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Musculoskeletal trauma accounts for a large percentage of emergency room visits and is amongst the top
causes of unscheduled patient visits to the emergency room. Musculoskeletal trauma results in expen-
diture of billions of dollars and protracted losses of quality-adjusted life years. New and innovative
methods are needed to minimise the impact by ensuring quick and accurate assessment. However, each
of the currently utilised radiological procedures, such as radiography, ultrasonography, computed to-
mography, and magnetic resonance imaging, has resulted in implosion of medical imaging data. Deep
learning, a recent advancement in artificial intelligence, has demonstrated the potential to analyse
medical images with sensitivity and specificity at par with experts. In this review article, we intend to
summarise and showcase the various developments which have occurred in the dynamic field of arti-
ficial intelligence and machine learning and how their applicability to different aspects of imaging in
trauma can be explored to improvise our existing reporting systems and improvise on patient outcomes.

© 2021 Delhi Orthopedic Association. All rights reserved.
1. Introduction

Musculoskeletal (MSK) imaging has come a long way, particu-
larly in the past two decades with rapid developments in the field
of medical imaging technology. With addition of artificial intelli-
gence (AI) to medical imaging technology has opened the doors for
innovation. It can be categorized as general purpose or point-based
AI solutions focussed on a single pathology. Most of the current
developments are happening in the space of point-based solutions,
considering the current maturity of the recent technological in-
novations. The growth in AI has been due to three key reasons:
access to high quality annotated data, rapid developments in the
space of deep learning and a massive leap in the computational
power through cloud-based graphic processing unit (GPU).

Injuries to the MSK system ranks amongst the top causes for
self-referred and unscheduled visits to the emergency depart-
ment.1 The direct cost of treatment of these injuries was nearly
$130 billion, with a little less than half of all injuries involving
tendons and ligaments. Over three-fourths of all missed working
days being attributable to their injury. The costs involved include
ar, Delhi, 110092, India.
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diagnostic costs, such as radiography, computed tomography (CT),
magnetic resonance imaging (MRI) and dedicated ultrasonographic
evaluation, followed by their relevant treatment costs.2

MSK pathologies due to various causes, which also includes
trauma, are the leading contributor to disability worldwide and
also the most significant contributor towards the global need for
rehabilitation. They are also the single most significant attributable
cause for years lived with disability, contributing to nearly 17% of
the total burden. Amongst all the MSK conditions, low back pain is
the most common cause of disability, closely trailed by fractures
(436 million globally on an annual basis), followed by osteoar-
thritis.3 Trauma-related disability has seen a significant rise due to
enhanced mobility which is the boon and bane of the new era due
to high-speed accidents. The risk of fracture has been rising over
the previous decades because of an overall increase in the preva-
lence of bone diseases like osteoporosis. There is a gender prefer-
ence, with females suffering more frequently than males. Amongst
these, the incidence particularly rises for those over 50-years of age.
Nearly 200 million are affected by osteoporosis alone.4,5 In the US,
this translates into 1.5 million fractures annually as per the pre-
2000 cross-sectional study.6 An American research venture
conceived aMarkov decision model which predicted the number to
be around 2 million, resulting in expenditure costs of over $17
billion by 2005, most of which pertains to in-patient care.7
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Misinterpretation or delayed diagnosis in trauma imaging can
lead to an increase in mortality and morbidity. The delayed diag-
nosis of occult fractures, especially at sites like the scaphoid or
pediatric long bone fractures, can have serious morbidity issues as
intervention gets delayed. A few surveys have shown that radio-
logical error closely trails improper clinical assessment as the
contributor towards missed diagnosis. In radiology, the primary
cause is attributable to the fact that patients who present to the
emergency, the interpretation is performed by registrars and not
consultants who have significant experience in interpreting and
correlating these findings clinically.8 Multiple studies have been
conducted to assess the rate of missed injuries and delayed diag-
nosis, andwhile the results have been variable, varying between 1.3
and 40% based on the study population and the datasets, it would
be fair to say that the number approaches double digits.9 Missed
diagnosis is particularly more common in patients with multiple
injuries and cases of road traffic accidents.

Advances in AI enormously benefit the field of radiology and
imaging. MSK fractures and bone/soft tissue injury are to signifi-
cantly benefit from these developments. Current research and the
role of AI through multiple clinical research papers clearly show
that a physician or imaging expert aided by AI fairs far better than
the unaided, and this is the crucial aspect of how AI will be
deployed in radiological workflows in the near future.10

Establishing AI in radiology workflow helps to benefit devel-
oped and developing countries even though the problem state-
ments in both these situations are different. In developed
economies, the issue is regarding insurance and malpractices,
which can arise if occult fractures and subtle lesions are missed.
While in developing economies, there is a core issue of lack of
adequately trained radiology resources who can screen for such
disease conditions quickly. As a result, there is a significant
advantage of deploying AI inworkflows for quick and instant triage.
Triage solutions are an innovative, sustainable, and scalable way for
ensuring equitable distribution of healthcare technology across the
world. The technology allows for various models and ensures that
the solution can be deployed across various geographic.11

In the regionwhere there is no access to the internet, the simple
tool of fracture triage can be employed even on an edge device
solution (next to a digital X-Ray machine or a CT scanner). At the
same time, hospitals and clinics which are working in an agile
manner with a skeletal information technology (IT) and support
staff can use adopt the cloud AI system that harnesses central
processing unit (CPU) and graphic processing unit processing from
the cloud enabling scalable allocation of resources.12

This review will explore the current applicability of AI in MSK
trauma, the developments in the past leading up to the current. We
also provide comments on how the dynamics of the radiologists
reporting room would change with integrating AI and other inter-
linked technologies.

