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a b s t r a c t 

Background and objective: Given that the novel coronavirus disease 2019 (COVID-19) has become a pan- 

demic, a method to accurately distinguish COVID-19 from community-acquired pneumonia (CAP) is ur- 

gently needed. However, the spatial uncertainty and morphological diversity of COVID-19 lesions in the 

lungs, and subtle differences with respect to CAP, make differential diagnosis non-trivial. 

Methods: We propose a deep represented multiple instance learning (DR-MIL) method to fulfill this task. 

A 3D volumetric CT scan of one patient is treated as one bag and ten CT slices are selected as the initial 

instances. For each instance, deep features are extracted from the pre-trained ResNet-50 with fine-tuning 

and represented as one deep represented instance score (DRIS). Each bag with a DRIS for each initial 

instance is then input into a citation k -nearest neighbor search to generate the final prediction. A total 

of 141 COVID-19 and 100 CAP CT scans were used. The performance of DR-MIL is compared with other 

potential strategies and state-of-the-art models. 

Results: DR-MIL displayed an accuracy of 95% and an area under curve of 0.943, which were superior to 

those observed for comparable methods. COVID-19 and CAP exhibited significant differences in both the 

DRIS and the spatial pattern of lesions ( p < 0.001). As a means of content-based image retrieval, DR-MIL 

can identify images used as key instances, references, and citers for visual interpretation. 

Conclusions: DR-MIL can effectively represent the deep characteristics of COVID-19 lesions in CT images 

and accurately distinguish COVID-19 from CAP in a weakly supervised manner. The resulting DRIS is a 

useful supplement to visual interpretation of the spatial pattern of lesions when screening for COVID-19. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The novel coronavirus disease 2019 (COVID-19) has become a 

ontinuing pandemic. According to data from the World Health 

rganization (WHO), the number of confirmed cases of COVID-19 

ad surpassed 202 million and the total number of deaths had ex- 

eeded 4 million by early of August 2021 [1] . Thus, there is an ur-

ent need to accurately and automatically differentiate COVID-19 

rom community-acquired pneumonia (CAP) by large-scale screen- 

ng. 
∗ Corresponding authors . 
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As a non-invasive imaging modality, chest CT has proved an ef- 

ective tool in the clinical screening and diagnosis of COVID-19, al- 

hough the real-time reverse-transcriptase polymerase chain reac- 

ion (RT-PCR) is the gold standard. A WHO rapid advice guide sug- 

ests using chest imaging (CT or X-ray radiography) for the diagno- 

is of COVID-19 when RT-PCR testing is unavailable, RT-PCR testing 

s available but results are delayed, or initial RT-PCR testing is neg- 

tive but there is high clinical suspicion of COVID-19 [2] . Chest CT 

as shown high sensitivity and reproducibility during the diagno- 

is of COVID-19 and can be considered an important and reliable 

omplement to RT-PCR testing [3–5] . 

However, the spatial uncertainty and diversity in the intensity 

nd morphology of COVID-19 lesions in lung CT images, and their 

ubtle differences from CAP lesions, make differential diagnosis 

on-trivial. COVID-19 lesions may appear as consolidative and/or 

https://doi.org/10.1016/j.cmpb.2021.106406
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106406&domain=pdf
mailto:75288763@qq.com
mailto:331693861@qq.com
https://doi.org/10.1016/j.cmpb.2021.106406
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round-glass pulmonary opacities [6] . In the early stages, lesions 

re often atypical and primarily distributed in the lateral zones of 

he lungs or the subpleural areas. As the disease advances, lesions 

uch as ground-glass opacities progress from subpleural to central. 

n severe and critical cases, patients may exhibit lung consolidation 

 7 , 8 ]. In some cases of CAP, lesions can appear similar to those of

OVID-19. Even experienced radiologists may have only moderate 

bility to distinguish COVID-19 from CAP by visual inspection of CT 

mages [9] . 

To assess and report the pulmonary involvement of COVID-19 in 

T images in a standardized manner, several initiatives have been 

roposed [10–12] . As a typical example, the COVID-19 Reporting 

nd Data System (CO-RADS) developed by the Dutch Radiological 

ociety has demonstrated good interobserver agreement and per- 

ormance while discriminating cases with different levels of suspi- 

ion for pulmonary involvement of COVID-19 [10] . 

Alongside the evaluation of CT images by radiologists, the use 

f artificial intelligence (AI), especially deep learning, has been 

roposed for the rapid and accurate differentiation of COVID-19 

rom other pulmonary diseases via CT images [13] . For example, Li 

t al. built a deep learning model (COVNet) for detecting COVID- 

9 that uses ResNet-50 as the backbone to generate features of 

ach slice and max pooling to combine the extracted features [14] . 

ang et al. created COVID-19Net with a DenseNet-like structure 

or the diagnostic and prognostic analysis of COVID-19 patients 

15] . Ouyang et al. developed a dual-sampling attention network 

hat uses online attention and 3D ResNet-34 as the backbone [16] . 

hang et al. used DeepLabv3 as the backbone to segment lung le- 

ions and developed an AI system for diagnosing and characteriz- 

ng COVID-19 [17] . It has been reported that augmentation with 

eep learning can allow radiologists to achieve higher accuracy, 

ensitivity, and specificity in their evaluations [18] . The reader is 

eferred to two comprehensive reviews for more details regarding 

he role of deep learning with respect to COVID-19 [ 19 , 20 ]. 

At least three points are worth noting from the deep learning 

tudies discussed above. First, although more than 10 0 0 CT images 

ere used, the data were still insufficient for training one deep 

onvolutional neural network (CNN) model, and transfer learning 

as typically adopted [ 14 , 15 ]. Second, the segmentation of infected 

esions is required, although it is worthwhile to mention that in- 

ected lesions may be falsely excluded and more annotations are 

requently necessary. Third, although a post-hoc analysis of class 

ctivation maps (CAM) can coarsely identify the infected lesions 

n 2D slices, it is unknown which slice makes the most important 

ontribution. 

With the above considerations in mind, machine learning or 

 combination of machine and deep learning is a reasonable ap- 

roach. One example is the representation learning model devel- 

ped by Kang et al. [21] . In addition, Han et al. neatly proposed

 3D deep multiple instance learning (MIL) model with an atten- 

ion mechanism for screening suspected COVID-19 cases [22] . This 

tudy demonstrated the power of MIL and improved the inter- 

retability by visualizing key instances. The network reported by 

an et al. was inspired by the attention-based MIL pooling opera- 

or [23] . In addition, mean, max, and Noisy-AND pooling are com- 

only applied for MIL [ 24 , 25 ]. 

