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Abstract

The mortality risk factors for coronavirus disease (COVID-19) must be early

predicted, especially for severe cases, to provide intensive care before they develop

to critically ill immediately. This paper aims to develop an optimized convolution

neural network (CNN) for predicting mortality risk factors for COVID-19 patients.

The proposed model supports two types of input data clinical variables and the

computed tomography (CT) scans. The features are extracted from the optimized

CNN phase and then applied to the classification phase. The CNN model's hyper-

parameters were optimized using a proposed genetic-based adaptive momentum

estimation (GB-ADAM) algorithm. The GB-ADAM algorithm employs the genetic

algorithm (GA) to optimize Adam optimizer's configuration parameters, conse-

quently improving the classification accuracy. The model is validated using three

recent cohorts from New York, Mexico, and Wuhan, consisting of 3055, 7497,504

patients, respectively. The results indicated that the most significant mortality risk

factors are: CD 8þ T Lymphocyte (Count), D-dimer greater than 1 Ug/ml, high

values of lactate dehydrogenase (LDH), C-reactive protein (CRP), hyperten-

sion, and diabetes. Early identification of these factors would help the clini-

cians in providing immediate care. The results also show that the most

frequent COVID-19 signs in CT scans included ground-glass opacity (GGO),

followed by crazy-paving pattern, consolidations, and the number of lobes.

Moreover, the experimental results show encouraging performance for the pro-

posed model compared with different predicting models.

KEYWORD S

artificial intelligence, classification algorithms, deep learning, evolutionary computation,
genetic algorithms, hybrid intelligent systems, medical diagnostic, predictive model

1 | INTRODUCTION

The outbreak of the coronavirus disease 2019 (COVID-
19) caused worldwide health fears; the virus causes seri-
ous respiratory difficulties, leading to patients' decease.1

On March 11, 2020, the World Health Organization
(WHO) declared it as an international pandemic.2 On
September 30, 2020, WHO reported 33 916 696 confirmed
cases and 1 013 879 deaths worldwide.3 The real numbers
are probably much higher as a result of lack in reporting
and making the tests. The severe growth in coronavirus
disease (COVID-19) infections has set stress on* Scientific Research Group in Egypt (SRGE) www.egyptscience.net
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healthcare structures; there is a crucial need for a better
understanding of the pathogenesis of this syndrome to
accurately triage patients. Moreover, recent studies4 have
shown a shocking mortality rate of 62% for critically ill
cases and growing with age and patients with severe
respiratory tract symptoms. Recent studies5 refer that it is
likely to reappear a second wave for the virus that needs
to be early monitored. The severity of COVID-19 cases6,7

is putting excessive stress on medical structures to pro-
vide the appropriate diagnosis and treatments early.
Unfortunately, at present, there are no available proce-
dures to differentiate patients that need immediate medi-
cal care and to determine their mortality rate.

Moreover, the pathological data and clinical risk fac-
tors of COVID-19 are rare. Due to the limited number of
expert clinicians and radiologists, the hospital and medi-
cal centers need artificial intelligence-based models to
analyze the clinical, laboratory, and radiological charac-
teristics and predict mortality risk factors in severe
COVID-19 patients. Different studies8–10 have been made
to predict different mortality risk factors including pro-
calcitonin (PCT), low platelet counts, D-dimer, and lac-
tate dehydratase (LDH). The results obtained might be
restricted statistically biased due to the limited size of the
cohort used and due to the lack of generalization. Given
these challenges, devolving tools that can identify the
mortality risk factors of COVID-19 cases from large and
recent cohorts of patients is an urgent need, which could
be helpful for healthcare workers for taking the appropri-
ate decision regarding the provided treatment regimes. In
this context, this paper presents an optimized deep learn-
ing inspired model (ODL-COVID) for predicting risk fac-
tors for mortality of COVID-19 patients, based on CNN,
for three different recent cohorts from New York, Mex-
ico, and Wuhan, consisting of 3055, 7497, and
504 patients, respectively. Deep learning (DL) techniques
are used to create end-to-end models to achieve promis-
ing results using input data, without using the feature
extraction techniques. DL techniques,9–12 especially the
convolutional neural networks (CNNs), have been com-
monly used in diagnosing, predicting, and classifying
COVID-19 clinical variables, X-ray, and CT images. Even
though the original CNNs have verified promising perfor-
mance in predicting and diagnosing medical data, differ-
ent parameters need to be optimized. To improve the
performance of CNN, a new optimization algorithm
named genetic-based adaptive momentum estimation
(GB-ADAM) is proposed, in the deep learning phase,
which integrates the genetic algorithm (GA),13 as an evo-
lutionary computation algorithm, with Adam optimizer14

to optimize the learning phase. It is used for bac-
kpropagation and automatically updates the weights of
CNN. ODL-COVID model is proposed to employ

different AI techniques to improve the prediction pur-
pose of the model.