2. Methods

An eclectic search of the PubMed and EMBASE database was
performed using numerous combinations of the keywords, “artifi-
cial intelligence”, “deep learning”, “machine learning”, “musculo-
skeletal trauma”, “law”, “CT”, “MRI”, “USG”, “radiomics”, “fracture”,
“osteoporosis”, “future directions”.

3. AI- the what, how and why?

AI is a field that amalgamates computer science and robust
datasets to allow problem-solving. AI further is grouped based on
its extent as narrow AI- “Artificial Narrow Intelligence (ANI) or
broader AI. ANI can be trained to perform specific tasks while the
2

broad AI, also known as general AI, would have self-awareness and
would therefore permit it to solve problems, learn and plan and
apply it to the future. All the AI applications in the present-day
world are ANI. General AI still remains an entirely theoretical
concept, but with the ongoing active research in the field, one day,
the concept of super, self-thinking AI will be feasible. Till then,
there is much scope for further improvisation of ANI to allow it to
supersede tasks that would previously require human input. AI
encompasses the fields of machine learning (ML) and deep learning
(DL), both of which are concerned with creating AI algorithms to
create expert systems that make predictions based on accurate
data.13

Arthur Samuel coined the word “Machine Learning” in 1952 and
described it as the ability of a computer to learn without being
explicitly trained to do so. In 1956, John McCarthy coined the term
artificial intelligence at the first ever such conference. In the 1980s
the neural networks came into being and soon gained popu-
larity.14,15 ML can be further classified into four types, based on the
learning styles-supervised, unsupervised, semi-supervised, and
reinforcement, amongst which supervised and unsupervised are
the more commonly used ones; the differences between them have
been depicted in fig. 1.16

Before we move further it is important to understand the
multitude of algorithms that exist today based on various learning
styles. For easier understanding, we have grouped them based on
their similarities in fig. 2.17

A simplified explanation of how the various AI algorithms work
using the various models. Regression is focused on iteratively
refining a model's relationship between variables using a measure
of inaccuracy in the model's predictions. Instance-based learning
models function by building up a database of example data and
comparing new data to the database using a similarity measure. As
a result, instance-based approaches are also known aswinner-take-
all and memory-based learning methods. The representation of the
stored instances and the similarity measures used between in-
stances are both highlighted. Regularisation models is a modifica-
tion to another approach (usually regression methods) that
penalises models for their complexity, favouring simpler models
that are also better at generalising. Decision tree approaches create
a model of decisions based on the actual values of data character-
istics. In tree architectures, decisions fork until a forecast choice is
made for a specific record. For classification and regression prob-
lems, decision trees are trained on data. Decision trees are popular
in machine learning because they are often fast and accurate.
Bayesian algorithms make use of the Bayesian theorem to solve the
problems of classification and regression. Clustering, like regres-
sion, identifies the problem type and procedure type.17,18

Artificial Neural Networks (ANNs) are models based on the
structure and/or function of biological neural networks. They are a
sort of pattern matching that's often used for regression and clas-
sification problems. However, they are actually a colossal subfield
comprising various methods and variations for a wide range of
applications. DL models are essentially extensions of the ANNs,
concerned with building much more complicated models using
multiple layers. The “Deep” in DL essentially implies the presence of
three or more layers of the neural network, “nodes”, including both
input and output. It is essentially scalable ML, as it can significantly
reduce the necessity of human intervention, something which was
needed in the early models of ANN and classical ML models.13,18 A
subtype of DL is the convolutional neural network (CNN), which
utilises images for processing. It differentiates between items in an
image by allotting their biases and weights. It then makes use of
relevant filters to understand the spatial and temporal de-
pendencies.16 Ensemble methods are models that are made up of
multiple individually weaker models that are trained



Fig. 1. The numerous machine learning algorithms over the period of time have been grouped under four headers as depicted, with each category being distinguished from the
other based on its specific learning style and the features centric to it.

Fig. 2. An illustration depicting the various AI algorithms grouped together based on their similarities. The three major algorithmic networks which have recently shown incre-
mental usage have been highlighted in the brown boxes, with a lens view into the various subcategories of algorithms that exist within the larger network.
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independently and then integrated in some way to create a final
prediction. This is a very potent group of tactics, and as a result, it is
extremely popular.18
4. State of the art developments with a snapshot of the past
decade

Within the past decade, the applications of AI have increased
exponentially, and there has been a corresponding yearly incre-
ment in research targeting use cases for development in the field of
musculoskeletal radiology. The main factor contributing to the
rapid growth is that with each model, there is increased learning in
the field and also, there is an increased availability of data for
3

training, validation and testing. Earlier applications were restricted
to the identification of bone tumours, assessing mineral density in
bones, recognition of trabecular patterns in long bones.19 Also, the
modality exploited primarily in the past was radiography with
lesser developments in the field of CT and MRI. However, the past
five years particularly have shown an increase in the number of DL
algorithms being developed to detect fractures on radiographs and
CT; detect injury to the meniscus, ligament tear, bone marrow
edema on MRI. A crucial step for this is the ability of AI to segment
the region of interest, as depicted in fig. 3.

