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Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of 
constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, 
several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA 
replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we 
briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene 
expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has 
proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension 
to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
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Introduction

Heterochromatin protein 1 (also known as HP1a), encoded 
by the Su(var)2–5 gene, is an evolutionarily conserved chro-
mosomal protein first identified in Drosophila melanogaster 
by its association with constitutive heterochromatin domains 
and through mutations acting as dosage-dependent modifiers 
of position-effect variegation (James and Elgin 1986; James 
et al. 1989; Eissenberg et al. 1990). Numerous studies have 
shown that such protein is highly conserved (Singh et al. 
1991; Eissenberg and Elgin 2000; Wang et al. 2000); ortho-
logues of HP1 were discovered in Schizosaccharomyces 
pombe (Swi6) (Lorentz et al. 1994), Xenopus (Xhp1α and 
Xhp1γ) (Meehan et al. 2003), Chicken (CHCB1, CHCB2 
and CHCB3) (Yamaguchi et al. 1998) and Tetrahymena 
(Pdd1p) (Huang et al. 1999), with the exception of budding 
yeast, Saccharomyces cerevisiae, in which the organization 
of silenced chromatin domains depends on SIR proteins (see 

(Kueng et al. 2013) for a review). In mammals, there are 
three paralogues, HP1α, HP1β and HP1γ, encoded by the 
CBX5, CBX1 and CBX3 genes, respectively (Singh et al. 
1991; Saunders et al. 1993; Ye and Worman 1996; Li et al. 
2002; Maison and Almouzni 2004).

HP1 proteins are mainly involved in heterochroma-
tin structural organization and epigenetic gene silencing 
(Wang et al. 2000; Bannister et al. 2001; Lachner et al. 
2001; Lomberk et al. 2006). According to the general model 
proposed for heterochromatin formation, histone methyl-
transferases (HMTases) methylate the histone H3 at lysine 
9 (H3K9me2/3), creating selective binding sites for them-
selves and for the HP1 chromodomain (see (Jenuwein 2001)
for a review). The HP1-H3K9me2/3 complex serves as a 
binding platform for the recruitment of other heterochro-
matic factors and represents the early step in the cascade of 
molecular events, leading to the establishment of heterochro-
matin domains and epigenetic repression of transcriptional 
activity (Nakayama et al. 2001; Czermin et al. 2001; Hall 
et al. 2002; Snowden et al. 2002; Schotta et al. 2003; Stew-
art et al. 2005; Fanti and Pimpinelli 2008; Motamedi et al. 
2008). Recent studies in different model organisms includ-
ing Schizosaccharomyces pombe, Drosophila and mam-
mals have proposed a new mechanism for heterochromatin 
compartmentalization and spreading based on the ability of 
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higher-order HP1 oligomers to aggregate into liquid-phase 
droplets that contribute to heterochromatin phase separa-
tion and promote epigenetic gene silencing (Larson et al. 
2017; Strom et al. 2017; Tatarakis et al. 2017; Sanulli et al. 
2019). All these data, consistent with HP1 tethering experi-
ments that led to transcriptional silencing of reporter genes 
(Lehming et al. 1998; Seeler et al. 1998; van der Vlag et al. 
2000; Li et al. 2003; Danzer and Wallrath 2004), support a 
model whereby HP1 proteins primarily act as transcriptional 
repressor in nucleation and spreading of silent chromatin.

Notably, in Schizosaccharomyces pombe, the HP1 ortho-
logue Swi6 induces the epigenetic silencing of heterochro-
matin domains not only at transcriptional level (Bühler et al. 
2006) but also at post-transcriptional level (Keller et al. 
2012). In fact, Keller and collaborators have demonstrated 
that Swi6, through its hinge domain, is capable of capturing 
transcripts from heterochromatic genes and directing them 
to the nuclear exosome for degradation (Keller et al. 2012).

In addition to being required for heterochromatin forma-
tion and epigenetic gene silencing, Drosophila HP1 plays an 
essential role in both telomere capping and telomere elon-
gation (Fanti et al. 1998; Savitsky et al. 2002; Perrini et al. 
2004; Canudas et al. 2011; Chow et al. 2018). Based on 
the model proposed by Perrini et al. (Perrini et al. 2004), 
Drosophila HP1 controls telomere capping and transcrip-
tional silencing of telomeric retroelements by two different 
mechanisms: telomere capping results from the direct bind-
ing of HP1 hinge domain to telomeric single-strand DNA 
sequences, while epigenetic silencing of telomeric retro-
transposons essentially depends on the dynamic interaction 
of the HP1 chromodomain with H3K9me3 nucleosomes in 
telomeric heterochromatin (Perrini et al. 2004).