The main significance of the paper is as follows:

• The ODL-COVID model is used to predict the risk fac-
tors for mortality of patients with COVID-19. The
model is validated using three recent cohorts from dif-
ferent geographic areas, which will help healthcare
workers figure out the features of the COVID-19's sec-
ond wave and provide immediate medical interaction
for severe cases with high-risk factors. ODL-COVID
discovers different variances for risk factors, even at
earlier phases than clinicians.

• Using the deep learning technique in the model gives
the ability to analyze a larger number of cohorts and
investigate different data formats (clinical variables
and CT images) for the training phase. Also, it elimi-
nates the low positive rates caused by limited data, as
it retains thousands of information from less known
objects.

• Unlike most of the CNN models presented, this study
proposes a new CNN architecture for extracting the
deep factors from COVID-19 datasets, which is not a
pre-trained model. It is trained from scratch using six
different layers: four convolution layers, four max
pooling layers, four exponential linear units (ELUs)
layers, three fully connected layers, two dropout layers,
and one output layer Softmax. These layers, described
later in detail, have guaranteed an effective and fast
extraction of COVID-19's features, and promising
results were achieved.

• The optimized trained CNN model's extracted features
have been applied as the input to the classification
phase for training. The classification phase classifies
the mortality risk factors based on these extracted fea-
tures, using different classifiers, which are support vec-
tor machine (SVM), naive Bayes (NB), and
discriminant analysis (DA). ODL_COVID selects the
classifier with higher accuracy and minor classification
error obtained.

• A genetic-based adaptive momentum estimation (GB-
ADAM) algorithm is proposed to optimize the hyper-
parameters used by the Adam optimizer in the CNN
model's learning phase, consequently improving the
classification accuracy.

• The proposed model is validated using three recent
cohorts from different locations to ensure the model's
generalization. Also, it has been found that the most
common COVID-19 signs in CT scans included
ground-glass opacity GGO, followed by crazy-paving
patterns, consolidations, and the number of lobes. The
results proved that the ODL-COVID model could han-
dle large volumes of data with a minor learning cost.
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• ODL-COVID identifies the most significant predictors
among many clinical and laboratory features (11 056
patients with 141 features/each). The results obtained
from the prediction model are validated by comparing
its performance with different prediction models: stan-
dard CURB-65 score,15 DL-COVID,9 and deep learning
survival Cox.10

• A consistent AI-based model has been presented for
COVID-19 risk factors prediction to help clinicians and
radiologists speedily prioritize the patients with high-
risk factors when there are limitations in medical
resources. Taking earlier decisions will save patient
lives, specifically during the pandemic.

The paper is structured as follows: Section 2 shows
some preliminaries used in the paper. Recent COVID-19
prediction models are presented in Section 3. Section 4
presents a detailed description of the proposed ODL-
COVID model, and the proposed GB-ADAM algorithm is
presented. The performance of ODL-COVID is evaluated
in Section 5, showing the effect of implementing GB-
ADAM in optimizing the CNN. The results are compared
against the most recent prediction models. Section 6 dis-
cusses the results and concludes the paper.

2 | PRELIMINARIES

The proposed ODL-COVID model is based on CNN and
Adam optimization. Thus this section briefly reviews
these preliminaries.

2.1 | Convolutional neural network

2.1.1 | The convolution layer

It is the major layer in the CNN structure block. It is used
to extract the input's significant features. It consists of
several kernel matrices and outputs the activation maps
(output matrix), where a bias value is added, as shown:

Lzj ¼ fun
X

i �mapj
Lz�1i �TKz

ijþBiaszj

0@ ð1Þ

where Lz�1
i is the former layer, mapj is the input map to

this layer, TKz
ij is the trained kernel, and Biaszj is the bias

value to be added. The main aim of the training process
is to train the weights of the kernel. The Rectified Linear
Unit (ReLU): The layer follows the convolutional layer,
called the activation layer. It is used to calculate the

output of the neural network using linear combination,17

as shown in the following activation function:

Ϝ Lð Þ¼Maximum 0,Lð Þ ð2Þ

In this study, we used exponential linear units
(ELUs), a special type of the ReLU, to fasten the training
process by making the activations nearly equal to zero, as
shown in the following equation:

Ϝ Lð Þ L if L>0

h eL�1
� �

Otherwise

(
ð3Þ

where h≥ 0 is the hyperparameter that needs to be opti-
mized. The results of using ELUs proved greater accuracy
during classification compared with results obtained by
the ReLUs. The Max Pooling layer: This layer is used for
downsampling the number of nodes between con-
volutional layers in the network. The Fully connected layer:
It is placed at the end of the CNN to guarantee the proper
connections between computational and activations nodes
in these layers. Its main goal is to transmit the activations
to the end of the network for the later units.

