page 49

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



75. Feldman GMet al.STAT5A-deficient mice demonstrate a defect in granulocyte-macrophage 
colony-stimulating factor-induced proliferation and gene expression. Blood90, 1768–1776 (1997). 
[PubMed: 9292509] 

76. Kimura Aet al.The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. 
Blood114, 4721–4728 (2009). [PubMed: 19779039] 

77. Zhang Zet al.PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate 
ES cell pluripotency and somatic cell reprogramming. Stem Cells29, 229–240 (2011). [PubMed: 
21732481] 

78. Perino Met al.MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA 
binding. Nat Genet50, 1002–1010 (2018). [PubMed: 29808031] 

79. Girardin SEet al.Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) 
detection. J Biol Chem278, 8869–8872 (2003). [PubMed: 12527755] 

80. Billmann-Born Set al.Genome-Wide Expression Profiling Identifies an Impairment of Negative 
Feedback Signals in the Crohn’s Disease-Associated NOD2 Variant L1007fsinsC. The Journal of 
Immunology186, 4027 (2011). [PubMed: 21335489] 

81. Jeong YJet al.Nod2 and Rip2 contribute to innate immune responses in mouse neutrophils. 
Immunology143, 269–276 (2014). [PubMed: 24766550] 

82. Kanfi Yet al.The sirtuin SIRT6 regulates lifespan in male mice. Nature483, 218–221 (2012). 
[PubMed: 22367546] 

83. Peshti Vet al.Characterization of physiological defects in adult SIRT6−/− mice. PloS one12, 
e0176371–e0176371 (2017). [PubMed: 28448551] 

84. Kawahara TLet al.SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene 
expression and organismal life span. Cell136, 62–74 (2009). [PubMed: 19135889] 

85. Lappas MAnti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. 
Mediators Inflamm2012, 597514 (2012). [PubMed: 23132960] 

86. Xiao Cet al.Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN 
signaling in Sirt6 mutant mice. J Biol Chem287, 41903–41913 (2012). [PubMed: 23076146] 

87. Chen Xet al.The Forkhead Transcription Factor FOXM1 Controls Cell Cycle-Dependent 
Gene Expression through an Atypical Chromatin Binding Mechanism. Molecular and Cellular 
Biology33, 227 (2013). [PubMed: 23109430] 

88. Zhan Met al.The B-MYB transcriptional network guides cell cycle progression and fate decisions 
to sustain self-renewal and the identity of pluripotent stem cells. PLoS One7, e42350 (2012). 
[PubMed: 22936984] 

89. Baker SJet al.B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor 
cell development. Proc Natl Acad Sci U S A111, 3122–3127 (2014). [PubMed: 24516162] 

90. Jung SMet al.Non-canonical mTORC2 Signaling Regulates Brown Adipocyte Lipid Catabolism 
through SIRT6-FoxO1. Mol Cell75, 807–822 e808 (2019). [PubMed: 31442424] 

91. He Jet al.SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol 
efflux under ox-LDL condition. FEBS J284, 1324–1337 (2017). [PubMed: 28296196] 

92. Feldman JL, Baeza J & Denu JM Activation of the protein deacetylase SIRT6 by long-chain fatty 
acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288, 31350–31356 (2013). 
[PubMed: 24052263] 

93. Lacy PMechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol2, 98–108 
(2006). [PubMed: 20525154] 

94. Belaaouaj Aet al.Mice lacking neutrophil elastase reveal impaired host defense against gram 
negative bacterial sepsis. Nat Med4, 615–618 (1998). [PubMed: 9585238] 

95. Okeke EBet al.Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and 
rescues mice from endotoxic shock. Biomaterials238, 119836 (2020). [PubMed: 32045782] 

96. Raduolovic K, Mak’Anyengo R, Kaya B, Steinert A & Niess JH Injections of Lipopolysaccharide 
into Mice to Mimic Entrance of Microbial-derived Products After Intestinal Barrier Breach. J Vis 
Exp (2018).