In the current study, with the aim of accurately and auto- 

atically distinguishing COVID-19 from CAP using CT images, we 

ropose a deep represented multiple instance learning (DR-MIL) 

ethod. DR-MIL is a weakly supervised learning method that only 

equires a patient-level label. In this method, 3D volumetric CT im- 

ges of one subject are treated as one bag and ten CT slices are

elected randomly as the initial instances. Each instance is trans- 

ormed into deep features extracted from the pre-trained ResNet- 

0 with fine-tuning and subsequently represented as a score, i.e., 

he deep represented instance score (DRIS), using a dimension re- 
2 
uction approach. Each bag with 10 DRISs is then input into one 

IL classifier to generate the final prediction. Using a variety of 

erformance measures, DR-MIL is compared with 2D CNN with 

oting, 2D CNN of a montage of 10 CT slices, 3D MedicalNet, 

nd other state-of-the-art models. The spatial distribution patterns 

enerated by Grad-CAM for COVID-19 are compared to those for 

AP. 

The contributions and novelties of this paper are fourfold. First, 

e have developed the DR-MIL method for accurately distinguish- 

ng COVID-19 from CAP, which has several methodological advan- 

ages, including good applicability to small datasets of hundreds 

f CT examinations, the weakly supervised nature of the learning, 

nd no requirement for lesion segmentation. Second, we have gen- 

rated the score referred to as DRIS, which is significantly differ- 

nt between COVID-19 and CAP and can serve as a discriminative 

maging biomarker for COVID-19. Third, we have shown that the 

patial distribution pattern of infected lesions highlighted by Grad- 

AM in COVID-19 is significantly different from that in CAP. Fourth, 

s a means of content-based image retrieval (CBIR), DR-MIL can 

dentify images used as key instances, references, and citers for vi- 

ual interpretation. 

. Materials and methods 

.1. Participants and datasets 

A total of 241 participants (141 [58.5%] COVID-19 and 100 

41.5%] CAP cases) were included in this retrospective study, and 

ung CT images and related clinical information were collected. All 

f the subjects in the COVID-19 group were confirmed by RT-PCR 

o have contracted COVID-19 during the period from December 29, 

019, to February 16, 2020. The CT scans and RT-PCR sampling 

ere conducted on the same day. Subjects with CAP were selected 

rom datasets of the participating hospitals and they were enrolled 

etween December 8, 2019, and February 26, 2020. 

Some CAP patients received etiological confirmation from a 

pecialized laboratory; bacterial cultures were positive for 57 pa- 

ients and negative for 12 patients (9 viral pneumonia and 3 my- 

oplasma). For the remaining 31 patients, the etiology was uncer- 

ain, but the possibility of false-negative COVID-19 test results was 

xcluded through strict epidemiological investigations, several RT- 

CR tests, and final clinical outcomes. This study was approved by 

he medical ethics committees of the participating hospitals, and 

o informed consent was required after review by the committees. 

The demographic information of the participants and the acqui- 

ition parameters of the CT images are summarized in Table 1 . The 

ube voltage for all CT examinations was 120 kVp and the slice 

hickness ranged from 0.625 to 5.0 mm. CT examinations using 

tandard imaging protocols were conducted using scanners from 

arious manufacturers. Typically, 50–505 CT slices were acquired 

n each volumetric CT examination. All CT images had the same 

atrix size of 512 ×512 with 16 bits and were collected from hos- 

itals in the DICOM format. 

In addition to our own dataset, we also included open-access 

ata downloaded from the China Consortium of Chest CT Image In- 

estigation (CC-CCII) [17] . After excluding those with fewer than 60 

T slices, with segmented images only, with incomplete lung area, 

nd from COVID-19 patients without typical image manifestations, 

he final dataset contained CT images in JPEG or PNG format from 

20 COVID-19 patients and 610 CAP patients. For these patients, 

he CT scans with the largest number of CT slices were selected. 

he aim of using the CC-CCII dataset was to evaluate the general- 

zation ability of our proposed method. It should be noted that the 

C-CCII database only provides images in JPEG format, although it 

s known that the compression from DICOM to JPEG may affect the 
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Table 1 

Demographic information of the participants and acquisition parameters of the CT images. 

Information COVID-19 CAP p value 

Clinical type Mild ( n = 2) 

Moderate ( n = 38) 

Severe ( n = 20) 

Critical ( n = 9) 

Uncertain ( n = 72) 

Bacterial ( n = 57) 

Viral ( n = 9) 

Mycoplasma ( n = 3) 

Uncertain ( n = 31) 

- 

Gender 

(male/female) 

60/81 52/48 0.1474 a 

Age (years) (mean ±
S.D.) 

55.16 ±17.71 40.92 ±20.41 3.76 ×10 −8 b 

Tube voltage (kVp) 120 120 - 

Slice thickness (mm) 0.625 ( n = 39) 

1.0 ( n = 14) 

1.25 ( n = 17) 

1.50 ( n = 1) 

2.0 ( n = 25) 

5.0 ( n = 45) 

1.0 ( n = 30) 

1.50 ( n = 4) 

2.0 ( n = 48) 

3.0 ( n = 16) 

5.0 ( n = 2) 

- 

Pixel size (mm) 

(mean ± S.D.) 

0.763 ±0.063 0.697 ±0.103 1.61 ×10 −6 b 

Tube current (mA) 

(mean ± S.D.) 

236.723 ±69.534 206.8 ±89.485 0.0016 b 

CT scanner 

manufacturer 

Siemens ( n = 26), Toshiba ( n = 25), 

GE Medical Systems ( n = 90) 

Siemens ( n = 31), Toshiba ( n = 69) - 

Manufacturer model 

name 

Sensation 16 ( n = 26), Optima CT660 ( n = 39), Aquilion ONE 

( n = 25), LightSpeed16 ( n = 51) 

Aquilion ( n = 69), 

SOMATOM Definition AS + ( n = 6), 

SOMATOM Scope ( n = 25) 

- 

Institution name General Hospital of the Yangtze River Shipping ( n = 75), 

Wuhan Puren Hospital ( n = 66); 

The Affiliated Hospital of Guizhou Medical University 

( n = 100) 

- 

a p value is for the chi-square test; 
b p value is for the two-sample t -test. 

