Skip to main content
. 2021 Aug 31;2021:2567080. doi: 10.1155/2021/2567080

Table 4.

Results based on feature selection using logistic regression algorithm.

Features Algorithm Accuracy Sensitivity Specificity
5 Logistic 0.6914 0.7792 0.5707
k-NN 0.6606 0.7004 0.6102
Tree 0.6357 0.698 0.5512
R-forest 0.6675 0.6587 0.6862
SVM 0.6757 0.7182 0.622
NN 0.6826 0.688 0.59

10 Logistic 0.6926 0.7449 0.6212
k-NN 0.6777 0.7171 0.6275
Tree 0.6219 0.7025 0.5122
R-forest 0.6903 0.6888 0.6967
SVM 0.7005 0.7706 0.605
NN 0.6777 0.6695 0.5902

15 Logistic 0.6875 0.7269 0.6351
k-NN 0.6557 0.6811 0.6252
Tree 0.6205 0.7353 0.4599
R-forest 0.7009 0.7022 0.7036
SVM 0.7024 0.7829 0.5929
NN 0.6846 0.666 0.5893

20 Logistic 0.6758 0.7113 0.6288
k-NN 0.6605 0.7017 0.6082
Tree 0.6151 0.7632 0.4104
R-forest 0.7021 0.7281 0.6698
SVM 0.6973 0.8035 0.5531
NN 0.6695 0.6666 0.5876

25 Logistic 0.6552 0.6742 0.6308
k-NN 0.6403 0.7053 0.5545
Tree 0.61 0.7525 0.4132
R-forest 0.7125 0.7427 0.6735
SVM 0.6952 0.8041 0.5463
NN 0.6721 0.6562 0.5895

30 Logistic 0.6427 0.6413 0.6469
k-NN 0.6303 0.7135 0.5177
Tree 0.614 0.7556 0.4165
R-forest 0.7025 0.7435 0.6477
SVM 0.6803 0.809 0.504
NN 0.6609 0.6478 0.588