Another significant breakthrough has come in the field of ul-
trasonography (USG), which was erstwhile neglected. USG has
gained significant traction as it provides high intra tissue contrast



Fig. 3. A snapshot of how a scan on an AI-enabled platform looks - the AI automatically segments the region of interest. For example: the red bounding box demarcates the right
knee, while the yellow bounding box demarcates the left knee. Right, and left knee segmentation has been done by training the AI model to identify the location of fibula and
DICOM metadata. On the top left corner, a text box shows the AI confidence to recognise if the finding is correct. Such a system is not used as a stand-alone but as a force multiplier
by having specific algorithms to identify regions of interest. Other algorithms can build upon this and further identify the abnormality, with the development and addition of such
algorithms being a continuous step. Image courtesy: DeepTek Inc.™ segmentation algorithm.
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resolution and dynamic assessment for evaluating small structures,
ligaments, muscles and tendons. In MSK imaging, this high contrast
resolution in the superficial 3e5 cm zone is critical for assessment
of soft tissue such as tendon, ligament and bursae. These have been
made possible due to extensive research and developments in in-
vestment powerful yet compact and light-weight transducers, Po-
wer Doppler and ultrasound elastography. The result of this
improvement has a direct impact on the quality of data acquisition.
Better quality data results in good output from resultant computer-
aided detection (CAD) algorithms.

The key to developing robust point solutions is access to good
quality annotated datasets. To improve data availability, several
data libraries have come up, like Kaggle, Google dataset search, UCI
machine repository, and the natural language processing database,
Datahub and google fusion tables.20 These make the data accessible
to researchers and data science experts. Kaggle follows an inter-
esting model of incentivising the development of algorithms by
coming up with competitions that support innovations. Data
managers like CKAN, Quandl and DataMarket exist, which
providing users with a platform.21
5. DL algorithms in the realm of MSK trauma

5.1. Radiograph based DL algorithms

The key element of MSK imaging is the pivotal role plain
radiograph plays in assessment. It is still relevant and the key
modality to start with while dealing with MSK trauma; while many
specialities have neglected them for the sake of cross-sectional
imaging, radiographs still hold an enviable position in MSK imag-
ing. The signs of injury on MSK radiographs can be as subtle as
blurring of the fat planes, the fullness of the fat pad and indistinct
subtle fracture lines, which can be seen on all or one of the view
(antero-posterior/postero-anterior, oblique, lateral). The other end
4

of the spectrum are complex fractures with prominent fracture
lines that are unlikely to be missed. Radiographs in two planes
provide a wealth of information to aid clinical diagnosis and help
set the appropriate clinical management. A radiograph with no
abnormal findings also has critical value in patient management.
All of this makes skeletal radiographs an indispensable tool,
particularly in emergencies of the MSK system.

The majority of the algorithms have focussed on identifying
fractures of a single anatomical region, and most of them have
utilised methods based on CNN, like Kim DH et al.22 who developed
a DL system for detection of wrist radiographs which surpassed
other computation methods of automated fracture detection based
on detection of edge, features and segmentation. Gale W et al.23

developed a DenseNet based architecture to detect hip fractures
from frontal pelvic radiographs, and their system managed to beat
expert human radiologists.

Vertebral fractures are a stronger determinant of future frac-
tures and are linked to a greater risk of death, persistent back pain,
kyphotic deformity, immobility, and a loss of self-esteem. The
overarching aims in managing osteoporosis are early detection and
adequate therapy. Chen HY et al. developed a ResNeXt architecture
as the backbone and further utilised transfer learning as it helps in
effective learning of parameters by the system even if it is trained
on unrelated datasets. They utilised abdominal radiographs as their
dataset to identity vertebral fractures and arrived at an area under
the curve of 0.72, which was though lesser than the parameters of
trained radiologists, orthopaedic surgeons and physicians, serves to
elaborate the extent to which AI systems have developed. Despite
having a lower accuracy, the system can identify regions that may
have fractures and, in the process, save the clinicians time in
evaluation of radiograph.24

An example of a DL algorithm at work identifying rib fractures is
shown in fig. 4. Another DL algorithm successfully identifying the
region of pneumothorax on a chest radiograph is elaborated in fig.



Fig. 4. A panel of chest radiographs (A-C and D-F) where a DL algorithm has been used to identify the presence or absence of rib fractures. The images on the left side (A and D) are
the raw images, that is the input data where we can see that there are multiple rib fractures in A and rib fractures with a clavicular fracture in B. The center images (B and E) are the
same regions annotated by a radiologist. The images on the right side (C and F) are the fracture regions as identified by the DL algorithms, as can be seen by the masks. Image
courtesy: DeepTek Inc.™ segmentation algorithm.