Lu et al. Page 50

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



97. Grabowski Pet al.Proteome Analysis of Human Neutrophil Granulocytes From Patients 
With Monogenic Disease Using Data-independent Acquisition. Molecular &amp; Cellular 
Proteomics18, 760 (2019). [PubMed: 30630937] 

98. Chua F & Laurent GJ Neutrophil elastase: mediator of extracellular matrix destruction and 
accumulation. Proc Am Thorac Soc 3, 424–427 (2006). [PubMed: 16799086] 

99. Sampathkumar NKet al.Widespread sex dimorphism in aging and age-related diseases. Hum 
Genet139, 333–356 (2020). [PubMed: 31677133] 

100. Kovats SEstrogen receptors regulate innate immune cells and signaling pathways. Cell 
Immunol294, 63–69 (2015). [PubMed: 25682174] 

101. Angele MK, Pratschke S, Hubbard WJ & Chaudry IH Gender differences in sepsis: 
cardiovascular and immunological aspects. Virulence 5, 12–19 (2014). [PubMed: 24193307] 

102. Scully EP, Haverfield J, Ursin RL, Tannenbaum C & Klein SL Considering how biological sex 
impacts immune responses and COVID-19 outcomes. Nature Reviews Immunology (2020).

103. Barnes BJet al.Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp 
Med217 (2020).

104. Ghosh Set al.Neutrophils homing into the retina trigger pathology in early age-related macular 
degeneration. Commun Biol2, 348 (2019). [PubMed: 31552301] 

105. Roy-O’Reilly MAet al.Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging 
(Albany NY)12, 436–461 (2020). [PubMed: 31927534] 

106. Meijer M, Rijkers GT & van Overveld FJ Neutrophils and emerging targets for treatment 
in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 9, 1055–1068 (2013). 
[PubMed: 24168412] 

107. Ionita MGet al.High neutrophil numbers in human carotid atherosclerotic plaques are associated 
with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol30, 1842–1848 
(2010). [PubMed: 20595650] 

108. Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK & Matlung HL Neutrophils in cancer. 
Immunol Rev 273, 312–328 (2016). [PubMed: 27558343] 

109. Breuer Ket al.InnateDB: systems biology of innate immunity and beyond--recent updates and 
continuing curation. Nucleic Acids Res41, D1228–1233 (2013). [PubMed: 23180781] 

110. Amend SR, Valkenburg KC & Pienta KJ Murine Hind Limb Long Bone Dissection and Bone 
Marrow Isolation. JoVE, e53936 (2016).

111. Kwok Iet al.Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor 
Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity53, 303–318 e305 
(2020). [PubMed: 32579887] 

112. Evrard Met al.Developmental Analysis of Bone Marrow Neutrophils Reveals Populations 
Specialized in Expansion, Trafficking, and Effector Functions. Immunity48, 364–379 e368 
(2018). [PubMed: 29466759] 

113. Adrover JMet al.A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. 
Immunity50, 390–402 e310 (2019). [PubMed: 30709741] 

114. Dobin Aet al.STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). 
[PubMed: 23104886] 

115. Liao Y, Smyth GK & Shi W featureCounts: an efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). [PubMed: 24227677] 

116. Leek JT & Storey JD Capturing heterogeneity in gene expression studies by surrogate variable 
analysis. PLoS Genet 3, 1724–1735 (2007). [PubMed: 17907809] 

117. Love MI, Huber W & Anders S Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biology 15, 550 (2014). [PubMed: 25516281] 

118. Chen Y & Meltzer PS Gene expression analysis via multidimensional scaling. Curr Protoc 
Bioinformatics Chapter 7, Unit 7 11 (2005).

119. Zhou Get al.NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression 
profiling and meta-analysis. Nucleic Acids Res47, W234–W241 (2019). [PubMed: 30931480] 

Lu et al. Page 51

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



120. Subramanian Aet al.Gene set enrichment analysis: A knowledge-based approach for interpreting 
genome-wide expression profiles. Proceedings of the National Academy of Sciences102, 15545 
(2005).

121. Liberzon Aet al.Molecular signatures database (MSigDB) 3.0. Bioinformatics27, 1739–1740 
(2011). [PubMed: 21546393] 

122. Rouillard ADet al.The harmonizome: a collection of processed datasets gathered to serve and 
mine knowledge about genes and proteins. Database (Oxford)2016 (2016).