2.1.2 | Adam optimization

It is an optimization algorithm14 that exploits the stochas-
tic gradient data (GD) for the objective function, based on
adaptive estimations of lower-order moments. Adam
algorithm computes the learning rates from the approxi-
mations of the first and second gradients moments, merg-
ing the gains of AdaGrad17 and RMSProp.18 The first
momentum (mean) is achieved by:

mi¼ β1mi�1þ 1�β1ð Þ ∂C
∂w

ð4Þ

The second momentum (the un-centered variance) is cal-
culated as follows:

vi¼ β2vi�1þ 1�β2ð Þ ∂C
∂w

� �2

ð5Þ

where β1, β2 are the average rates for the movement of
the momentum. ∂C

∂w is the cost function with parameters
w, where w is weight. mi and vi are biased near to zero,
when β1 and β2 are nearly 1. To respond to these biases,
Adam algorithm uses the corrected bias estimation of the
first and second moment as follows:
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bmi¼mi= 1�β1ð Þ ð6Þ

bvi¼ vi= 1�β2ð Þ ð7Þ

These moments are used in the Adam update rule as
follows:

wiþ1¼wi�α
bmiffiffiffiffiffiffiffiffiffiffiffibviþ ε

p ð8Þ

where α is the learning rate, ε is used to avoid the case of
dividing by 0.

3 | LITERAL REVIEW

In the last few months, several studies8–10,20–23,27,28 tried
to present a predictive model to identify the most com-
mon mortality features associated with COVID-19 cases.
Zhang et al.9 presented a deep learning neural network
algorithm to detect mortality's most significant variables.
Their results indicated that D-dimer, oxygen index, lym-
phocyte, C-reactive protein, and LDH are the highest
mortality predictors in their cohort that contain only
181 COVID-19 patients. The small size of the cohort used
in this study reflected that the results obtained are statis-
tically biased. Liang et al.10 presented an application to
calculate patients' risk at admission, using a deep learn-
ing technique. Although this study used three different
cohorts with a total of 1590 patients, it only used 10 clini-
cal variables in their study, which will not reflect the
patient's whole severity degree. The study date was from
November 2019 to January 2020, which indicates that the
predicted factors are for the first wave of COVID-19,
which might be mutated.

A severity prediction framework is presented in Ref-
erence 19 using supervised learning. The study predicts
hemoglobin, alanine aminotransferase, and myalgias as
risk factors. However, the data used for the study are rel-
atively small. Yan, Li, et al.20 reported that LDH, lympho-
cyte, and C-reactive protein are the main risk factors for
the cohort of 375 patients and 300 features. The predic-
tion model presented used single and multi-tree XGBoost
as machine learning methods. The authors suggested
using a larger size of patients and features to enhance
their model's performance. The main limitations for these
models are the lack of generalization in the validation,
using only internal validation, and the limited sample
size and old study dates of the cohorts used in their
studies.

On the other hand, different hybrid intelligent sys-
tems24–26 have been presented to solve different optimiza-
tion problems. Many efforts had been made to optimize
Adam algorithm for CNN optimization. Jiyang et al.26

proposed an optimization algorithm that combines
ADAM, genetic algorithm, and boosting. Their presented
algorithm, namely, boosting based GADAM (BGADAM),
is used to enhance the classifications model's training
rate. Dokkyun et al.27 enhanced Adam algorithm by
embedding the cost function in the parameter Adam's
update rule to avoid the local minimum.

4 | THE PROPOSED OPTIMIZED
DEEP LEARNING INSPIRED MODEL
FOR PREDICTING RISK FACTORS
FOR MORTALITY OF PATIENTS
WITH COVID-19

In this paper, an optimized deep learning inspired model is
proposed to predict the risk factors that cause mortality for
COVID19 patients (ODL-COVID), as shown in Figure 1.
The prediction model is based on CNN and machine learn-
ing techniques. The model accepts two types of data: input,
the clinical variables dataset, and the CT images dataset. It
consists of five main phases: Pre-processing, offline aug-
mentation, deep learning, classifier learning, and model
evaluation. The pre-processing phase is used to impute
missing data in the input data and remove any noise in the
data. The missing data are replaced statically with
substituted values. In ODL-COVID model, different impu-
tation methods are applied based on the type of features.
For numeric features, a predictive mean matching (PMM)
is applied. While for the multi-features that have more than
two levels, a Bayesian multinomial logistic regression
method is applied for imputation.

FIGURE 1 The block diagram of the newly proposed CNN

model
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In addition, a Gaussian function is used for Gaussian
blurs in CT images dataset to eliminate the noise in order
to extract the substantial section.

The pre-processed data are divided into two sets, one
set training with 70% and one for testing data 30%. The
offline augmentation is applied to the training dataset
only to normally distribute the number of samples for the
severe and mild classes for COVID-19 patients, to solve
the class imbalance problem in COVID-19 datasets. For
the CT images, the augmentation is applied using the
rotate and flip data approaches. The augmentation
applied reduces overfitting that might occur in CNN and
enhance the convergence, which eventually contributes
to improved results. The test dataset will be used for test-
ing the deep learning phase, after the training process, to
extract the relevant deep features. The extracted deep fea-
ture will be used as an input to the classifier learning
phase to increase the classification accuracy, and the clas-
sification error will be reported. The optimization in
CNN is based on the features of Adam optimization and
GA algorithm. The mutation and crossover operations of
GA are efficiently used to calculate the learning rate,
weight, and bias for training the classifier, to achieve
improved data classification performance.