Fig. 5. A panel of chest radiographs (A-C and D-F) where a DL algorithm has been used to identify the presence of pneumothorax which can be a complication of rib fracture. The
images on the left side (A and D) are the raw images, where we can see the presence of massive pneumothorax displacing the left lung in A and milder pneumothorax in the right
hemithorax in D. The same regions have been annotated by a Board-Certified Radiologist in the images in the center (B and E). The images on the right side (C and F) are the involved
regions as identified by the DL algorithm and marked using the red masks. Image courtesy: DeepTek Inc.™ segmentation algorithm.
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5.
In the above literature, we reviewed how point algorithms

assessed radiographs and detected pathologies like fractures. Now
we discuss how multiple algorithms work together cohesively give
more information, and helping assist experts make their process
5

much easier. The AI here may utilise different approaches to arrive
at the fracture results, for example, the AI may use other signs like
shape, texture features, edge detection, transfer learning.22 Another
focus areawould be the generalisability and scope of the algorithm.
That is, a single solution should be able to identify the region and



Fig. 6. A snapshot of a PACS enabled with RAG AI (Red, Amber and Green AI Criticality
Legend) and other tools to ease the workflow. On the right side is the data and time of
each scan; next to it are the RAG Criticality Legend assigned by AI to each scan,
depicting the urgency as determined by the AI algorithm. Red- Need immediate
reporting and dispatch; amber-need priority reporting, but maybe acceptable to delay
slightly; Green-routine reporting scan. Image courtesy: DeepTek Inc.™ segmentation
algorithm.
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assess for the presence of a fracture. At the same time, its appli-
cability should be global, that is accuracy is not affected by the
ethnic and geographic origin of the patient. Such an approach was
successfully attempted by Ma et al.,25 who developed a seemingly
two-step approach. Drawing inspiration from how human radiol-
ogists first identify the bone involved and then zeroes down on the
exact region of fracture, they developed this DL model. The first
algorithm called Faster ReCNN fulfils the role of detection and
identifies the anatomical location (from amongst the 20 bones)
under review. Subsequently, bony regions are extracted by
bounding boxes to identify the bone. For the latter part of region-
wise fracture classification, they used a Crack-sensitive CNN, us-
ing the Schmid filter. They obtained an accuracy and F- score of over
90%.

Algorithms need to attain more maturity to allow classification
of fractures as per existing classification systems as this will have a
role in assessing the patient prognosis and identifying treatment
alternatives. DL can play a huge role as many of the classification
systems are tedious and take time to interpret; this time could
instead be better utilised in patient assessment. A DL model
developed by Oczak et al.26 to classify the ankle fractures based on
the 2018 Arbeitsgemeinschaft fur Osteosynthesefragen (AO)/Or-
thopedic Trauma Association (OTA) over a dataset of 4941 patients
reached an average AUC of 0.90. A study by Li YC et al.to classify
vertebral fractures based on the Genant classification using plain
lateral radiographs from 941 patients reached an AUC of 0.919,
0.989 and 0.990 for grades-1, 2 and 3 respectively. The results were
particularly good in patients suffering from osteoporosis.27 Another
study was performed by Tobler P et al. to classify distal radial
fractures based on displacement, intra- and extra-articular, multi
fragmented, metal implant in-situ was performed using a ResNet18
D-CNN architecture, exploiting 15,775 frontal and lateral
6

radiographs of the distal radius.28 While the model is successful in
automatically detecting fracture, the classification of the type of
distal radius fracture is variable in terms of accuracy. It is lower in
cases of involvement of joint and fragment displacement. Thus,
while it cannot serve as a stand-alone, it can still be used as an
assisting tool.

There has been a growing focus on the need for larger, high-
quality datasets; researchers have come up with multiple
methods to refine data by improved processing, and augmentation
of data amongst others. In the very recent past, another domain
that has come under the lens of innovators is synthetic images.
Chedid N et al. have developed an ML algorithm that can convert
diagrams of fractures into realistic radiographs. Towards this end,
they used a pix2pixHD algorithm and a new human-guided post
generation refinement phase. Multiple bodily components, such as
the humerus, wrist, and fingers, could be convincingly replicated by
their fine-tuned networks. Other features of appearance, such as
over-or underexposure, and orientation, vary across the synthetic
photos. Based on the results of the visual Turing test, the physicians
had an overall sensitivity of 49.63% in differentiating real from
synthesized ones, something which would be expected by a
random error of chance. The sensitivity of the system trained on
both types of data was 93.33% for transverse fractures without
fracture fixation hardware and was 75.5% for any fracture without
fracture fixation hardware. In contrast, the system trained on real
data alone had a poor sensitivity of 73.3% and 67.2% for transverse
fractures and any kind of fracture without any type of fracture
fixation hardware, respectively. However, there was a corre-
sponding decrease in accuracy with the addition of synthetic data
from 82.1% to 81.7%, a marginal decrease.29

5.2. CT based DL algorithms

While there is a vast amount of data now available for research
of deep learning in radiographs, the corresponding data for the
application of CT is not comparable. However, recently, more and
more focus is being placed on this area.