Although initially identified in the context of the hetero-
chromatin-dependent gene silencing and in addition to its 
role in telomere integrity maintenance, it is now evident that 
HP1 protein has additional nuclear functions including DNA 
replication and repair (Schwaiger et al. 2010; Dronamraju 
and Mason 2011; Pokholkova et al. 2015; Bosso et al. 2019), 
chromosome segregation (Kellum and Alberts 1995; Kellum 
et al. 1995), transcriptional activation and elongation (Lu 
et al. 2000; Piacentini et al. 2003; Cryderman et al. 2005; 
De Lucia et al. 2005; Johansson et al. 2007; de Wit et al. 
2007; Lin et al. 2008, 2012; Piacentini and Pimpinelli 2010; 
Kwon et al. 2010) and RNA stability (Piacentini et al. 2009; 
Casale et al. 2019).

The functional versatility of HP1 arises mainly from its 
structural plasticity; HP1 possesses, in fact, a characteristic 
modular architecture consisting of two functional domains: 
an amino-terminal chromodomain (CD), important for the 
binding to the N-terminal tail of histone H3 when it is di- or 
trimethylated (Bannister et al. 2001; Lachner et al. 2001; 
Jacobs et al. 2001; Nielsen et al. 2002; Jacobs and Khorasan-
izadeh 2002), and a C-terminal globular chromo shadow 

domain (CSD) (Aasland and Stewart 1995) which contains 
a PxVxL degenerate hydrophobic pentapeptide motif nec-
essary for HP1 dimerization and protein–protein interac-
tions (Smothers and Henikoff 2000; Cowieson et al. 2000). 
Chromo- and chromoshadow domains are interconnected by 
a short and less conserved hinge region that confers to HP1, 
the necessary structural flexibility to adapt itself to specific 
chromatin contexts through the interaction with different 
protein partners (Smothers and Henikoff 2001; Nishibuchi 
and Nakayama 2014). In addition to protein–protein interac-
tions, several reports in Drosophila, Schizosaccharomyces 
pombe and mammals have revealed that HP1 proteins exhibit 
nucleic acid binding activity, most often involving the hinge 
region but sometimes either the CD or CSD domains. For 
instance, in Drosophila, in vivo and in vitro studies have 
demonstrated that HP1 directly binds nascent RNAs through 
its CD and telomeric DNA sequences via its hinge domain 
(Piacentini et al. 2003, 2009; Perrini et al. 2004; Casale et al. 
2019). Other than with nascent transcripts from protein-
coding genes, HP1 has been found selectively associated 
with a broad set of RNAs transcribed from repetitive regions 
(Alekseyenko et al. 2014).

As Drosophila HP1, also HP1 orthologues in other spe-
cies display nucleic acid binding activity. In Saccharomyces 
pombe, Swi6 is able to bind RNAs through its hinge region 
(Keller et al. 2012; Kumar et al. 2020), and, in mammals, 
HP1α, SUMOylated in the hinge domain, targets pericentro-
meric heterochromatin by interacting with long nuclear non-
coding transcripts corresponding to major satellite repeats 
(Maison et al. 2002, 2011; Muchardt et al. 2002). Moreover, 
the unstructured hinge domain, necessary for the targeting 
of HP1α to constitutive heterochromatin, is also required for 
the interaction with parallel G-quadruplex structures formed 
by the TElomericRepeat-containing RNA (TERRA) tran-
scribed from telomeres (Roach et al. 2020).

A further level of HP1 functional complexity is achieved 
through multiple covalent post-translational modifications 
(PTMs) that are very important in modulating both HP1 
interactions and chromatin binding ability (see (Sales-Gil 
and Vagnarelli 2020) for a review). The phosphorylation, 
predominantly at serine and threonine residues in the hinge 
domain, is the most abundant and well-studied HP1 post-
translational modifications; it has been described for the first 
time in the mid-1990s for its functional importance in het-
erochromatin formation in Drosophila embryos (Eissenberg 
et al. 1994). It was also found that differentially phospho-
rylated HP1 isoforms affect HP1 protein interactions and 
chromosomal distribution, other than HP1 silencing activity 
(Zhao and Eissenberg 1999; Zhao et al. 2001; Badugu et al. 
2005). In Saccharomyces pombe, Swi6 phosphorylation 
specifically controls transcriptional gene silencing in het-
erochromatin (Shimada et al. 2009) and provides a dynamic 
pathway for the differential regulation of heterochromatin 
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in response to inter- and intracellular signals (Shimada and 
Murakami 2010).