Fig. 1. Overview of procedures used in this study. 
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erformance during clinical diagnosis. Moreover, our own dataset 

nd the CC-CCII dataset were not combined but separately used. 

.2. Outline of proposed method 

The DR-MIL method proposed in the current study consists of 

our key steps ( Fig. 1 ): (I) preparation of slice-based instances, (II) 

xtraction of deep features, (III) feature representation, and (IV) 

ultiple instance learning. Descriptions of each step are provided 

elow. 
3 
.3. Preparation of slice-based instances 

Given that the CT images originated from different sources, pre- 

rocessing of the images was important. The CT images were first 

nput into the Pulmonary Toolkit software ( https://www.tomdoel. 

om/software/ ) and the 3D lung volume was extracted using an 

mbedded region-growing algorithm. Threshold segmentation (CT 

umber, 40 0 HU, −150 0 HU) was initially used to binarize the im- 

ges and the largest connected region was then identified, exclud- 

https://www.tomdoel.com/software/
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Fig. 2. Pre-trained backbone networks (ResNet-50 and Xception) with fine-tuning for feature extraction. 
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ng any region that started from the image edge and grew inward 

o the chest region with a pixel value of 0. It should be noted 

hat the corresponding Pulmonary Toolkit code has been embed- 

ed into our proposed software tool, such that no explicit input 

rom or output to Pulmonary Toolkit is required. 

A bounding box containing the extracted lung field was ob- 

ained. We then cropped a cuboid from the volume of the orig- 

nal CT images by using the bounding box (not the segmented 

ask of the lung field). This cuboid was further split into ten sub- 

arts evenly along the longitudinal direction. One random slice 

as selected from each sub-part, resized to the same dimensions 

f 224 ×224, and used as one instance in the subsequent processes. 

ne bag with ten slice-based instances was obtained for each sub- 

ect. It should be noted that accurate segmentation of the lung field 

s not required because one bounding box is needed. Even so, the 

uality of segmentation was confirmed by visual inspection. 

After obtaining the instances, two further steps were per- 

ormed: (1) the window location and level were set to 1600 and 

600 HU, respectively, to clearly display the lung area, and (2) the 

ata were normalized. Specifically, the pixel intensity was first ad- 

usted to between 0 and 1, and the data were then normalized by 

he channel mean and standard deviation of the images in Ima- 

eNet. 

.4. Extraction of deep features 

Pre-trained ResNet-50 and Xception with fine-tuning were em- 

loyed as the backbone networks for deep feature extraction 

 Fig. 2 ) [ 26 , 27 ]. Two neurons were kept in the last fully connected

ayer of the network to adapt to the binary classification problem. 

he parameters of the last three layers were initialized in Glorot 

ode and pre-trained parameters from ImageNet were used for 

eight initialization of the other layers. The first 100 layers and 

he other 77 layers in the pre-trained model were fine-tuned using 

nitial learning rates (lr) of lr/10 0 0 and lr, respectively. Here, lr was

.03. The learning rate was reduced by a factor of 0.5 for every five

pochs. In shallow layers, image features are at a low abstraction 

evel and highly transferable; they are therefore capable of being 
4 
pplied to most tasks of computer vision [28] . At increased depths, 

he quality of feature expression is more dependent on the data 

n the training set. Stochastic gradient descent with momentum 

SGDM) was adopted for the optimization algorithm. Meanwhile, 

he number of epochs for training was set to 15, and the batch 

ize was 32. 

Data augmentation techniques (image rotation, reflection, and 

ranslation) and L1 regularization were used to fine-tune the back- 

one network to avoid overfitting. Specifically, each image was 

ranslated by up to 50 pixels horizontally and vertically, rotated 

ith an angle of up to 360 °, and reflected in the left-to-right di- 

ection, with 50% probability during each epoch of training, such 

hat each epoch used a different data set but the number of train- 

ng images did not change. Finally, 100,352 deep features were ob- 

ained from the last addition layer of ResNet-50. To ensure that 

o information leakage occurred, the fine-tuning was controlled 

ithin each fold of the 10-fold cross-validation procedure. We also 

valuated other CNN models as the feature extractor, including In- 

eptionV3 [29] , DenseNet-201 [30] , GoogleNet [31] , MobileNetV2 

32] , ShuffleNet [33] , VGG-19 [34] , and AlexNet [35] . 

.5. Feature representation 

As the deep feature dimensionality (100,352) was too high, 

e adopted a combination of principal component analysis (PCA) 

nd linear discriminant analysis (LDA) to reduce the dimensional- 

ty. PCA was applied first and the top 1200 principal components 

ere retained. LDA was then used to project the data onto one- 

imensional space, where the distance between the centers of the 

wo categories of data (COVID-19 and CAP) was as large as possi- 

le and their covariance was as small as possible. Therefore, the 

eep features of each instance were represented as the score that 

e herein refer to as the DRIS. 

.6. Multiple instance learning and visual interpretability 

Citation k -nearest neighbor ( k -NN) has been used as one clas- 

ifier in multiple instance learning [36] . Citation k -NN seeks to 
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Fig. 3. Four categories of comparable methods (2D voting, 2D montage, 3D down-sampling, and MIL with max or Noisy-AND pooling). 
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earch references and citers for a particular unknown bag U k . 

pecifically, in the training set, a bag B i and its C -th nearest bag

 C are first determined and their distance is denoted D iC . If the 

istance between the bag U j in the test set and B i is closer than or

qual to D iC , B i is a citer of U j . Similarly, R nearest neighbors of U j 

n the training set are considered as references of U j . Finally, the 

ecision for a particular unknown bag U j is based on the majority 

oting of the labels of bags regarded as references and citers. The 

ausdorff distance is exploited to measure the similarity between 

ny two bags: 

 ( A, B ) = max [ h ( A, B ) , h ( B, A ) ] (1) 

 ( A, B ) = max 
a ∈ A 

min 

b∈ B 
‖ a − b‖ (2) 

 ( B, A ) = max 
b∈ B 

min 

a ∈ A 
‖ b − a ‖ (3) 

here a and b are the instances in A and B , respectively, and

 a − b ‖ and ‖ b − a ‖ are the Euclidean distances. 

In this study, a grid search method was employed to determine 

 and C . The search range of the two parameters was [ 1 , 15 ] and the

nterval was 1. R = 3 and C = 13 represent the highest accuracy. The

atio of the number of references and citers with the label COVID- 

9 to the number of all references and citers was calculated to rep- 

esent the probability of COVID-19. A threshold of 0.5 was used to 

etermine the measures of accuracy, specificity, sensitivity, and F1 

core. 