123. Contrepois Ket al.Cross-Platform Comparison of Untargeted and Targeted Lipidomics 
Approaches on Aging Mouse Plasma. Sci Rep8, 17747 (2018). [PubMed: 30532037] 

124. Contrepois K, Jiang L & Snyder M Optimized Analytical Procedures for the Untargeted 
Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction 
(HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry. Mol Cell 
Proteomics 14, 1684–1695 (2015). [PubMed: 25787789] 

125. Tyanova Set al.The Perseus computational platform for comprehensive analysis of (prote)omics 
data. Nat Methods13, 731–740 (2016). [PubMed: 27348712] 

126. Shen Xet al.Metabolic reaction network-based recursive metabolite annotation for untargeted 
metabolomics. Nat Commun10, 1516 (2019). [PubMed: 30944337] 

127. Jauhiainen Aet al.Normalization of metabolomics data with applications to correlation maps. 
Bioinformatics30, 2155–2161 (2014). [PubMed: 24711654] 

128. Li Bet al.Performance Evaluation and Online Realization of Data-driven Normalization Methods 
Used in LC/MS based Untargeted Metabolomics Analysis. Scientific Reports6, 38881 (2016). 
[PubMed: 27958387] 

129. Chong J & Xia J MetaboAnalystR: an R package for flexible and reproducible analysis of 
metabolomics data. Bioinformatics 34, 4313–4314 (2018). [PubMed: 29955821] 

130. Ried JSet al.PSEA: Phenotype Set Enrichment Analysis--a new method for analysis of multiple 
phenotypes. Genet Epidemiol36, 244–252 (2012). [PubMed: 22714936] 

131. Li Set al.Predicting Network Activity from High Throughput Metabolomics. PLOS 
Computational Biology9, e1003123 (2013). [PubMed: 23861661] 

132. Kamburov A, Cavill R, Ebbels TMD, Herwig R & Keun HC Integrated pathway-level analysis 
of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27, 2917–2918 (2011). 
[PubMed: 21893519] 

133. Molenaar MRet al.LION/web: a web-based ontology enrichment tool for lipidomic data analysis. 
Gigascience8 (2019).

134. Corces MRet al.An improved ATAC-seq protocol reduces background and enables interrogation 
of frozen tissues. Nat Methods14, 959–962 (2017). [PubMed: 28846090] 

135. Gaspar JMNGmerge: merging paired-end reads via novel empirically-derived models of 
sequencing errors. BMC Bioinformatics19, 536 (2018). [PubMed: 30572828] 

136. Langmead B & Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 
(2012). [PubMed: 22388286] 

137. Heinz Set al.Simple combinations of lineage-determining transcription factors prime cis­
regulatory elements required for macrophage and B cell identities. Mol Cell38, 576–589 (2010). 
[PubMed: 20513432] 

138. Ross-Innes CSet al.Differential oestrogen receptor binding is associated with clinical outcome in 
breast cancer. Nature481, 389–393 (2012). [PubMed: 22217937] 

139. McLean CYet al.GREAT improves functional interpretation of cis-regulatory regions. Nat 
Biotechnol28, 495–501 (2010). [PubMed: 20436461] 

140. King HW, Fursova NA, Blackledge NP & Klose RJ Polycomb repressive complex 1 shapes the 
nucleosome landscape but not accessibility at target genes. Genome Res 28, 1494–1507 (2018). 
[PubMed: 30154222] 

141. Masuda Set al.Measurement of NET formation in vitro and in vivo by flow cytometry. Cytometry 
A91, 822–829 (2017). [PubMed: 28715618] 

142. Carmona-Rivera C & Kaplan MJ Induction and Quantification of NETosis. Curr Protoc Immunol 
115, 14 41 11–14 41 14 (2016).

Lu et al. Page 52

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



143. Goh WWB, Wang W & Wong L Why Batch Effects Matter in Omics Data, and How to Avoid 
Them. Trends Biotechnol 35, 498–507 (2017). [PubMed: 28351613] 

Lu et al. Page 53

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: A multi-omic analysis of primary mouse bone marrow neutrophils during aging and 
with respect to sex.
(a) Experimental setup scheme. (b-d) Multidimensional Scaling analysis results of RNA 

expression by RNA-seq (b), untargeted metabolomics (c), or targeted lipidomics (d). (e-g) 

Heatmap of significant (FDR < 5%) sex-dimorphic genes (e), metabolic features (f) or lipid 

species (g). Significance of gene regulation by RNA-seq was calculated by DESeq2, and 

significance of metabolic features or lipid species regulation were calculated by limma. 