Also mammalian HP1 isoforms undergo specific modifi-
cations including phosphorylation, acetylation, methylation, 
formylation, ubiquitination, SUMOylation and citrullina-
tion (Minc et al. 1999; Lomberk et al. 2006; LeRoy et al. 
2009; Maison et al. 2011; Wiese et al. 2019; Sales-Gil and 
Vagnarelli 2020). Similarly to Drosophila HP1, each of 
these modifications can change HP1 functions, thus creat-
ing an epigenetic subcode that would permit different inter-
actions of HP1 in different chromatin contexts. For exam-
ple, specific phosphorylation of four amino acid residues 
in the N-terminal tail of HP1α are crucial for its binding to 
H3K9me3 and heterochromatin formation (Minc et al. 1999; 
Li et al. 2002; Hiragami-Hamada et al. 2011; Nishibuchi 
et al. 2014; Bryan et al. 2017). Moreover, the phosphoryla-
tion of HP1α within its hinge domain is required for proper 
localization to centromeres during mitosis in mammalian 
cells (Chakraborty et al. 2014), while the phosphorylation of 
HP1γ regulates transcription of distinct gene subsets during 
differentiation programs (Seo et al. 2018).

The other side of HP1 functions: the positive 
regulation of gene expression

In contrast to the most commonly cited role in heterochro-
matin formation and gene silencing, a growing body of 
evidence in flies, mammals and other organisms has high-
lighted the importance of HP1 proteins in promoting gene 
expression. For instance, in Drosophila, it has been shown 
that mutations in HP1-encoding gene cause a significant 
downregulation of heterochromatic genes such as light and 
rolled, supporting the idea that some genes depend on their 
heterochromatic context for efficient expression (Hearn et al. 
1991; Clegg et al. 1998; Lu et al. 2000). The role of HP1 
in promoting expression of heterochromatic sequences has 
been reported also for HP1 paralogues and orthologues. 
Rhino (also known as HP1d), a female germline-specific 
paralogue of Drosophila HP1, mediates Pol II-dependent 
transcription of the dual-strand piRNA clusters by recruit-
ing Moonshiner and TBP-related factor 2 (TRF2) to hetero-
chromatin (Klattenhoff et al. 2009; Andersen et al. 2017). 
Likewise, fission yeast Swi6 promotes Pol II-mediated tran-
scription of heterochromatic inverted repeats by recruiting 
the anti-silencing factor Epe1 that associates with SAGA to 
regulate transcription within heterochromatin and to restrain 
the spread of pericentromeric heterochromatin boundary 
(Zofall and Grewal 2006; Isaac et al. 2007; Trewick et al. 
2008; Bao et al. 2019). All together, these results suggest 
that HP1 proteins may function as positive transcriptional 
regulators of heterochromatic sequences.

Furthermore, accumulating evidence in Drosophila sug-
gests that HP1 plays a direct role in the maintenance of 
active transcription of several euchromatic genes involved 
in chromatin dynamics and cell-cycle progression (Cryder-
man et al. 2005; De Lucia et al. 2005). Consistent with these 
results, Liu et al. have highlighted for HP1 also a sex-specific 
role in regulating chromatin structure and gene transcription 
(Liu et al. 2005).

The role of HP1 in gene expression is complex and not 
completely understood but seems to involve at least two dif-
ferent mechanisms.

As a transcriptional activator, HP1 might directly mediate 
the recruitment of transcriptional factors or co-activators to 
specific regulatory regions of a gene, thus promoting active 
transcription (Kwon et al. 2010; Ilyin et al. 2020; Schoelz 
et al. 2020). For instance, Kwon et al. revealed that in Dros-
ophila, all HP1 paralogues (HP1a, HP1b and HP1c) control 
the stable recruitment of the histone chaperone complex 
FACT (facilitates chromatin transcription) on active chro-
matin, thus promoting gene expression (Kwon et al. 2010). 
Also in planaria, through the functional association with the 
FACT complex, HP1 triggers regenerative proliferation of 
adult stem cells activating Mcm5 expression during tran-
scription elongation (Zeng et al. 2013). In addition, it has 
been demonstrated that Drosophila HP1 co-localizes with 
stalled polII on chromatin immediately downstream of TSSs, 
implicating a regulatory function of HP1 in controlling RNA 
polII elongation (Yin et al. 2011).