Gradient-weighted class activation mapping (Grad-CAM) was 

sed to interpret the results obtained from ResNet-50 and high- 

ight important regions in the CT slices for predicting COVID-19 

nd CAP [37] . Details of the principles and implementation of 

rad-CAM are provided in the Supplementary Material. 

.7. Comparative experiments 

In the DR-MIL method, the feature extractors for ResNet-50 and 

ception are denoted M ResNet-50-MIL and M Xception-MIL , respectively. 
5 
oreover, to assess the role of fine-tuning, we also used the strat- 

gy of freezing all previous layers before fully connecting them; 

he resulting model is denoted M ResNet-50-MIL-frozen-layers . 

Another four categories of comparable experiments were per- 

ormed as depicted in Fig. 3 . The pseudo code representation for 

ach method is presented in Fig. 4 , with the exception of the sec- 

nd category, where the procedure is rather simple. The first cat- 

gory was 2D CNN with voting. Pre-trained ResNet-50 and Xcep- 

ion were initially fine-tuned by our CT slices. Ten instances (slices) 

ere sequentially input into the fine-tuned models to generate 

en slice-based predictions, and the final patient-level prediction 

as made on the basis of the majority voting of these predictions. 

hese two models are denoted M Xception-Voting and M ResNet-50-Voting , 

espectively. 

The second category was a 2D CNN of a montage of ten CT 

lices. Ten instances from each patient were initially combined 

nto a montage, and these montages were used to fine-tune pre- 

rained ResNet-50 and Xception. The resulting models are denoted 

 ResNet-50-Montages and M Xception-Montages , respectively. 

For the third category, 241 preprocessed CT scans were used to 

ne-tune and test the 3D network that had been pre-trained on 

he 3DSeg-8 dataset, which covers various organs/tissues of inter- 

st with either CT or MR scans [38] . A fully connected layer was

mployed to take over from the last convolutional layer in the 

ackbone network (ResNet-50), changing the network from seg- 

entation into a classification architecture. The initial learning rate 

as lr (lr = 0.001) for the fully connected layer and lr/100 for the 

emaining layers. SGDM was adopted for the optimization algo- 

ithm. The learning rate was reduced by a factor of 0.99 for ev- 

ry epoch, and the number of epochs for training was 60. Owing 

o the limitations of the GPU memory, each 3D matrix was resized 

o 224 ×224 ×50 and the batch size was 2. The resulting model is 

enoted M MedicalNet . 

Finally, two end-to-end deep CNNs for MIL were compared 

ith our DR-MIL method. As shown in Fig. 3 , a special MIL pool- 

ng layer combined all of the feature maps of the pre-trained 

esNet-50 with fine-tuning from all 10 instances. A fully connected 

ayer was linked to the MIL layer to afford the final prediction. 

e have so far applied max pooling [25] and Noisy-AND pooling 
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Fig. 4. Pseudo code representations for three comparable methods. 
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26] . The trained models are denoted M ResNet-50-MIL-max-pooling and 

 ResNet-50-MIL-Noisy-AND-pooling , respectively. 

.8. Training, testing, and evaluation 

The training and testing procedures of the proposed models 

ere performed using 10-fold cross-validation ( Fig. 5 ). The entire 

ataset of the chest CT scans of 241 patients was split into train- 

ng and test sets in a ratio of 9:1. During the training process, 8/9

f the training set was used to fine-tune the pre-trained CNN and 

he remaining 1/9 was used to validate it. The deep features were 

xtracted from the fine-tuned CNN and represented as a DRIS that 

ombines PCA and LDA. In the testing process, the deep features 

ere extracted from the slice-based instances by the fine-tuned 

eep CNN and incorporated into the DRIS by the mapping matrix 

nd mapping vector that resulted from the training process. The 
6 
ag of DRISs was then input into citation k -NN to yield the final 

lassification. 

M MedicalNet was implemented in the PyTorch library, and the 

ther experiments were performed in Matlab 2019b (Deep Learn- 

ng Toolbox) on a Windows 10 system. The workstation used for 

he implementation had an Intel Core i7-9700 3.00 GHz CPU with 

n NVIDIA GeForce RTX 2080 Ti GPU. Citation k -NN was executed 

sing the Multiple Instance Learning Library (MILL) ( http://www. 

s.cmu.edu/ ∼juny/MILL ). 

Five performance measures, namely, the area under the curve 

AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1 

core, were used to evaluate the different models: 

CC = ( TP + TN ) / ( TP + TN + FP + FN ) (4) 

EN = TP / ( TP + FN ) (5) 

http://www.cs.cmu.edu/~juny/MILL
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Fig. 5. Training and testing procedures of the proposed models by 10-fold cross-validation. 

Fig. 6. ROC curves and AUC values for the proposed and comparable models. 

Table 2 

Performance comparison of the various models for identifying COVID-19. 

Model ACC SEN SPE AUC F1 score 

M ResNet-50-MIL 0.959 0.972 0.940 0.955 0.965 

M ResNet-50-MIL-frozen-layers 0.888 0.887 0.890 0.922 0.903 

M Xception-MIL 0.938 0.965 0.900 0.936 0.948 

M ResNet-50-Voting 0.900 0.957 0.820 0.844 0.918 

M Xception-Voting 0.920 0.936 0.900 0.898 0.933 

M ResNet-50-Montages 0.730 0.965 0.400 0.819 0.807 

M Xception-Montages 0.734 0.760 0.690 0.806 0.772 

M MedicalNet 0.681 0.908 0.360 0.670 0.769 

M ResNet-50-MIL-max-pooling 0.896 0.936 0.840 0.936 0.914 

M ResNet-50-MIL-Noisy-AND-pooling 0.880 0.929 0.810 0.939 0.900 
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PE = TN / ( TN + FP ) (6) 

1 score = 2 × Precision × Recall / ( Precision + Recall ) (7) 

here TP, TN, FP, and FN denote the true positive, true 

egative, false positive, and false negative, respectively. Preci- 

ion = TP/(TP + FP) and Recall is equal to SEN. 