MACS: Magnetic-Activated Cell Sorting. MDS: Multidimensional Scaling.
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Figure 2: Regulated pathways in bone marrow neutrophils during aging reveals downregulation 
of chromatin-related pathways.
(a) NetworkAnalyst predicted PPI network for significant age-regulated genes in 

neutrophils. Network edges are based on IMEx/InnateDB data, a knowledgebase specifically 

geared for analyses of innate immune networks 109. Blue (red) shades are associated 

to decreased (increased) gene expression during aging. (b-c) Top enriched gene sets 

from Reactome (b) and transcription factor targets (c) using GSEA for differential RNA 

expression. Only the top 10 most up- and top 10 most downregulated gene sets are plotted 

for readability. Full lists and statistics available in Supplementary Table S3. Also see 

Extended Data Figure 5. Shown pathways with FDR < 5%. NES: Normalized Enrichment 

Score (for GSEA analysis). FDR: False Discovery Rate.

Lu et al. Page 55

Nat Aging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Sex-dimorphic pathways in bone marrow neutrophils reveal differential regulation of 
chromatin-related pathways.
(a-b) NetworkAnalyst predicted PPI networks for genes displaying significant bias in gene 

expression by RNA-seq towards female (a) or male (b) neutrophils. Network edges are based 

on IMEx/InnateDB data, a knowledgebase specifically geared for analyses of innate immune 

networks 109. (c-d) Top enriched gene sets from Reactome (c) and transcription factor 

targets (d) using GSEA for differential RNA expression. (e) Phenotype Set Enrichment 

Analysis (PSEA) for differential metabolite regulation. (f) Top Lipid Ontology (LION) 
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functional enrichment analysis for differential lipid regulation. For (c-f), the top 10 most 

up- and top 10 most downregulated gene sets (if that many) are plotted for readability. Full 

lists and statistics available in Supplementary Table S4. Also see Extended Data Figure 

7. Shown pathways with FDR < 5%. NES: Normalized Enrichment Score (for GSEA and 

PSEA analysis). FDR: False Discovery Rate.
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Figure 4: ATAC-seq analysis reveals age- and sex-related differences in the chromatin 
architecture of bone marrow neutrophils.
(a) Setup scheme for ATAC-seq experiment. (b-c) Metaplot analysis of median nucleosome 

occupancy (as calculated by NucleoATAC) around the TSS of neutrophil-expressed genes, 

to analyze sex- (b) or age-related (c) differences in neutrophil nucleosome occupancy. Note 

that increased occupancy is observed in male compared to female neutrophils, as well 

as in old compared to young neutrophils. Significance of the difference between median 

occupancy profiles at TSSs assessed using a two-sided Kolmogorov-Smirnov goodness-of­
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fit test for (b,c). (d) Boxplot of nucleosome occupancy as calculated by NucleoATAC for 

high-confidence nucleosomes across groups. Also see Extended Data Figure 8i. (e) Boxplot 

of nucleosome fuzziness as calculated by NucleoATAC for high-confidence nucleosomes 

across experimental groups. (f) Boxplot of nucleosome inter-dyad distance as calculated 

by NucleoATAC across experimental groups. The horizontal red line in panels (d-f) shows 

the median value in neutrophils from young females for ease of comparison. Significance 

in non-parametric two-sided Wilcoxon rank-sum tests is reported for panels (d-f). Black 

p-values represent differences between male vs. female neutrophils in each age group; pink 

(blue) p-values represent age-related differences in female (male) neutrophils. Also see 

Extended Data Figure 8i,j. (g) Workflow for the in vitro NETosis inducibility experiment. 