In the deep learning phase of ODL-COVID, a pro-
posed CNN model is presented for extracting the deep
factors from COVID-19 datasets, shown in Figure 2. It
consists of 18 layers with six different layers: four convo-
lution layers, four max pooling layers, four ELUs layers,
three fully connected layers, two dropout layers, and one
output layer, Softmax. An ELU layer follows each convo-
lution layer.

The ELU layers output is followed by max pooling
layer. At the end of the architecture, there are two fully
connected layers followed by dropout layers with a prob-
ability of 0.1 to improve all-purpose classification pur-
poses. Finally, one fully connected layer is connected
with a Softmax layer, as shown in Table 1. The designed
CNN model is then optimized by the proposed GA-Adam
algorithm, discussed later, to update the model's weights
and for the backpropagation. To start training the CNN
model, the CNN's hyperparameters are initialized: the
initial learning rate (αÞ, the initial parameter vector w0ð Þ,
and the maximum iterations (Maxit) using Adam
suggested parameters' initializations.

In the classifier learning phase, three different classi-
fication algorithms, SVM, NB, and DA, have been used to
predict the risk factors of COVID-19, considering the
deep features extracted from CNN. The features extracted
are divided into 70% for training and 30% for testing data.
Then, each classifier is trained and tested to predict the
relevant risk factors, and the results obtained from each
classifier are evaluated. The proposed model's main idea
is to benefit from the features extracted from the trained,
optimized deep learning phase and machine learning
techniques to achieve a reliable prediction model for
COVID-19 mortality.

The proposed model is trained for binary and multi-
class classification. The classification phase deals with
binary classification problem, as it classifies the cases in
the dataset to COVID-19 and non-COVID19 cases. Then,
the classification algorithm will classify the detected
COVID-19 cases to moderate, severe-survived, and
severe-died cases, as a three-class problem.

FIGURE 2 The block diagram of the proposed ODL-COVID model
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The model evaluation phase is used to validate the
overall model's performance. The accuracy, specificity,
sensitivity, F-score, the area under the curve (AUC) of
receiving operating characteristic (ROC), confusion
matrix, and the false-positive rate (FPR) are used for eval-
uation, where true positive (TP) and true negative
(TN) symbolize the number of truly predicted severe and
moderate cases. In contrast, false-positive (FP) and false-
negative (FN) represent the number of wrongly predicted
severe and moderate cases.

4.1 | The proposed genetic-based
adaptive momentum estimation
optimization algorithm

In the deep learning phase, a new optimization
algorithm named genetic-based adaptive momentum esti-
mation (GB-ADAM) is proposed, which employs GA to
optimize Adam's configuration parameters, consequently
improving the classification accuracy. The computation
steps are shown in Figure 3.

In each generation, Adam optimizer is used to train
the variables of the model (Mod1

1, Mod2
1…., Modn

i)
where n is the number of model variables per generation
i, selected by the GA using the selection, crossover, and
mutation operations. The variables with the highest fit-
ness functions will be selected to produce the new

generation. These operations are repeated until the con-
vergence is reached. And the generation with the highest
variables will be selected as the output solution of the
model. Figure 4 shows the detailed steps of applying the
GA to the Adam algorithm for optimizing its configura-
tion parameters. The GB-Adam processing can be divided
into six main phases: initial population, fitness function
evaluation, selection, crossover, mutation, and test
termination.

In the initial population phase, Adam's parameters are
represented as chromosomes for the initial population.
These chromosomes are randomly generated, and the
chromosome with superior solution has a high probabil-
ity of reproducing. A subset of Adam's parameters is den-
oted in each chromosome as a decimal sequence. In the
fitness function evaluation phase, first the cost function
can be calculated as follows:

Costn
i¼Cost Modn

i
;μ

� �
¼

X
Ftj, Lbjð Þ � μ

l Ftj, Lbj;VarV
n
i

� �
ð9Þ

L (�, �; VarV ) represents any cost function for a specific
vector of variables. μ is the validation sample, Ftj is the
features of instance j, Lbj is the labels associated with
instance j, and VarV

n
i is the vector of all assigned vari-

ables in model i of generation n. Then, the fitness values

TABLE 1 The details of the

proposed CNN architecture model
Name Type Size

Conv1 Convolution 3 � 3 pixels—16 different filters—128 bias

ELU1 Exponential linear units 74 � 74

Pool1 Max pooling 3 � 3 max pooling layer

Conv2 Convolution 3 � 3 pixels—32 different filters—256 bias
5 � 5 convolutional kernels

ELU2 Exponential linear units 9 � 9

Pool2 Max pooling 3 � 3 max pooling layer

Conv3 Convolution 3 � 3 pixels—32 different filters—256 bias

ELU3 Exponential linear units 3 � 3

Pool3 Max pooling 3 � 3 max pooling layer

Conv4 Convolution 3 � 3 pixels—32 different filters—512 bias

ELU4 Exponential linear units 1 � 1

Pool4 Max pooling 3 � 3 max pooling layer

Fulcon1 Fully connected 64 neurons

Dropout1 Dropout with a probability of 0.1

Fulcon2 Fully connected 48 neurons

Dropout2 Dropout with a probability of 0.1

Fulcon3 Fully connected 4 neurons: 4 mortality risk factors

Softmax1 Softmax 1 � 1
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of all chromosomes are computed using a predefined fit-
ness function, as shown:

Fiti Chrið Þ¼ω 1�Perf a,b,c
� �þ 1�ωð Þ 1� SiFT=NFtð Þ�Costn

i

ð10Þ

where ω is a parameter that selects the adjustment
between a specific classifier performance Perf a,b,c (assum-
ing that a is for SVM, b for NB and c for DA), the fea-
tures' size (SiFTÞ, and the number of features of NFt.
This fitness function is used for the training phase to
decrease the number of COVID-19 mortality risk factors

(select only the most significant factors), decrease the
cost, and increase the classification accuracy.

The fitness function unit can be considered the mea-
sure of each chromosome's fitness degree based on the
classifier's accuracy. The best chromosome is the one that
introduces the maximum fitness value. Each chromo-
some's fitness value should be provided by calculating
the accuracy of the three suggested classifiers, and the
best results obtained by the classifier should be nomi-
nated. In the selection phase, certain pairs of parents are
selected for generating offspring. For each chromosome,
the probability of selection (Psl) is assigned. The selection
operation is applied by changing the gene's combinations

FIGURE 4 The steps of applying

GA to Adam

FIGURE 3 The block diagram of

the proposed GB-ADAM
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and switching the corresponding parts of the string. In
the crossover phase, the probability of the crossover value
(Pcr) is assigned for the pairs of parents to specify if the
crossover operation will be applied between them or not,
to generate new offsprings for the next generation.
Unlike the original Adam algorithm, which uses trial and
error in tuning the configuration parameters, the cross-
over operation is executed between the selected pair of
parent solution PS, which is the pair with the highest fit-
ness values obtained from Equation (10). The crossover
process leads to the creation of new solutions from exis-
ting good ones (chromosomes) to produce better off-
spring's in the new generation, based on a predefined
crossover rate CR � [0,1]. In the mutation phase, the
probability of mutation (Pmu) is assigned for every off-
spring to indicate if the mutation process will be per-
formed on every offspring or not. Mutation process
changes a chromosome locally to generate new better
solutions under the constraints of a predefined parameter
mutation rate (MR). If the chromosome' fitness value is
below the MR value, then each gene in the parent solu-
tion is mutated based on this equation:

Chri¼PSiþρi RSi�PSið Þ ð11Þ

where Chri is the newly generated chromosome, PSi is
the parent solution, ρi is a random number � [�1,1], and
RSi is the random chromosome selected. The old set of
chromosomes are replaced with the newly generated
chromosomes. And then the size of the newly
generated population is checked; if it is still less than the
initial population's size, then the steps from selection to
mutation phase will be repeated, otherwise the initial
populations will be replaced by the new populations.

In the termination phase, the number of generations
will be examined to terminate the algorithm. If the cur-
rent generation's index reached the predefined number of
the maximum iterations (Maxit), then the newly gener-
ated solutions are selected, which is the chromosome
with the highest fitness function found. If there are more
generations, the former phases from the fitness function
evaluation phase will be repeated. At the end, the best
combination of features (parameters) is represented in
the chromosome that provides the highest fitness value.
These optimized parameters are then used in Adam's
configuration for optimizing the CNN. The pseudo-code
of the proposed GB-Adam algorithm is presented in
algorithm 1.

Applying GA with Adam optimizer provides the
advantages of exploration and exploitation features,
which lead to a speedy convergence with the capability to
avoid local minima. In other words, GA-ADAM com-
bines the advantages of the genetic algorithm (GA) along

with the Adam algorithm to select the more effective
genes in order to optimize the classification accuracy
without reaching the local optima. In the GA-ADAM
algorithm, two ways are implemented for this issue: First,
in the initial population, change the crossover probability
by increasing and randomizing the number of population
and ensure that the number of generation is increasing.
When the fitness restarted, revert to the initial configura-
tion and randomize all selected for crossover. This will
avoid the local minima, especially in the big search space.
Second, by reducing the crossover probability and
increase mutation on the condition that the number of
generations increases. The higher the mutation rate is,
the more search space will be searched and the higher
the chance that the global minimum is found.

5 | EXPERIMENTAL RESULTS

Several experiments were conducted to evaluate the pro-
posed ODL-COVID model's performance on an Intel
Core i5-8250 1.80 GHz processor, 8 GB memory. Python
3.7 and TensorFlow 1.3 are used to run the model. The
main parameters are set, as shown in Table 2.

5.1 | Data sources used for external
validation

The datasets used were aggregated from different sources.
Initially, the dataset used was https://www.covidanalytics.
io/dataset, which collects data from over 160 published
studies, where the study end dates for the patients in this
dataset were between March 29 and April 18, 2020. This
dataset aggregates its data from different hospitals around
the world, which may have different equipment and
reporting standards. The information is standardized
across papers over best accuracy. This dataset is publicly
available.