Alternatively, HP1 might work at a post-transcriptional 
level regulating folding, modification, processing and stabil-
ity of newly synthesized RNAs. The first compelling evi-
dence of an involvement of HP1 in chromatin-associated 
post-transcriptional regulation of gene expression was pro-
vided in Drosophila by Piacentini et al. (Piacentini et al. 
2003, 2009; Piacentini and Pimpinelli 2010) who have found 
a novel mechanism for HP1-mediated gene expression. They 
found HP1 specifically associated with induced, actively 
transcribed genes, including transgenic, developmental and 
heat-shock-induced puffs on polytene chromosomes from the 
third instar larvae salivary glands (Fanti et al. 2003; Piacen-
tini et al. 2003). Intriguingly, they demonstrated that HP1 
is co-transcriptionally recruited on nascent transcripts and 
identified in the chromodomain the module of HP1 directly 
involved in RNA binding in vivo, since RNase treatment or 
chromodomain mutations completely abolished HP1 recruit-
ment on active chromatin (Piacentini et al. 2003). Moreo-
ver, they identified more than one hundred HP1 target genes 
whose transcripts are co-transcriptionally stabilized by an 
heterogeneous nuclear ribonucleoprotein (hnRNP) complex 
containing HP1 together with DDP1 (Cortes et al. 1999), 
HRB87F (Haynes et al. 1991) and PEP (Amero et al. 1991), 
which belong to different classes of hnRNPs known to be 
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involved in RNA packaging, stability and processing (Pia-
centini et al. 2009; Piacentini and Pimpinelli 2010).

Epigenetic regulation of germline stem 
cell maintenance: a new dimension which 
broadens our understanding of HP1 
functional versatility

The emerging role of HP1 in regulating co-transcription-
ally RNA packaging and stability has also proved decisive 
in the control of female germline stem cells homeostasis 
in Drosophila (Casale et al. 2019). The stem cell’s behav-
iour is a highly dynamic process, implying intricate net-
works of extrinsic signalling, transcriptional, post-tran-
scriptional and translational regulations (see (Blatt et al. 
2020) for a review). In Drosophila germline stem cells 
(GSCs), multiple layers of post-transcriptional regulation, 
including alternative splicing, RNA modifications and 
translational repression, orchestrate the balance between 

self-renewal and differentiation and ensure proper ger-
mline stem cell homeostasis (Blatt et al. 2020). Notably, 
messenger RNA stability is a very important control point 
in modulating gene expression in GSCs, and, in this con-
text, HP1 has emerged as a key regulator (Casale et al. 
2019). In fact, it has been shown that HP1 is intrinsically 
required for chromatin-associated post-transcriptional 
regulation of female germline stem cell maintenance in 
Drosophila (Casale et  al. 2019). Unexpectedly, it has 
been demonstrated that HP1 exerts this pivotal func-
tion by positively regulating the packaging and stability 
of newly synthesized transcripts involved in GSC self-
renewal and differentiation such as cup, nanos (nos), 
piwi and bag of marbles (bam) (Fig. 1). Consistent with 
the above mentioned findings, Casale et al. (Casale et al. 
2019) confirmed the capacity of HP1 to directly bind the 
nascent transcripts and provided an important contribu-
tion to the understanding of the fundamental mechanisms 
which control the identity and maintenance of germline 
stem cells in Drosophila. As well as HP1, other genes 

Fig. 1   HP1 is required for correct ovarian development in Drosoph-
ila. a Schematic representation of the HP1-dependent post-transcrip-
tional regulation of germline stem cells (GSCs); in wild-type condi-
tion, HP1 binds and stabilizes the transcripts of key genes regulating 
the balance between GSC self-renewal (nos, piwi and cup) and dif-
ferentiation (bam). b Developing wild-type ovaries obtained from 
72–96-h old pupae stained for the germ cell marker Vasa (green) and 