SYTOX Green was used to stain extracellular DNA, a proxy for NETosing cells. (h) Boxplot 

of NETosis induction in naïve neutrophils. Each point represents one animal, median of 4 

technical replicates. Animals from 4 independent cohorts, n = 16–19 per group (variation 

due to animal death prior to experiment and technical failures of the flow cytometer on 

some samples; n = 17 for young males and females; n = 16 for old females; n = 19 for 

old males). (i) Boxplot of NETosis induction in neutrophils, primed with 10ng/mL mouse 

TNFα for 10 min prior to NETosis induction. Each point represents one animal, median of 

4 technical replicates. Animals from 4 independent cohorts, n = 17 per group. Significance 

in non-parametric two-sided Wilcoxon rank-sum tests are reported for panels (h-i). Black 

p-values represent differences between male vs. female neutrophils in each age group; 

pink (blue) p-values represent age-related differences in female (male) neutrophils. For all 

boxplots in panels (d-f, h-i), the center line represents the sample median, the box limits 

consist of the 25th and 75th percentiles, the whiskers span 1.5x the interquartile range. For 

(d-f), for readability and consistent with practices in genomics, outliers are not shown on the 

graph although they are always taken into account for the statistics.
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Figure 5: Machine-learning analysis reveals that age-regulated gene expression can be predicted 
by genomic and epigenomic features.
(a) Scheme of our machine-learning pipeline for up vs. downregulated genes in neutrophils 

with aging. (b) Balanced classification accuracy over different machine-learning model 

algorithms. The accuracy of the models is measured using held-out testing data. ‘Random’ 

accuracy illustrates the accuracy of a meaningless model (~50%), and ‘perfect’ that of 

a model with no mistakes (100%). All tests were more accurate than random (see other 

measures of model performance in Extended Data Figure 9a–c and Supplementary Table 

S5A). (c) Top 20 most important features from Random Forest models and Gradient 

Boosting Machine models. A rank product approach was used to determine overall top 

predictive features from both models. High values for variable importance indicate most 

influential predictors. cTree: conditional inference tree, LDA: linear discriminant analysis, 
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SVM: support vector machine, NNET: neural network, LogReg: logistic regression, GBM: 

gradient boosting machine, RF: random forest.
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Figure 6: Machine-learning analysis reveals that sex-dimorphic gene expression can be predicted 
by genomic and epigenomic features.
(a) Scheme of our machine-learning pipeline for male vs. female-biased gene expression 

in neutrophils. (b) Balanced classification accuracy over different machine-learning model 

algorithms. The accuracy of the models is measured using held-out testing data. ‘Random’ 

accuracy illustrates the accuracy of a meaningless model (~50%), and ‘perfect’ that of 

a model with no mistakes (100%). All tests were more accurate than random (see other 

measures of model performance in Extended Data Figure 9d–f and Supplementary Table 

S5C). (c) Top 20 most important features from Random Forest models and Gradient 

Boosting Machine models. A rank product approach was used to determine overall top 

predictive features from both models. High values for variable importance indicate most 

influential predictors. cTree: conditional inference tree, LDA: linear discriminant analysis, 
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SVM: support vector machine, NNET: neural network, LogReg: logistic regression, GBM: 

gradient boosting machine, RF: random forest.
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Figure 7: Male neutrophils express higher levels of primary granule genes, correlating with 
increased serum ELANE levels in control and septic mice.
(a) Heatmap of normalized gene expression for primary (azurophilic) granule-related gene 

expression in our RNA-seq dataset. Also see Extended Data Figure 10. (b) GSEA analysis 

of primary (azurophilic) granule-related gene expression reveals biased expression to male 

neutrophils. (c) Setup scheme for serum ELANE measurement in control and sepsis-like 

mice. (d-e) Analysis of ELANE protein levels in mouse serum by ELISA. The data is 

derived from 3 independent cohorts of young male vs. female mice (n = 5 per sex and time 
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point for 1, 3 and 6h PBS injection; n = 8 per sex and time point for 1 and 3h LPS, and n = 9 

per sex and time point for 6h LPS injection). For simplicity’s sake, all PBS-injected animals 

are reported as “0h of LPS exposure” in (d) and are replotted with time-based color-coding 

in (e). Significance in non-parametric two-sided Wilcoxon rank-sum test. For boxplots in 

panels (d-e), the center line represents the sample median, the box limits consist of the 25th 

and 75th percentiles, the whiskers span 1.5x the interquartile range.
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