In a study by Jin L et al.30 to develop a DL model to classify rib
fractures from CT on a dataset of 7473 annotated traumatic rib
fractures, they used a 3D U-Net architecture. The model had a
sensitivity of 92% and a DICE score of 72.5% on testing. Pranata YD
et al.,31 built a DLmodel based on ResNet and another on VGG- CNN
to identity calcaneal fractures. Subsequently, a bone fracture
detection algorithm incorporating the Speeded-Up Robust Features
(SURF) method, Canny edge detection, and contour tracing was
utilised to precisely localise the region. These CNNs had a high
accuracy bordering 98% and are hence feasible for deployment.

In an audit performed in the UK and published in BMJ, one of the
most common causes of patients presenting to the emergency
department is trauma.32 Trauma is one of the most frequent con-
ditions for which CT is advised, particularly in an emergency
department. In a retrospective, electronic chart review performed
at the Penn State Hershey Medical Center on an image set of 81,201
images performed during emergency hours revealed that the most
common modality associated with radiological discrepancy during
“off hours” was CT and that fractures were the most commonly
missed finding. One contributory factor to this event is that most
scans during emergencies are read-only by residents.33 It is,
therefore, worthwhile to develop DL algorithms that can provide a
second opinion to the resident on call and minimise the chances of
scan interpretation error.

5.3. MRI based DL algorithms

As was the case in CT, MRI too has been receiving a lot of



Fig. 7. A sequential representation of a smart reporting tool as a microservice deployed in an AI-enabled PACS environment. The radiologists look at the scan with a region of
interest identified by AI, allowing for quicker scan reads. After a look at the segmented regions, they can simply check through the list under various headers (top image), choosing
all that is appropriate for the case. As a result, all points of significance are covered by all radiologists, ensuring standardisation. The output report is generated as shown (bottom
image). This human-in the loop model with AI doing the groundwork is the highlight of such a system. Image courtesy: DeepTek Inc.™ segmentation algorithm.
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attention by researchers keen to exploit the extremely good reso-
lution of MRI for soft tissue to detect pathologies that cannot be
assessed on either radiographs or CT, and to connect this capability
with advancements in the field of AI. Amongst all the joints,
involvement of the knee and hip remains the most common sites
and these have been the primary areas of focus in most studies.34

Some of these are listed in table-1.
Gang H et al.52 developed an AI model to analyse the efficacy of

knee ligament trauma repair. In a study by Liu F et al., the DL model
approached the output of a radiologist when detecting only the
anterior cruciate ligament of the knee.53 Other researchers like
Astuto B et al.,54 Bien N et al.48 took a broader approach. They tried
building a model which could perform multiple functions like
identify ACL tears, bone marrow edema, meniscus tear, and carti-
lage abnormality. While the results were sub-par to multiple ra-
diologists, they provide a direction for future growth by serving as
an essential proof of concept. A study by Kim M et al. to detect
rotator cuff tears using the DL algorithm had a very high AUV of
0.98 with a diagnostic accuracy of 87%. Their study is amongst the
first ones to utilise DL for this purpose. The dataset used by them of
2447 patients has been made publicly available for development
and testing by other researchers.46
5.4. USG based DL algorithms

Improved accuracy in assessing musculoskeletal problems has
occurred subsequent to advancements in USG imaging technol-
ogy.55,56 There are a certain group of pathologies that are best
detected on USG, particularly those needing dynamic manoeuvres-
7

shoulder impingement syndrome, rupture/subluxation of the long
head of biceps tendon, tendons around fracture hardware, and
costal cartilage fracture.57 They can be utilised to identify the site
while administering nerve blocks. One such system was developed
by Shin Y et al.,56 who developed a DL algorithm for femoral nerve
region segmentation utilising U-net. The model obtained a satis-
factory performance with the intersection over union over the test
set equal to 0.638. The segmentation accuracy over the test set was
83.9%.

The dependency on subjective evaluations of displayed pictures,
as well as differences in image acquisition and equipment
employed among studies, have slowed the adoption of US
compared to magnetic resonance imaging (MRI). Computer-
assisted diagnostic (CAD) solutions have acquired a prominent
role in radiology to assist in overcoming these issues, as well as the
ambiguity with which musculoskeletal illnesses may appear on US
imaging. These systems give a quantitative analysis and a second
opinion, allowing radiologists to swiftly make correct and consis-
tent image judgments.56e58

Classical CAD systems suffer from various limitations pertaining
to the algorithm and due to bias. DL-based systems are better at
beingmore robust andmore generalisable. Within the vast scope of
AI, its utility in USG is mainly linked to classification, segmentation
and diagnosis. Its applicability for image augmentation and
enhancement still remains unexplored.59

A detailed compilation of certain important experiments per-
formed in the field of MSK applying AI to all three modalities in the
last five years is listed in table-1.



Table-1
Ongoing developments in the field of AI in MSK, in the recent years (5-years; 2017e2021).

Serial
No.