Then, to ensure the generalization of the proposed
model, three independent cohorts21–23 are collected, with
extensive geographic coverage, for external validation.
The datasets used are from New York, Mexico, and
Wuhan, consisting of 3055, 7497, and 504 patients, as
shown in Table 3. Each cohort contains the following
information: (1) Demographic information (e.g. number
of patients in the cohort, aggregated age, and gender sta-
tistics); (2) comorbidity information (e.g. prevalence of
diabetes, hypertension, etc.); (3) symptoms (including
fever, cough, sore throat, etc.); (4) treatments
(including antibiotics, intubation, etc.); (5) standard labs
(including lymphocyte count, platelets, etc.); and (6) out-
comes (including discharge, hospital length of stay,
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death, etc.). The clinical variables used for the three
datasets collected were homogenously assessed. The
data used contain longitudinal information. The data
collected are available upon request from the first
author.

In addition, a COVID_CT dataset29 was used to vali-
date our proposed ODL-COVID model. The dataset con-
tains 349 CT images containing clinical findings of
COVID-19 from 216 patients. For each CT scan in the
dataset, different information is provided as patient age,
gender, location, medical history, scan time, severity of
COVID-19, and radiology report. The data are divided
into two sets, namely, training and testing. The results
obtained from patients' CT scans had been
evaluated once.

In the COVID_CT dataset, the images are collected
from COVID19-related papers. CT images containing
COVID-19 anomalies and severity degree are selected by
reading the captions of the figure in the papers. These
captions were created after radiologists had labeled the
images.

TABLE 2 The parameters used to evaluate the ODL-COVID model

Parameter Value Parameter Value

Number of generations 500 Crossover rate (CR) 0.7

Population size PSize 30 Mutation rate (MR) 0.01

Maximum iterations Maxit 900 Initial learning rate 1e�5
Number of epochs 64 The learning rate was decreased by 0.01 after each 12th epoch

TABLE 3 The details of the three independent cohorts used for validation

Cohort New York Mexico Wuhan Merged dataset

# of patients 3055 7497 504 11 056

# of Excluded records 291 499 78 808

# of Study days 33 49 99 49

Study end date April 11, 2020 April 18, 2020 March 29, 2020 April 18, 2020

Mortality rate 6.9% 9.1% 15.67% 10.56%

#severe-died 191 630 76 897

#Severe-survived 305 980 73 1358

#Moderate 2268 5388 337 7994

AUC 0.978 0.963 0.987 0.982

Algorithm 1

Pseudo-code of GB-Adam algorithm

Inputs: C(w): Cost function with parameters w
w0: Initial parameter vector
Output:

The parameters combination with the highest
fitness function

α� 0:001,0:01½ �: The learning Rate
β1,β2 � 0,1½ �: Exponential decay rates for the

moment estimates
ε� 10E�8,10E�7½ �: A number to prevent

any division by zero
Start
mo 0, v0  0
Do
Iter = iter + 1;
Generate (Chri, Chr2,… nÞ:
For each i in n
Calculate Fiti Chrið Þð Þ based on equation (10)

ApplySelection,Crossover,mutation:

if F it Chrið Þ<Fit Chriþ1ð ) then
Replace F it Chrið )
Update Population
Else
Remain F it Chrið )
End For
Update parameters
High α,β1,β2,εð Þ  Get-Highest (Parameters

combination)
While (iter<= max iteration Maxit) i 0
Do
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The COVID-19 patients in these cohorts were divided
into three groups: severe and died (SD), severe and sur-
vived (SS), and moderate (M) cases. After collecting these
datasets, the proposed ODL_COVID model analyzed and
ranked 102 laboratory variables and 39 basic and clinical
features for the patients: 49% of patients are males, the
median age is 46, and 26.5% are smokers. Severe cases
(Sc) presented more comorbidities than moderate cases
(Mc) as follows: hypertension (Sc = 38.7% and
Mc = 11.2%), diabetes (Sc = 25.3% and Mc = 9.1%), and
cardiovascular disease (Sc = 16.7% and Mc = 3.2%).

5.2 | The most significance mortality
risk factors

This experiment is used to identify the most significant
mortality risk factors detected in severe cases. After the
classification algorithm in ODL-COVID correctly classi-
fied the severe cases, it detected the top most frequent
features appeared in these cases, as shown in Figure 5.
Figure 5A shows the most frequent basic and clinical

FIGURE 5 The top most significant

features obtained by ODL-COVID. (A) The

most frequent basic and clinical features.

(B) The most frequent laboratory variables

i i+1

Input High α,β1,β2,εð Þ

mi  β1:mi�1þ 1�β1ð Þ: ∂C∂w wið Þ

vi β2:vi�1þ 1�β2ð Þ: ∂C
∂w

wið Þ2

bmi  mi/(1 - β1)bvi  vi/(1 - β2)

wiþ1 wi�α:
bmiffiffiffiffibvip þ ε

While (w not converged)
return wi

End
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features in the dataset, which are diabetes (29.7%), hyper-
tension (28.6%), elder age (25.4%), cardiovascular disease
(21.1%), dyspnea (20.5%), and diarrhea (19.1%), which is
considered as an individual symptom.