DNA (red). c HP1 functional inactivation induces premature RNA 
degradation leading to a failure in the self-renewal/differentiation 
switch program. d HP1 depleted ovaries stained for Vasa (green) and 
DNA (red). As compared to the control (b), the majority of the ovari-
oles are completely devoid of germ cells. Scale bars, 100 μm. GSC, 
germ stem cell; CB, cystoblast; TF, terminal filament cells
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important for heterochromatin formation and epigenetic 
gene silencing have been implicated in stem cell mainte-
nance. For instance, it has previously been demonstrated 
that a H3K9-specific methyltransferase SetB1 and its 
Drosophila homologue Eggless (Egg or dSETDB1) are 
important for maintaining self-renewal of embryonic stem 
cells in mice and adult germline stem cells in Drosophila, 
respectively (Bilodeau et al. 2009; Wang et al. 2011). 
In addition, it has been shown that the DNA-associated 
protein Stonewall (Stwl), essential for heterochromatin 
organization in Drosophila, is required cell autonomously 
for GSC maintenance by repressing differentiation genes 
(Maines et al. 2007) and that constitutive DNA methyla-
tion, another epigenetic repressive mark associated with 
heterochromatin formation, is essential for self-renewal 
of mouse haematopoietic stem cell (Bröske et al. 2009). 
These findings suggest that epigenetic gene repression 
mechanisms, often associated with heterochromatin for-
mation, might be a conserved mechanism for stem cell 
self-renewal. In all these cases, however, the role of het-
erochromatic genes in promoting self-renewal is mainly 
based on the epigenetic repression of differentiation 
genes. The results of Casale et al. (Casale et al. 2019), on 
the contrary, have added a new dimension to our under-
standing of HP1 targeting and functions because, for the 
first time, they highlighted a novel and unexpected role of 
HP1 in chromatin-associated post-transcriptional regula-
tion of key genes controlling the balance of self-renewal 
and differentiation in Drosophila germline stem cells.

Conclusions

Since its identification, during 1980s, the multifunctionality 
of HP1 is still a subject of new discoveries. The ability of 
HP1 to maintain a silenced state or promote rapid transcrip-
tion upon cell insult or cell fate program is a very fascinat-
ing field. What molecular mechanisms are responsible for 
the functional versatility of this protein? The details of how 
HP1 regulates active transcription remain largely unknown. 
Post-translational modifications certainly play a key role in 
modulating HP1 functions because they can differentially 
regulate HP1 activity, localization and chromatin interac-
tions. Similarly, the identification of HP1 binding partners 
would help to provide some explanation on how it works in 
different chromatin contexts and cellular processes.

An interesting aspect to discuss is whether HP1 performs 
different functions in different chromatin contexts or whether 
it performs the same function, the nucleic acid packaging, 
in both euchromatin and heterochromatin. Consistently 
with this second hypothesis, the DNA compaction in het-
erochromatin domains could result in large-scale chromatin 
condensation and epigenetic gene silencing, whilst, in the 
euchromatin, the pre-mRNA packaging in HP1-containing 
ribonucleoprotein particles (RNP), could play a dual role: 
on one hand, it protects the newly synthesized RNA from 
degradation; on the other hand, it provides the machinery 
that enables accurate RNA processing in a temporally and 
spatially regulated fashion, thus reinforcing gene expression 
(Fig. 2). It remains to be clarified how the direct targeting of 

Fig. 2   Schematic representa-
tion of a tentative model that 
offers an explanation for the 
dual role of HP1 in epigenetic 
gene silencing and positive 
regulation of gene expression. 
In heterochromatin domains, 
HP1 binds to trimethylated 
H3K9 (red triangles), thus 
promoting DNA packaging and 
epigenetic gene silencing. In 
euchromatin regions, instead, 
HP1 protects nascent transcripts 
from premature degradation, 
thus reinforcing gene expres-
sion. According to our model 
HP1 could hypothetically bind 
target transcripts by specifically 
recognizing methylated residues 
(blue circles). HP1 functional 
inactivation leads to DNA de-
condensation in heterochroma-
tin and post-transcriptional gene 
silencing in euchromatin. Yel-
low lollipops depict acetylated 
histone tails
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HP1 chromodomain to nascent transcripts occurs. Consider-
ing the methyl-binding affinity of HP1 proteins, we certainly 
cannot exclude the possibility that HP1, as an epigenetics 
reader, might specifically recognize and bind, through its 
chromodomain, methylated residues on target RNAs, thus 
directly regulating their metabolism and processing. The 
methylated residues in RNA sequences could in fact allow 
HP1 to discriminate between different transcripts and to spe-
cifically regulate their metabolism and processing (Fig. 2). 
In conclusion, the dual role of HP1 in epigenetic gene silenc-
ing and positive regulation of gene expression could just be 
two sides of the same HP1 coin.
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