Year Modality Aim (task assisted) MSK
tissue

AI Approach Dataset used Performance Output Obvious limitations Reference

1. 2021 Radiograph Application of deep
learning algorithm to
detect and visualize
vertebral fractures on
plain frontal radiographs

Bone ImageNet
convolutional neural
network (CNN)

1306 Area under curve ¼ 0.72
Sensitivity ¼ 73%
Specificity ¼ 73%

-Small dataset Chen HY
et al.35

2. 2020 Radiograph Assessment of a deep-
learning system for
fracture detection in
musculoskeletal
radiographs

Bone Ensemble of CNNs 7,15,343 Overall AUC ¼ 0.974;
Sensitivity ¼ 95.2%;
Specificity ¼ 81.3%;
PPV¼ 47.4% NPV¼ 99.7%

over-represented
infrequently acquired
regions

Jones RM
et al.36

3. 2020 Radiograph Bone fracture detection
through the two-stage
system of Crack-
Sensitive Convolutional
Neural Network

Bone Double CNN models in
sequence- FastNet,
followed by CrackNet

3053 Accuracy ¼ 0.91;
precision ¼ 0.89;
recall ¼ 0.90; F-
measure ¼ 0.90

-Small dataset Ma Y et al.25

4. 2019 Radiograph Classify hip fracture,
patient traits and
hospital process
variables

Bone CNN's 23,602 The fracture was
predicted moderately
well from the image
(AUC ¼ 0.78) and better
when combining image
features with patient
data (AUC ¼ 0.86)

-Absence of a reliable
gold standard. -Limited
label accuracy. -Limited
accuracy of covariate
data. -Pre-processing
reduces image
resolution.

Badgeley M
et al.37

5. 2018 Radiographs Deep neural network
improves fracture
detection by clinicians
(all extremities for
pretraining but wrist
radiographs for final
training, validation and
testing

Bone CNN 1,32,345 The average clinician's
sensitivity was 80.8%
(95% CI, 76.7e84.1%)
unaided and 91.5% (95%
CI, 89.3e92.9%) aided,
and specificity was 87.5%
(95 CI, 85.3e89.5%)
unaided and 93.9% (95%
CI, 92.9e94.9%) aided.

-Single Institute study
-Ground truth is subject
to the experience of the
radiologist

Lindsey R
et al.38

6. 2018 Radiograph The ability of a deep
learning algorithm to
detect and classify
proximal humerus
fractures using AP
shoulder radiographs.

Bone CNN 1891 Sensitivity ¼ 0.99
Specificity ¼ 0.97;
Youden index ¼ 0.97;
Area under curve ¼ 1.0

-Neer classification was
used, which is only
moderately reliable.
-Cannot be applied to
clinics

Chung SW
et al.39

7. 2017 Radiograph Automated deep
learning system to detect
hip fractures from frontal
pelvic x-rays

Bone Regression-based CNN 53,000 The area under the ROC
curve of 0.994

Small labelled dataset Gale W
et al.23

8. 2017 Radiograph Automated fracture
detection on plain
radiographs (wrist
radiographs).

Bone Inception V3 Network-
CNN

11,112 The area under the ROC
curve 0.954

-Ground truth was a
radiologist (human)
-Small labelled dataset.

Kim DH
et al.40

9. 2017 Radiographs Automatic Classification
of Proximal Femur
Fractures

Bone Attention Models-
Spatial transformer

1000 High sensitivity and
specificity

-Small dataset (Single
institution study)

Kazi et al.41

10. 2021 CT A fully automated rib
fracture detection
system on chest CT
images and its impact on
radiologist performance.

Bone CNN 8529 -Increased detection
recall and classification
accuracy (0.922 and
0.863) compared with
the radiologists alone
(0.812 vs. 0.850).
-The radiologists
achieved a higher
precision rate, recall rate,
and F1-score for fracture
detection when using the
deep learning model, at
0.943, 0.978, and 0.960,

NA Meng XH
et al.42

11. 2020 CT A multiscale Deep
Learning Method for
Quantitative
Visualization of
Traumatic
Hemoperitoneum at CT:
Assessment of Feasibility
and Comparison with
Subjective Categorical
Estimation.

Bone 3D- U-Net 130 Mean DSC for the
multiscale algorithm was
0.61 ± 0.15 compared
with 0.32 ± 0.16 for the
3D U-Net method and
0.52 ± 0.17. AUCs for
automated volume
measurement and
categorical estimation
were 0.86 and 0.77,
respectively (P ¼ .004).
An optimal cutoff of

-Single institution study Dreizin D
et al.43
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Table-1 (continued )

Serial
No.

Year Modality Aim (task assisted) MSK
tissue

AI Approach Dataset used Performance Output Obvious limitations Reference

278.9 mL yielded
Accuracy ¼ 84%,
Sensitivity ¼ 82%,
Specificity ¼ 93%,
PPV ¼ 86%, NPV ¼ 83%.

12. 2020 CT Automatic Detection and
Classification of Rib
Fractures on Thoracic CT
Using Convolutional
Neural Network:
Accuracy and Feasibility.