Figure 5B shows the most frequent laboratory vari-
ables. The results show that the most significant labora-
tory variables for mortality, obtained by ODL-COVID,
were as follows: CD 8þ T lymphocyte (Count), D-dimer
greater than 1 μg/ml, high values of lactate dehydroge-
nase (LDH), and C-reactive protein (CRP) individually
and associated with two main risk symptoms: diabetes
and hypertension.

Moreover, the results show that the most common
COVID-19 signs in CT scans included GGO, crazy-paving
pattern, consolidations, and lobes' number, as shown in
Table 4.

5.3 | ODL-COVID performance
validation

The performances of ODL-COVID are measured using
AUC when identifying the six most significant risk fac-
tors. In this experiment, the binary classification of ODL-
COVID is evaluated. Figure 6 shows the AUC curves for
ODL-COVID compared with other prediction models:
standard CURB-65 score,15 the resultant risk score (DL-
COVID),9 and DL survival Cox.10

The performance of ODL-COVID, with AUC = 0.982,
outperformed other models: CURB-65 (AUC = 0.671),
DL survival Cox (AUC = 0.911), and DL-COVID
(AUC = 0.961). Besides validating the results obtained by
the binary classification of ODL-COVID, the multi-
classification is also validated.

The multi-class classification, which predicts the
severity degree (Moderate M, Severe-Survived SS, and
Severe-Died SD), is validated by calculating the predic-
tion accuracy using the confusion matrix of the testing
data, as shown in Figure 7.

The accuracy was obtained as 0.9555, 0.9356, and
0.965 for M, SS, and SD cases, respectively. The confusion
matrix in Figure 7 shows the prediction accuracy of all
cases, which is 96.45% (where 866 cases are correctly
predicted as SD out of 897 patients, and only seven cases
were classified as moderate case.) using the extracted fea-
ture. Of the 7994 moderate cases, 249 were classified as
SS, and 107 were classified as SD. Seventeen of the 1358
SS cases were classified as M, and 71 were classi-
fied as SD.

5.4 | The classifier learning phase
validation

This experiment is used to validate the classifier learning
phase's performance in the proposed model and test the

TABLE 4 The laboratory variables and radiological features for COVID-19 patients

Laboratory variables
Normal
range

All patients
(11 056)

Moderate
cases (7994)

Severe-survived
(1358)

Severe-died
(897)

CD8+ T Lymphocyte (Count) (�109/
L)

1.1–3.2 0.86 (0.57–
1.16)

1.00 (0.67–1.23) 0.73 (0.49–1.03) 0.59 (0.34–1.05)

D-Dimer (μg/ml) 0–0.5 0.23 (0.13–
0.52)

0.15 (0.10–0.24) 0.28 (0.17–0.58) 1.89 (0.38–3.41)

Lymphocyte percentage (%) 20–50 20.3 (10.0–
29.1)

24.9 (17.3–34.2) 14.0 (8.7–24.7) 8.4 (4.7–15.2)

Lactic dehydrogenase (LDH) U/L 125–243 300�(234–407) 253.5 (219�0–318�0 389(319504) 521 (363�0–669�0)
C-reactive protein (CRP) (mg/L) 0–3 27.9 (9.0–60.6) 15.9 (4.5–38.1) 36.3 (18.3–72.5) 105.2 (53.3–160.3)

Procalcitonin (PCT) (ng/ml) 0–0.1 0.06 (0.0–0.13) 0.04 (0.0–0.05) 0.1 (0.04–0.24) 0.29 (0.10–0.60)

Creatinine kinase-MB (ng/ml 0.0–6.22 1.1 (0.6–2.2) 0.8 (0.5–1.4) 1.5 (0.7–3.1) 2.2 (1.1–3.6)

Serum creatinine (μmol/L) 64–104 67.6 (55.9–
85.2)

66.4 (54.0–80.7) 80.0 (66.0–112.0) 62.9 (52.0–75.0)

CT image—COVID-19 signs

GGO (%) 85.6 89 84.5 80

Consolidation (%) 62.7 64.4 62.2 60

Crazy-paving pattern (%) 54.2 53.4 54.5 55.6

More than five lobes (%) 55.6 37.1 69.2 91.4

Note: Data are shown as median (confidence interval range) or no. (%) eight hundred and seven out 11 056 patients were excluded due to missing information

or noise.
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deep features extracted from the optimized CNN. The
accuracy, sensitivity, specificity, FPR, and F1 score are
calculated for each classifier presented in the model,
using the deep features extracted from the different
datasets, as shown in Table 5.

The SVM classifier was superior to NB and DA in the
merged dataset collected. It was realized that SVM classi-
fier ensured an improvement in the mortality prediction
for New York and Wuhan datasets. Therefore, SVM
result improved classification for mortality prediction
with accuracy, sensitivity, specificity, FPR, and F1 score
are 93.85%, 96.09%, 91.62%, 84.1%, and 93.82%,
respectively.

