Skip to main content
. 2021 Aug 31;2021:2567080. doi: 10.1155/2021/2567080

Table 5.

Results based on features selection by the LASSO technique.

Features Algorithm Accuracy Sensitivity Specificity
5 Logistic 0.6962 0.7634 0.6082
k-NN 0.6873 0.6785 0.7014
Tree 0.6683 0.703 0.6246
R-forest 0.718 0.7201 0.7163
SVM 0.716 0.7255 0.7044
NN 0.7179 0.7277 0.5918

10 Logistic 0.705 0.7593 0.6318
k-NN 0.666 0.7 0.6233
Tree 0.6516 0.6865 0.6078
R-forest 0.7101 0.7116 0.7124
SVM 0.6997 0.7756 0.5954
NN 0.7106 0.709 0.588

15 Logistic 0.6899 0.7414 0.6223
k-NN 0.7005 0.72 0.6764
Tree 0.649 0.704 0.5782
R-forest 0.7153 0.7005 0.7405
SVM 0.7029 0.7906 0.5821
NN 0.7119 0.6934 0.5872

20 Logistic 0.7177 0.7481 0.6778
k-NN 0.6933 0.6897 0.7021
Tree 0.6481 0.6991 0.5772
R-forest 0.7308 0.7061 0.7699
SVM 0.7047 0.7657 0.6212
NN 0.7248 0.7009 0.5906

25 Logistic 0.701 0.7358 0.6552
k-NN 0.6997 0.729 0.6608
Tree 0.6458 0.6957 0.5788
R-forest 0.7373 0.7325 0.7474
SVM 0.7228 0.7839 0.639
NN 0.7032 0.6901 0.5888

30 Logistic 0.6906 0.7284 0.6408
k-NN 0.6989 0.7383 0.6483
Tree 0.6425 0.6982 0.5682
R-forest 0.7384 0.742 0.7376
SVM 0.7178 0.7866 0.625
NN 0.6946 0.6836 0.5857