Bone Faster ReCNN and
YOLOv3

1079 The precision of the five
radiologists improved
from 80.3% to 91.1%, and
the sensitivity increased
from 62.4% to 86.3% with
artificial intelligence-
assisted diagnosis. On
average, the diagnosis
time of the radiologists
was reduced by 73.9 s.

-The current model
cannot show the
anatomical location of
the rib fractures (right or
light, number of ribs,
anatomical name of
fractured rib) -Small
validation test set

Zhou QQ
et al.44

13. 2018 CT An automatic system
that can detect incidental
osteoporotic vertebral
fractures in chest,
abdomen, and pelvis.

Bone ResNet34 model for
feature extraction;
Long-short term
memory model

1432 These results indicate
that our CNN/LSTM
approach has high
efficacy for diagnosing
OVF and its performance
is on par with practicing
radiologists.

-Single institution study,
therefore
generalisability is
arguable. -Single label
for entire model,
therefore chances of
confounding.

Tomita N
et al.45

14. 2020 MRI MRI-based Diagnosis of
Rotator Cuff Tears using
Deep Learning and
Weighted Linear
Combinations

Muscle,
tendons

Base model ¼ VGG-16 2492 Mean area under the
curve ¼ 0.98

-Single Institution study KimM et al.46

15. 2019 MRI Deep Learning Algorithm
in Detecting
Osteonecrosis of the
Femoral Head on MRI

Bone ResNet-CNN 1892 hips
(1037 diseased
and 855
normal)

Sensitivity and
specificity for the
external test set were
84.8% and 91.3% for the
DL algorithm. Sensitivity
and specificity for the
geographic external test
set were 75.2% and 97.2%
for the DL algorithm.
Higher than less
experienced radiologist,
and comparable to the
experienced radiologist.

-Ideal testing
environment. -Slight
selection bias. -Difficult
to know if the
performance of the
model will be hindered
by other diseases
affecting the trabecular
pattern.

Chee CG
et al.47

16. 2018 MRI Deep-learning-assisted
diagnosis for knee
magnetic resonance
imaging: Development
and retrospective
validation of MRNet

Ligament MRNet (CNN) 1370 In detecting
abnormalities, ACL tears,
and meniscal tears, this
model achieved area
under the ROC (AUC)
values of 0.937 (95% CI
0.895, 0.980), 0.965 (95%
CI 0.938, 0.993), and
0.847 (95% CI 0.780,
0.914), respectively, on
the internal validation
set.

-Performance was sub-
par as compared to
radiologists.

Bien N et al.48

17. 2018 MRI Super-resolution
musculoskeletal MRI
using deep learning

NA (Scan
quality)

3D- CNN
“DeepResolve”

124 double
echo in steady-
state (DESS)
data sets with
0.7-mm slice
thickness and
tested on 17
patients.

Significantly better
structural similarity,
peak signal to noise ratio,
and root mean square
error than tricubic
interpolation, Fourier
interpolation, and
sparse-coding super-
resolution for all down-
sampling factors.

It did not match the
image quality of the
high-resolution ground-
truth images, but it
outperformed other
resolution enhancement
methods.

Chaudhari AS
et al.49

18. 2018 USG investigation into the
feasibility of using deep
learning methods for
developing arbitrary full
spatial resolution
regression analysis of B-
mode ultrasound images
of human skeletal
muscle.

Muscle Feature engineering
(Wavelet),
convolutional neural
networks (CNN),
residual convolutional
neural networks
(ResNet) and
deconvolutional neural
networks

8 Deconvolutional Neural
Network > CNN/
ResNet > Wavelet

None stated. Cunningham
R et al.50

19. 2017 USG Ultrasound aided
vertebral level

Bone Deep CNN, Random
Forest

19 DL method
outperformed the

Baka N
et al.51

(continued on next page)
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Table-1 (continued )

Serial
No.

Year Modality Aim (task assisted) MSK
tissue

AI Approach Dataset used Performance Output Obvious limitations Reference

localization for lumbar
surgery

Random Forest on the
test dataset (F-measure
of 0.90 vs 0.83)

Semi-automatic
(therefore, user
dependent)
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6. AI in radiology workflow and image processing

6.1. Prioritisation of the worklist

AI in radiology workflows is likely to make workflows smarter
and faster. Automatic study list reprioritisation is one such feature;
this can convert existing Picture Archiving and Communication
System (PACS) to smart PACS. Stat studies with critical findings,
even if they happen later in the day, can be automatically repri-
oritised by AI on the top of the worklist. This principle can be
applied to fracture, bleed, vessel rupture and pneumothorax. Many
at times there are findings of significance that are detected inci-
dentally; if triaged timely, this can help ER physicians and imaging
experts to prioritise the studies. AI-enabled features plugged in
existing PACS can fit well into this role by allowing automatic triage,
often with provision for notification to the expert on what to
expect, saving up on essential time. An example of such a system
employed for deployment at tertiary care centres is provided in fig.
6.