5.5 | The disease severity degrees

A risk classification system is proposed based on the six
most significant risk factors obtained from the ODL-
COVID. This system is used to predict the risk and severity
degrees. The severity degrees range from 0 to 6 (frommod-
erate to extremely severe). The severity degrees' classifica-
tion method is used to predict mortality, using the findings

obtained fromODL-COVID, as follows: The risk classifica-
tion system uses a score calculator that adds a degree to
the total score of a case if it detected one of the following:
high values of lactate dehydrogenase (LDH), CD 8þ T lym-
phocyte, C-reactive protein (CRP), D-dimer greater than
1 Ug/ml, hypertension, and diabetes. Figure 8 shows the
results of the risk score model for the whole dataset.

The SD cases increased with the increase in severity
degree, while M and SS cases decreased with the decrease
in severity degree. The mortality rates for the severity
degrees' classification method of 0, 1, 2, 3, 4, 5, and 6 were
0%, 0%, 5.3%, 17.2%, 59.7%, 70.8%, and 89.1%, respectively.

5.6 | Risk probability monitoring

The risk probability system calculates the risk of severe
disease at admission and during patients' stay. Based on
the obtained risk probability, the patients are categorized
into moderate and severe cases.

This experiment is used to compute the risk probabil-
ity for severe (SD and SS) and non-severe cases (M) from
hospital admission to the end of the study days. As pres-
ented in Figure 9, ODL-COVID monitors the risk proba-
bility through the days of study. AUC's prediction
performance at the end of the study is 0.961, while AUC
is 0.881 at hospital admission.

These results show that the clinical, laboratory, and
radiological features help predict risk in severe cases.

6 | DISCUSSION AND MAIN
CONCLUSION

The proposed model consists of two main phases: The
deep learning phase and the classifier learning phase.

FIGURE 6 The AUC and ROC curves for

the ODL-COVID compared with other models

FIGURE 7 The confusion matrix for all cases (10 249 patients)

with the 141 features
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The deep learning phase extracts deep features from the
deep layers of CNNs. These features will then be
the input to the classifier learning phase to improve

COVID-19 risk factor prediction further. Our model's sig-
nificance is fivefold: First, most of the predictive models
use deep feature sets obtained from pre-trained models.

FIGURE 8 The disease severity degrees

with mortality percentage

TABLE 5 The classification models' performance (SVM-NB-DA) for different datasets using the ODL-COVID model's deep features

Classification models Accuracy Sensitivity Specificity FPR F1 score

New York ODL_COVID_SVM 0.9276 0.9747 0.8806 0.1194 0.9314

ODL_COVID_DA 0.9144 0.8982 0.9306 0.0694 0.9112

ODL_COVID_NB 0.9109 0.9112 0.9106 0.0894 0.9094

Mexico ODL_COVID_SVM 0.9332 0.9529 0.9135 0.0865 0.9343

ODL_COVID_DA 0.9340 0.9351 0.9334 0.0676 0.9279

ODL_COVID_NB 0.9291 0.9512 0.9071 0.0929 0.9294

Wuhan ODL_COVID_SVM 0.9538 0.9729 0.9347 0.0653 0.9552

ODL_COVID_DA 0.9391 0.9476 0.9306 0.0694 0.9385

ODL_COVID_NB 0.9388 0.9435 0.9341 0.0659 0.9377

Merged dataset ODL_COVID_SVM 0.9385 0.9609 0.9162 0.0841 0.9382

ODL_COVID_DA 0.9289 0.9329 0.9249 0.0751 0.928

ODL_COVID_NB 0.9263 0.9353 0.9173 0.0827 0.9255

FIGURE 9 The risk probability during the

days of the study
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However, ODL-COVID presented a new optimized CNN
model, which is trained from scratch. The results showed
that using the features extracted improved the prediction
performance. Second, instead of using the hyper-
parameters presented by Adam optimizer to optimize
CNN performance, our study presented GA-Adam opti-
mizer that improves the learning and classification
accuracy.

Third, the proposed model predicts the mortality risk
factors for different cohorts and presents a severity degree
classification method ranging from 0 to 6 (from moderate
to extremely severe). This classification model might help
to anticipate severe situations allowing better manage-
ment of all resources and maintaining a closer control of
these patients. Fourth, the six risk factors predicted—
lymphocytes-dimer, LDH, CRP, hypertension, and
diabetes—can be simply identified in any hospital or
and medical center. This will help limit limited
healthcare resources' situation; to prioritize severe
patients with high-risk probability quickly. Finally, most
of the predictive models presented suffer from a lack of
generalization in the validation and the limited sample
size and old study dates of the cohorts used in their stud-
ies. The proposed model used three recent cohorts from
different geographic areas, with a total of 11 056 patients,
which will help healthcare workers to figure out the fea-
tures of the COVID-19's second wave and provide imme-
diate medical interaction for severe cases with high-risk
factors.
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