. Results 

.1. DR-MIL method and its performance 

M ResNet-50-MIL displayed the best patient-level performance, 

ith an ACC of 0.959, SEN of 0.972, SPE of 0.940, AUC of 0.955, 
7 
nd F1 score of 0.965 ( Fig. 6 and Table 2 ). For the cohort of 241

articipants in our study, we asked one radiologist with 16 years 

f experience to differentiate COVID-19 from CAP via CT images. 

he accuracy of this radiologist was 66.80%, which is within the 

ange of 60–83% reported by Bai et al. [9] . The accuracy of 95.9%

bserved for M ResNet-50-MIL thus demonstrates the potential of this 

ethod for improving the differentiation of COVID-19 from CAP. 

As shown in Fig. 7 , among the 141 patients with COVID-19, 

our were wrongly predicted as non-COVID-19, including one se- 

ere case, one moderate case, and two unknown cases. Among the 

00 CAP patients, six were wrongly predicted as COVID-19 (two 

ases of bacterial pneumonia, four cases of unknown etiology). For 

ne case, M Xception-MIL was not as good as M ResNet-50-MIL , and the 

ormer displayed an ACC of 0.938, SPE of 0.900, and AUC of 0.936. 

oreover, as expected, the performance of M ResNet-50-MIL-frozen-layers 
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Fig. 7. Confusion matrices for the proposed and comparable models: (a) M ResNet-50-MIL , (b) M ResNet-50-MIL-frozen-layers , (c) M ResNet-50-Voting , (d) M ResNet-50-Montages , (e) M MedicalNet , (f) 

M Xception-MIL , (g) M Xception-Voting , (h) M Xception-Montages , (i) M ResNet-50-MIL-max-pooling , and (j) M ResNet-50-MIL-Noisy-AND-pooling . 
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m
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as inferior to that of M ResNet-50-MIL , indicating that the fine-tuning 

elped with the extraction of deep features. Fig. 8 confirms this 

oint, where the contrast in the feature maps (especially in the 

ayer of Addition 1) was significantly enhanced after fine-tuning. 

he lung field is clearly indicated and the lesions have been high- 

ighted. 
8 
The results obtained using ResNet-50 and seven other CNN 

odels as the feature extractor are presented in Table 3 . The pa- 

ameter k indicates the number of the last layer with the initial 

earning rate, after which the learning rate was set as the initial 

earningrate multiplied by 10 −3 . The parameter k, initial learning 
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Fig. 8. Feature maps for ResNet-50 before and after fine-tuning. 

Table 3 

Comparison of various feature extractors for COVID-19 identification by DR-MIL. 

Feature extractor Size of model(MB) k ∗ Initial learning rate Learning rate drop factor Output layer Feature map ACC Training time (s) 

ResNet-50 96 101 0.03 0.500 172 7 ×7 ×2048 0.959 2440 

InceptionV3 [29] 89 178 0.031 0.400 311 8 ×8 ×2048 0.876 3504 

DenseNet-201 [30] 77 400 0.031 0.400 703 7 ×7 ×1920 0.834 13050 

GoogleNet [31] 27 94 0.014 0.286 139 7 ×7 ×1024 0.710 2748 

MobileNetV2 [32] 13 88 0.027 0.372 148 7 ×7 ×1280 0.834 3438 

ShuffleNet [33] 5.4 98 0.021 0.162 167 7 ×7 ×544 0.793 3246 

VGG-19 [34] 535 28 0.014 0.293 36 14 ×14 ×512 0.710 4872 

AlexNet [35] 227 14 0.009 0.0126 14 13 ×13 ×256 0.710 2398 

∗ Layer(1:k): learning rate was set as the initial learning rate; Layer(k + 1:end): learning rate was set as the initial learning rate multiplied by 10 −3 . 

Table 4 

Running and testing times for the various models. 

Model Running time for one fold (s) Testing time for each case (s) 

M ResNet-50-MIL 2586 1.17 

M MedicalNet 5370 0.25 

M ResNet-50-MIL-max-pooling 2331 0.39 

M ResNet-50-MIL-Noisy-AND-pooling 2354 0.39 

M ResNet-50-Voting 2453 0.49 

M ResNet-50-Montages 2547 0.02 
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rate, and learning rate drop factor were determined by a Bayesian 

ptimization algorithm. It can be seen that the highest ACC for 

OVID-19 identification by DR-MIL was obtained when ResNet-50 

as used for feature extraction. Moreover, the training time was 

440 seconds, which was shorter than those for the other CNN 

odels with the exception of AlexNet. 

The running and testing times for the various methods are com- 

ared in Table 4 . M ResNet-50-MIL required 2586 seconds for running 

ne fold and 1.17 seconds for testing one case. This testing time 

s considered acceptable, although it was longer than those for the 
ther models. w

9 
.2. Comparison between DR-MIL and other methods 

M ResNet-50-MIL outperformed the models based on the strategy 

f 2D CNN with voting ( Figs. 6 , 7 , and Table 2 ), and M Xception-Voting 

utperformed M ResNet-50-Voting . These results indicate that using 

IL to integrate the predictions of slice-based instances may be 

uperior to using simple voting. 

M ResNet-50-MIL also performed better than the 2D CNN mod- 

ls based on montages. The AUC values for M ResNet-50-Montages 

nd M Xception-Montages were 0.819 and 0.806, respectively, which 

ere even lower than those for M ResNet-50-Voting and M Xception-Voting . 
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Table 5 

Performance of our DR-MIL method and current state-of-the-art studies. 

Study Key aspects Performance 

Our study (M ResNet-50-MIL ) - Deep features extracted by ResNet-50 

- DRIS represented by PCA and LDA and multiple instance learning 

- 241 patients (COVID-19: 141, CAP: 100) 

- Binary classification (COVID-19 or CAP) 

ACC = 0.959, AUC = 0.955, 

SEN = 0.972, 

SPE = 0.941 

Kang et al., 2020 [21] -V-Net for lung segmentation and 189 handcrafted features extracted from 

lesions 

- Complete and structured representation learning 

- Fully connected neural network for classification 

- 2522 CT images (COVID-19: 1495, CAP: 1027) 

ACC = 0.955, 

SEN = 0.966, 

SPE = 0.932 

Li et al., 2020 [14] - COVNet using ResNet-50 as the backbone 

- 4356 chest CT examinations from six hospitals (COVID-19: 1296, CAP: 1735, 

non-pneumonia: 1325) 

- Three-class classification (non-pneumonia, CAP, or COVID-19) 

AUC = 0.96, 

SEN = 0.90, 

SPE = 0.96 

Bai et al., 2020 [18] - Lung segmentation by 3D Slicer software and manual modification 

- 1186 patients (COVID-19: 521, non-COVID-19 pneumonia: 665) 

