Table 4.
Features | Algorithm | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
5 | Logistic | 0.6914 | 0.7792 | 0.5707 |
k-NN | 0.6606 | 0.7004 | 0.6102 | |
Tree | 0.6357 | 0.698 | 0.5512 | |
R-forest | 0.6675 | 0.6587 | 0.6862 | |
SVM | 0.6757 | 0.7182 | 0.622 | |
NN | 0.6826 | 0.688 | 0.59 | |
| ||||
10 | Logistic | 0.6926 | 0.7449 | 0.6212 |
k-NN | 0.6777 | 0.7171 | 0.6275 | |
Tree | 0.6219 | 0.7025 | 0.5122 | |
R-forest | 0.6903 | 0.6888 | 0.6967 | |
SVM | 0.7005 | 0.7706 | 0.605 | |
NN | 0.6777 | 0.6695 | 0.5902 | |
| ||||
15 | Logistic | 0.6875 | 0.7269 | 0.6351 |
k-NN | 0.6557 | 0.6811 | 0.6252 | |
Tree | 0.6205 | 0.7353 | 0.4599 | |
R-forest | 0.7009 | 0.7022 | 0.7036 | |
SVM | 0.7024 | 0.7829 | 0.5929 | |
NN | 0.6846 | 0.666 | 0.5893 | |
| ||||
20 | Logistic | 0.6758 | 0.7113 | 0.6288 |
k-NN | 0.6605 | 0.7017 | 0.6082 | |
Tree | 0.6151 | 0.7632 | 0.4104 | |
R-forest | 0.7021 | 0.7281 | 0.6698 | |
SVM | 0.6973 | 0.8035 | 0.5531 | |
NN | 0.6695 | 0.6666 | 0.5876 | |
| ||||
25 | Logistic | 0.6552 | 0.6742 | 0.6308 |
k-NN | 0.6403 | 0.7053 | 0.5545 | |
Tree | 0.61 | 0.7525 | 0.4132 | |
R-forest | 0.7125 | 0.7427 | 0.6735 | |
SVM | 0.6952 | 0.8041 | 0.5463 | |
NN | 0.6721 | 0.6562 | 0.5895 | |
| ||||
30 | Logistic | 0.6427 | 0.6413 | 0.6469 |
k-NN | 0.6303 | 0.7135 | 0.5177 | |
Tree | 0.614 | 0.7556 | 0.4165 | |
R-forest | 0.7025 | 0.7435 | 0.6477 | |
SVM | 0.6803 | 0.809 | 0.504 | |
NN | 0.6609 | 0.6478 | 0.588 |