Table 3.
Features | Algorithm | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
5 | Logistic | 0.6891 | 0.813 | 0.5187 |
k-NN | 0.6687 | 0.7565 | 0.5502 | |
Tree | 0.644 | 0.6866 | 0.5902 | |
R-forest | 0.7139 | 0.7645 | 0.6471 | |
SVM | 0.7143 | 0.7877 | 0.6156 | |
NN | 0.7198 | 0.7522 | 0.5869 | |
| ||||
10 | Logistic | 0.6985 | 0.7752 | 0.5956 |
k-NN | 0.6867 | 0.7284 | 0.6315 | |
Tree | 0.652 | 0.7053 | 0.5813 | |
R-forest | 0.7122 | 0.6992 | 0.7347 | |
SVM | 0.6997 | 0.7729 | 0.6024 | |
NN | 0.6913 | 0.6677 | 0.5889 | |
| ||||
15 | Logistic | 0.7118 | 0.7582 | 0.6504 |
k-NN | 0.6952 | 0.7125 | 0.6745 | |
Tree | 0.6505 | 0.7029 | 0.5812 | |
R-forest | 0.7418 | 0.7267 | 0.7669 | |
SVM | 0.7333 | 0.7867 | 0.662 | |
NN | 0.701 | 0.6759 | 0.5916 | |
| ||||
20 | Logistic | 0.6934 | 0.7475 | 0.6212 |
k-NN | 0.6756 | 0.7124 | 0.6289 | |
Tree | 0.6478 | 0.7087 | 0.5662 | |
R-forest | 0.7427 | 0.7364 | 0.7549 | |
SVM | 0.7314 | 0.7932 | 0.6483 | |
NN | 0.6999 | 0.6772 | 0.5867 | |
| ||||
25 | Logistic | 0.6864 | 0.7457 | 0.605 |
k-NN | 0.6874 | 0.7263 | 0.6364 | |
Tree | 0.647 | 0.7005 | 0.5731 | |
R-forest | 0.7441 | 0.7467 | 0.7446 | |
SVM | 0.7282 | 0.7934 | 0.6391 | |
NN | 0.6911 | 0.6766 | 0.5905 | |
| ||||
30 | Logistic | 0.6914 | 0.7272 | 0.6441 |
k-NN | 0.69 | 0.7294 | 0.6386 | |
Tree | 0.6472 | 0.7046 | 0.5682 | |
R-forest | 0.7447 | 0.7431 | 0.7512 | |
SVM | 0.7234 | 0.7899 | 0.6344 | |
NN | 0.7024 | 0.6907 | 0.5878 |