- 2D pre-trained EfficientNet with fine-tuning 

- Slice predictions concatenated using two fully connected layers 

AUC = 0.95, 

ACC = 0.96, 

SEN = 0.95, 

SPE = 0.96 

Ouyang et al., 2020 [16] - VB-Net toolkit for lung segmentation 

- Two 3D ResNet-34 networks 

- Online attention module and ensemble learning 

- Multi-center dataset: 2186 CT scans for training and validation, 2776 CT scans 

for test set 

- Binary classification (COVID-19 or CAP) 

ACC = 0.875, 

AUC = 0.944, 

SEN = 0.869, 

SPE = 0.901 

Han et al., 2020 [22] - Generate 3D deep instance automatically 

- Attention-based MIL pooling 

- CT examinations of 79 COVID-19 patients, 100 CAP, 130 without pneumonia 

- Three-class classification (non-pneumonia, CAP, or COVID-19) 

ACC = 0.943, 

AUC = 0.988 

Zhang et al., 2020 [17] - Seven-class segmentation 

- 3D ResNet-18 for classification 

- 2246 patients (COVID-19: 752, CAP: 797, non-pneumonia: 697) for training; six 

validation datasets for testing 

- Three-class classification (non-pneumonia, CAP, or COVID-19) 

ACC = 85.26–92.49% 

Jin et al., 2020 [42] - Dataset of 10,000 CT volumes from COVID-19, influenza A/B, non-viral (CAP), 

and non-pneumonia subjects. 

- 2D pre-trained ResNet-152 for slice-level prediction 

- Task-specific fusion block for volume/case-level prediction 

AUC = 0.978 for 

a test cohort of 3199 scans 

Harmon et al., 2020 [13] - Lung segmentation 

- Full 3D model and hybrid 3D model 

- Multinational datasets of 2617 patients 

ACC = 0.908, 

SEN = 0.840, 

SPE = 0.930 

Di et al., 2021 [43] - 2148 COVID-19 and 1182 CAP 

- Uncertainty vertex-weighted hypergraph learning (UVHL) method 

ACC = 0.898 

Javaheri et al., 2021 [44] - COVID-19: 111, CAP: 115, healthy control: 70 

- Bi-directional ConvLSTM U-Net with densely connected convolutions 

(BCDU-Net) 

ACC = 0.95 
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here are two plausible explanations for this outcome: (1) the 

ataset using montages was smaller than that using voting, such 

hat the former could not fully train the model despite the adop- 

ion of transfer learning, and (2) extracting discriminative features 

rom the montage of ten slices was more difficult than from each 

lice separately. 

The pre-trained 3D MedicalNet with fine-tuning (M MedicalNet ) 

isplayed the least satisfactory performance, with an ACC of 0.681, 

EN of 0.908, SPE of 0.360, AUC of 0.670, and F1 score of 0.769. In

his regard, M MedicalNet had more severe challenges of limited data 

nd increased feature extraction difficulty than M ResNet-50-Montages 

nd M Xception-Montages . 

In our current study, M ResNet-50-MIL outperformed the 

wo end-to-end deep MIL CNNs, M ResNet-50-MIL-max-pooling and 

 ResNet-50-MIL-Noisy-AND-pooling , which displayed AUC values of 0.936 

nd 0.939, respectively. 

.3. Comparison between DR-MIL and current state-of-the-art 

tudies 

The performance of our model was also compared with those 

f current state-of-the-art studies ( Table 5 ). It can be seen that our

ethod is comparable to the other strategies, including machine 

earning [21] , pre-trained 2D CNN and merged slice-based predic- 
10 
ions [ 14 , 18 ], 3D ResNet [39] , and 3D deep MIL [22] . However, it

ust be noted that the results were not obtained from the same 

atasets (not all of which have been publicly disclosed), thus lim- 

ting the significance of this comparison. 

The M ResNet-50-MIL method was also applied to the CC-CCII 

ataset. Specifically, the deep features were extracted for each 

mage instance using the same pre-trained ResNet-50 with fine- 

uning using our own dataset. The deep features of each instance 

ere further represented as DRISs by PCA and LDA. Using 10-fold 

ross-validation for citation k -NN yielded an ACC of 0.957, SEN of 

.925, SPE of 0.989, AUC of 0.952, and F1 score of 0.989. In this 

0-fold cross-validation, one-tenth was used for training and nine- 

enths for testing. The performance of our method was compara- 

le to that reported in a previous study [17] , where the accuracy 

anged from 85.26% to 92.49% for one internal validation dataset, 

ne retrospective study, three prospective pilot studies, and one 

dditional dataset from Ecuador. 

Our method is a combination of deep learning and machine 

earning and has the advantage of being applicable to small 

atasets of only a few hundred CT examinations. Moreover, with 

he exception of the previous study that used 3D deep MIL [22] , 

ur approach has additional benefits over comparable methods, in- 

luding the weakly supervised nature of the learning and no re- 

uirement for lesion segmentation. 
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Fig. 9. Distribution of deep features and DRIS for COVID-19 and CAP: (a) deep features for COVID-19 versus CAP, (b) DRIS for COVID-19 versus CAP, (c) DRIS for COVID-19 

versus bacterial CAP, (d) DRIS for COVID-19 versus viral CAP, (e) DRIS for COVID-19 versus mycoplasma CAP, and (f) DRIS for COVID-19 versus CAP of uncertain etiology. 
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.4. Deep features and DRIS 

As shown in Fig. 9 (a), the distribution of deep features (100,352 

eatures for each instance or slice) was plotted for the COVID-19 

nd CAP groups. A two-sided Wilcoxon rank sum test was per- 

ormed to determine whether the distribution was significantly dif- 

erent between the two groups, which indicated a significant dif- 

erence ( p < 0.001). As shown in Fig. 9 (b), a significant difference

as also observed in terms of the DRISs between the COVID-19 

nd CAP groups ( p < 0.001). Similar differences were also found be- 

ween COVID-19 and the various subcategories of CAP (bacterial, 

iral, mycoplasma, and uncertain etiology) ( Figs. 9 (c)–(f)). These re- 

ults demonstrate that the DRIS is highly discriminative for COVID- 

9 and CAP and accounts for the exceptional performance observed 

or MIL using the DRIS. Therefore, the DRIS can potentially be ap- 

lied as a slice-based imaging biomarker to differentiate between 

OVID-19 and CAP. 

