Skip to main content
. 2021 Sep 3;11:103–112. doi: 10.1016/j.artd.2021.07.012

Table 6.

Statistical comparisons of reported model performance metrics, by AI/ML algorithm.

AI/ML algorithm Performance metrics: Mean (SD, n)
AUC Accuracy Sensitivity Specificity
ANN 0.81 (0.11, 56) 87.6 (11.7, 14) 70.69 (24.18, 15) 88.4 (12.9, 15)
Bayesian 0.81 (0.07, 8) 84.1 (2.6, 4)
Boosting 0.79 (0.07, 19) 77.3 (7.1, 7) 77.8 (5.36, 5) 72.8 (11.7, 5)
Decision tree 0.78 (0.1, 41) 89 (—, 1) 86.35 (16.05, 2) 99.8 (0.4, 2)
Regression 0.77 (0.07, 62) 79 (8.7, 7) 75.75 (11.28, 6) 70.4 (14.6, 6)
SVM 0.77 (0.11, 26) 83.2 (10, 5) 86.1 (7.34, 5) 80.5 (16.1, 5)
ANOVA P = .252 P = .228 P = .497 P = .019
Tukey Post Hoc Tests (stat. significant results)

AI/ML, artificial intelligence/machine learning; ANN, artificial neural network; ANOVA, analysis of variance; AUC, area under curve; SD, standard deviation; SVM, support vector machine.