Table 5.
Features | Algorithm | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
5 | Logistic | 0.6962 | 0.7634 | 0.6082 |
k-NN | 0.6873 | 0.6785 | 0.7014 | |
Tree | 0.6683 | 0.703 | 0.6246 | |
R-forest | 0.718 | 0.7201 | 0.7163 | |
SVM | 0.716 | 0.7255 | 0.7044 | |
NN | 0.7179 | 0.7277 | 0.5918 | |
| ||||
10 | Logistic | 0.705 | 0.7593 | 0.6318 |
k-NN | 0.666 | 0.7 | 0.6233 | |
Tree | 0.6516 | 0.6865 | 0.6078 | |
R-forest | 0.7101 | 0.7116 | 0.7124 | |
SVM | 0.6997 | 0.7756 | 0.5954 | |
NN | 0.7106 | 0.709 | 0.588 | |
| ||||
15 | Logistic | 0.6899 | 0.7414 | 0.6223 |
k-NN | 0.7005 | 0.72 | 0.6764 | |
Tree | 0.649 | 0.704 | 0.5782 | |
R-forest | 0.7153 | 0.7005 | 0.7405 | |
SVM | 0.7029 | 0.7906 | 0.5821 | |
NN | 0.7119 | 0.6934 | 0.5872 | |
| ||||
20 | Logistic | 0.7177 | 0.7481 | 0.6778 |
k-NN | 0.6933 | 0.6897 | 0.7021 | |
Tree | 0.6481 | 0.6991 | 0.5772 | |
R-forest | 0.7308 | 0.7061 | 0.7699 | |
SVM | 0.7047 | 0.7657 | 0.6212 | |
NN | 0.7248 | 0.7009 | 0.5906 | |
| ||||
25 | Logistic | 0.701 | 0.7358 | 0.6552 |
k-NN | 0.6997 | 0.729 | 0.6608 | |
Tree | 0.6458 | 0.6957 | 0.5788 | |
R-forest | 0.7373 | 0.7325 | 0.7474 | |
SVM | 0.7228 | 0.7839 | 0.639 | |
NN | 0.7032 | 0.6901 | 0.5888 | |
| ||||
30 | Logistic | 0.6906 | 0.7284 | 0.6408 |
k-NN | 0.6989 | 0.7383 | 0.6483 | |
Tree | 0.6425 | 0.6982 | 0.5682 | |
R-forest | 0.7384 | 0.742 | 0.7376 | |
SVM | 0.7178 | 0.7866 | 0.625 | |
NN | 0.6946 | 0.6836 | 0.5857 |