.5. Spatial patterns of COVID-19 and CAP lesions 

The Grad-CAM results demonstrated that our pre-trained 

esNet-50 with fine-tuning could focus on the lesions in COVID-19 

T images ( Fig. 10 (a)). Therefore, we were able to sum the Grad-
11 
AM results for all COVID-19 patients to obtain the spatial pattern 

f lesions. Fig. 10 (b) presents a comparison of the spatial patterns 

f lesions for COVID-19 and CAP. It can be seen that the main le- 

ions in COVID-19 were located in the lower parts of the lung in 

he axial view and distributed in the subpleural areas. In contrast, 

he lesions in CAP were more likely to be found around the central 

rea. 

These findings are in accordance with previous clinical reports. 

alehi et al. reported the distribution of lesions in COVID-19 as 

 mixture of peripheral (76.0%), multilobar (78.8%), and bilateral 

87.5%) [39] . Lesions are predominantly distributed in the posterior 

egments of the subpleural areas and may progress to central ar- 

as as the condition of the patient worsens [ 40 , 41 , 45 ]. Although

his distribution of lesions is partially shared with that in CAP pa- 

ients, there are also significant differences: a central location was 

bserved in only 10.65% of the COVID-19 group but in 47.13% of the 

on-COVID-19 group. 

.6. Visual interpretation for CBIR 

As shown in Fig. 11 , one advantage of citation k -NN is that 

he key instances determining the distance between unknown bags 

nd the corresponding citers or references can be presented as 
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Fig. 10. Grad-CAM results and spatial patterns of COVID-19 and CAP lesions: (a) ex- 

ample of Grad-CAM for one case of COVID-19 and (b) comparison of spatial patterns 

of lesions between COVID-19 and CAP. 
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BIR. From left to right, the distance between a particular instance 

n a bag is called a reference, and the corresponding instance used 

n the unknown bag increases as the visual similarity between 

hem diminishes. For the example of COVID-19, all of the labels for 

he three references and four citers are “1” (i.e., COVID-19; 7 versus 
Fig. 11. Visual interpretation of used instances and the correspond

12 
); hence, the predicted label is also “1”. For CAP, two references 

nd one citer have the incorrect prediction of “1” while the others 

ave the correct prediction. After voting, the final prediction is the 

orrect label, i.e., “0” (3 versus 6). 

. Discussion 

In the current study, we have evaluated the suitability of the 

R-MIL method for distinguishing between COVID-19 and CAP in 

T images. Deep features were drawn from each slice-based in- 

tance by using the pre-trained ResNet-50 with fine-tuning and 

ransformed into a DRIS. Each patient was treated as a bag of DRISs 

nd citation k -NN was employed as the MIL classifier to generate 

he final patient-level prediction. 

The key findings of this study are as follows: (1) DR-MIL af- 

orded an ACC of 95% and an AUC of 0.943, which are superior to 

omparable methods and evaluation by a radiologist (66.80%). The 

eading time was approximately 1.17 seconds. (2) COVID-19 and 

AP exhibited significant differences in terms of both the DRIS and 

he spatial pattern of lesions ( p < 0.001). (3) As a means of CBIR,

R-MIL can identify images used as key instances, references, and 

iters for visual interpretation. Therefore, similar to the previously 

ublished model, DR-MIL could serve as an independent reader to 

rovide useful suggestions to radiologists. Furthermore, the short 

eading time of DR-MIL may help improve the productivity of radi- 

logists for COVID-19 diagnosis. According to Jin et al. [42] , the av- 

rage reading time of radiologists is approximately 6.5 minutes per 

T scan, while their AI system required only 2.73 seconds. Thus, 

R-MIL could be used to screen candidates for confirmation by a 

adiologist by setting a high SEN and/or provide an error warning 

y setting a high ACC [42] , allowing human and artificial intelli- 

ence to be combined. The visual interpretation afforded by DR- 

IL could facilitate this combination and help train inexperienced 

adiologists. The advantages of our method and implications of our 

ndings are discussed in the following sections. 

.1. MIL versus slice-based voting 

In previous studies, MIL has yielded excellent performance 

hile tackling the problem of uncertain lesion locations in chronic 
ing instances in the bags regarded as references and citers. 
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Table 6 

Performance of our proposed DR-MIL method for various slice thicknesses. 

Slice thickness (mm) 

Accuracy (number of correctly predicted samples/total number of 

samples) 

Average accuracy 
CAP COVID-19 

1.0 0.900 (27/30) 0.929 (13/14) 0.910 (40/44) 

1.5 0.750 (3/4) 1.000 (1/1) 0.800 (4/5) 

2.0 1.000 (48/48) 0.920 (23/25) 0.973 (71/73) 

3.0 1.000 (16/16) — (0/0) 1.000 (16/16) 

5.0 0.000 (0/2) 0.978 (44/45) 0.936 (44/47) 

0.625 — (0/0) 1.000 (39/39) 1.000 (39/39) 

1.25 — (0/0) 1.000 (17/17) 1.000 (17/17) 
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bstructive pulmonary disease [ 46 , 47 ]. In this study, the speci- 

city and accuracy of M ResNet-50-Voting were lower than those of 

 ResNet-50-MIL . According to the MIL definition, a positive bag con- 

ists of “true positive instances” and “false positive instances”, 

hile all instances in a negative bag are negative [48] . Here, the 

ag or instance that is labeled COVID-19 is defined as positive; oth- 

rwise, it is negative. Therefore, under the assumption that CNN 

an achieve accurate classification, if an instance is predicted to 

e positive, this bag should be regarded as positive. Obviously, the 

ethod of slice-based majority voting used in M ResNet-50-Voting lacks 

nterpretability, although it can achieve high accuracy. However, it 

s more reasonable to conduct majority voting on the bag level be- 

ause a negative bag can be similar to a positive bag with “false 

ositive instances”. This is why an unknown bag cannot be directly 

udged as positive when any of its citers or references is positive 

36] . 

.2. Feature representation and DRIS 

It is unrealistic to directly feed features with a dimensionality 

hat is much larger than the number of samples into the classifier 

ecause of the over-fitting problem. Therefore, a suitable feature 

eduction strategy is needed. A combination of PCA and LDA is one 

uch approach to obtaining inputs for citation k -NN. LDA has been 

sed in numerous fields, such as meal detection and face recog- 

ition [ 49 , 50 ], and the combination of PCA and LDA has been ap-

lied to disease diagnosis [ 51 , 52 ]. In our study, the combination of

CA and LDA was adopted to incorporate deep features into a sin- 

le DRIS, and our experiments demonstrated that this combination 

as superior to PCA or LDA alone. We thus introduce the DRIS as 

 potential imaging biomarker to distinguish COVID-19 from CAP. 

his parameter can be obtained from CT images and used as a 

iscriminative feature to construct more accurate classifiers using 

linical information. 

