Skip to main content
. 2021 Aug 31;2021:2567080. doi: 10.1155/2021/2567080

Table 3.

Results based on feature selection using random forest algorithm.

Features Algorithm Accuracy Sensitivity Specificity
5 Logistic 0.6891 0.813 0.5187
k-NN 0.6687 0.7565 0.5502
Tree 0.644 0.6866 0.5902
R-forest 0.7139 0.7645 0.6471
SVM 0.7143 0.7877 0.6156
NN 0.7198 0.7522 0.5869

10 Logistic 0.6985 0.7752 0.5956
k-NN 0.6867 0.7284 0.6315
Tree 0.652 0.7053 0.5813
R-forest 0.7122 0.6992 0.7347
SVM 0.6997 0.7729 0.6024
NN 0.6913 0.6677 0.5889

15 Logistic 0.7118 0.7582 0.6504
k-NN 0.6952 0.7125 0.6745
Tree 0.6505 0.7029 0.5812
R-forest 0.7418 0.7267 0.7669
SVM 0.7333 0.7867 0.662
NN 0.701 0.6759 0.5916

20 Logistic 0.6934 0.7475 0.6212
k-NN 0.6756 0.7124 0.6289
Tree 0.6478 0.7087 0.5662
R-forest 0.7427 0.7364 0.7549
SVM 0.7314 0.7932 0.6483
NN 0.6999 0.6772 0.5867

25 Logistic 0.6864 0.7457 0.605
k-NN 0.6874 0.7263 0.6364
Tree 0.647 0.7005 0.5731
R-forest 0.7441 0.7467 0.7446
SVM 0.7282 0.7934 0.6391
NN 0.6911 0.6766 0.5905

30 Logistic 0.6914 0.7272 0.6441
k-NN 0.69 0.7294 0.6386
Tree 0.6472 0.7046 0.5682
R-forest 0.7447 0.7431 0.7512
SVM 0.7234 0.7899 0.6344
NN 0.7024 0.6907 0.5878