Besides these 100,352 deep features, we have tried more fea- 

ures from the other layers. The classification performance ob- 

ained using more features from the other layers was inferior to 

hat achieved for the 100,352 deep features. 

.3. Visual interpretation of citation k-NN 

Citation k -NN is similar to CBIR [53] . The training set is a large

epository containing medical images from patients with various 

iseases. Given a particular image, several similar images in the 

epository could be retrieved by using the similarity measured by 

he Hausdorff distance. In this manner, radiologists and clinicians 

ould be helped to understand why the DR-MIL method affords a 

iven prediction. Meanwhile, CBIR is also useful for training in- 

xperienced clinicians and developing “doctor-in-the-loop” or AI- 

ugmented diagnosis of COVID-19 [ 18 , 54 ]. 
13 
.4. Irrelevant variables and standardization 

In our study, the COVID-19 patients and CAP patients were ex- 

mined in different hospitals using different CT protocols. There 

ere also significant demographic differences, e.g., age. Thus, one 

ay raise the objection that the model may just learn the differ- 

nces between different protocols and ages. We discuss this issue 

elow. 

First, it should be noted that a number of the COVID-19 patients 

 n = 25) and CAP patients ( n = 69) were scanned using the same CT

nstrument model (Aquilion), although they were used at different 

ospitals. Moreover, even within a single hospital, several differ- 

nt CT scanners and protocols were used. This is typical of most 

rade-A tertiary hospitals, which often operate more than one CT 

canner. 

Second, to strictly control for the influence of irrelevant vari- 

bles on the classification or prediction, the patients must be 

canned using the same scanner and the same protocol. However, 

his would reduce the sample size and the generalization ability 

f the trained model. Therefore, in most studies [ 14 , 18 ], CT images

rom different hospitals, scanners, and protocols have been used in 

onjunction after proper preprocessing and standardization. In our 

tudy, we also applied preprocessing and standardization methods 

imilar to those of Bai et al. [18] . 

Third, although it is known that differences in CT images can 

esult from different hospitals, scanners, and protocols, and that 

hese may influence the performance of trained classification mod- 

ls such as those that use handcrafted features in radiomics [55] , 

e have found the robustness of models using deep learning or 

eep features to be significantly improved by preprocessing and 

tandardization. As shown in Table 6 , no apparent differences in 

ccuracy were observed among the various slice thicknesses. Har- 

on et al. trained their model by using a highly diverse multi- 

ational dataset with different CT scanners and acquisition proto- 

ols [13] . The developed model exhibited acceptable performance 

hen applied to new data, compared with models trained using 

ata from only one center, one CT scanner, or one scanning proto- 

ol. Moreover, a recent study reported a method of applying deep 

earning to convert reconstructed CT images by using different ker- 

els to improve the reproducibility of radiomics models [56] . 

Fourth, we have also used two independent external datasets 

o evaluate our method. The promising performance observed for 

oth sets of images suggests that the proposed method is largely 

nsensitive to differences associated with irrelevant variables. 

Fifth, it is known that COVID-19 outcomes are negatively influ- 

nced by higher age and the presence of comorbidities. To clarify 

hether age affects the performance of our current model, we per- 

ormed further analysis. The COVID-19 group was divided into two 

ub-groups of COVID-19-Sub-Group 1 (age ≤ 33 years) and COVID- 

9-Sub-Group 2 (age > 33 years), while the CAP group was divided 

nto CAP-Sub-Group 1 (age ≤ 31 years) and CAP-Sub-Group 2 (age 
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 31 years). No significant difference in age was found between 

AP-Sub-Group 2 and COVID-19-Sub-Group 2 (two-sample t -test, 

 > 0.05). Analysis by the chi-square test revealed no significant dif- 

erences in accuracy for our proposed model between COVID-19- 

ub-Group 1 and COVID-19-Sub-Group 2 ( p > 0.05) or between CAP- 

ub-Group 1 and CAP-Sub-Group 2 ( p > 0.05). These results indicate 

hat age does not significantly influence the performance of our 

roposed model. 

.5. Limitations and potential future work 

The current study has several limitations. First, the size of the 

urrent dataset was small. Although citation k -NN is a kind of ma- 

hine learning and not as data-hungry as deep learning, overfitting 

ay still occur owing to a small dataset size, which could limit 

he general applicability of the method and the DRIS. Second, only 

he classification of COVID-19 and CAP was examined, while the 

linical types of CAP and the severity of COVID-19 were not taken 

nto account. This is because there were only nine (3.7%) cases of 

iral pneumonia and three (1.2%) cases of mycoplasma pneumonia 

n our dataset. The numbers of patients belonging to the various 

linical types of COVID-19 were also unequally distributed. Third, 

ome healthy controls may also present with some opacities in the 

ung field in CT images, and these opacities may influence the clas- 

ification performance. The severity of this kind of influence is un- 

nown because no healthy control was included in our study. 

The collection of datasets with more patients and a more bal- 

nced structure of the various CAP sub-types and COVID-19 sever- 

ties should lead to models with more generalization ability and 

linical significance. More advanced methods, such as deep con- 

olutional generative adversary networks (DCGAN), agile CNN, and 

nsemble learning, may help increase the accuracy and generaliza- 

ion ability of models developed for COVID-19 management [57–

9] . The automatic segmentation of COVID-19 lesions and predic- 

ion of prognosis are also promising research directions [ 60 , 61 ]. 

. Conclusions 

Our DR-MIL method can effectively represent the deep char- 

cteristics of COVID-19 lesions in CT images and accurately dis- 

inguish COVID-19 from CAP in a weakly supervised manner. The 

ombination of deep learning as feature extractor and MIL as clas- 

ifier make DR-MIL suitable for small datasets containing only a 

ew hundred patients. The resulting DRIS can potentially serve as 

n imaging biomarker for COVID-19 diagnosis. The finding of dis- 

inct spatial distributions of lesions in COVID-19 and CAP is in line 

ith previous studies. Citation k -NN can provide visual interpreta- 

ion as a means of CBIR, which may help train inexperienced clin- 

cians and contribute to AI-augmented COVID-19 diagnosis. 
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