6.2. Accelerating imaging

Many of the conditions mentioned above describe AI tools that
work on scans post-acquisition. However, AI even has a role during
image acquisition; AI-enabled techniques which can shorten image
acquisition can benefit studies of trauma. This is particularly true
for MRI studies where scan times are pretty high. One such system
called the FastAI model was developed based on a neural network
working on MRI scans. The system reduces scan time and thereby
minimizes motion related artefacts; reduces incidences of a repeat
scan.60

6.3. Preoperative planning

The DL based segmentation algorithms may have a role to play
in automatic segmentation. A study by Zeng G. et al.,61 performed
automatic segmentation of MRI-based 3D models utilising DL,
which was at par in terms of accuracy with the CT-based 3Dmodels
for patients with hip diseases of childbearing age. Thus, DL enabled
improved usage of MRI, which permits radiation-free and patient-
tailored preoperative simulation and surgical planning of peri-
acetabular osteotomy in cases suffering from developmental
dysplasia of the hip.

6.4. Smart reporting tools for comprehensive fracture reporting

The number of radiological examinations being performed each
year continues to increase each year with the US alone accounting
for >1 billion examinations each year. The early 2000s saw a growth
of over 70% to the 1990s level and subsequently a four-year growth
of nearly 7%. During the same period, there has been a decline in
medical insurance-related reimbursements putting pressure on
existing radiologists to improve their work output, deal with larger
case volume while working under the same time constraints. In an
experiment performed by Sokolovskaya et al.62 to judge the impact
of hastening the speed of reporting by radiologists, the results were
adverse with an increase of misinterpretation by 16% from the
10
baseline error rate of 10% in five radiologists. Clearly, with this new
decade, the pressures will only increase, and so will the associated
risk of missed diagnosis, misinterpretation. This added pressure can
be offset by making use of technological advancements, which can
help with rapid reporting while ensuring standardised reporting as
demonstrated by the Smart Reporting Tool. The road further calls
for incorporating AI into the routine reporting of radiologists and
assistance for clinicians as a part of quality assurance. To make this
possible, the system needs to be integrated with existing PACS so
that it can actually serve the end-user. The benefits of smart
reporting tool can be potentially multi-fold with the key aspect
serving structured quantified and standardized reporting. An
example of the smart reporting tool is showcased in fig. 7.

6.5. Bone fragility assessment

A combination of well-trained algorithms can improve the
assessment of bone strength and thus quantify a parameter which
is directly associated with a risk of future fractures. Most scope lies
in the usage of trabecular bone architecture and ML-based auto-
mated segmentation of structural assessment of the bone on MRI
scans.55

6.6. Radiomics

This is a yet emerging field which centres around quantify
various characteristics from image and using them for data mining
and pattern identification. Currently they are being primarily tested
on detecting characteristics of the neoplastic bony or soft tissue
mass. The characteristics are not apparent to eye and thus difficult
to interpret by humans, such as analysis of texture, histograms and
image-voxel relationships. These characteristics have an impact on
the treatment approach and are hence of extreme relevance clini-
cally. Since, the field is still novel, the applications are likely to grow
multi-fold and research is already underway to establish the extent
of its usage to quantify bone mineral density loss and thus quantify
the risk of future fractures. The envelop can be expanded to assess
the likelihood of fracture union based on various CT/MRI
characteristics.10,40,55

7. Challenges-

7.1. Dataset availability

Challenges that impede the development of AI include the
availability of large, diverse, labelled and curated datasets. Most of
the available datasets are for more common conditions (limited
types of fractures, little joints), while the data for the infrequent
locations remain relatively negligible. A likely cause for such data
imbalance is an overall lack of incentivisation and support. While
many researchers are working on a variety of DL systems, they need
big data to test and refine their systems to churn out performance
which can be at par or can even supersede experts. As elaborated in
this review article earlier and also a quick glance at table-1, the
issue of the majority of the DL systems being developed on data
from a single institute is blatantly visible. So, despite having high
functioning systems, their applicability and generalisability to the
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larger population are still questionable. This calls for an initiative by
the MSK societies to promote multi-institutional studies either for
AI development or for pooling in data from multiple hospitals and
making this accessible to the general public and developers.

To partially offset the current problem, other methods of
obtaining data, like creating synthetic images too are being
exploited. Perhaps, the most significant development of recent
times in this field was the development of the general adversarial
network (GAN). It consists of two types of neural networks-a
generative network G and a discriminative network D.63 They
have a symbiotic function; that is, while G functions to synthesize
images, D functions to discriminate these synthesized images from
actual images. An essential development towards this end was the
development of GANs by Chuquicusma et al. to create fake lung
cancer nodules and incorporate these into real CT images and test
them on radiologists. These fake lung nodules turned out to be
difficult to differentiate from real ones.64 The importance lies in
being able to produce more data to train the deep classifiers and
thus improvise their accuracy.

7.2. Domain shift

One major challenge posed by the presently developed ML and
DLmodels is the problem of domain shift. Domain shift implies that
a model does not perform well in a setting other than the one in
which it was trained and validated. The model is not robust enough
to be generalisable to data from different hospitals and as a result
its real-world utility is poor. The problem of domain shift is faced by
MLmodels in all fields and the primary cause of this problem is that
the ML models makes spurious associations. To minimise such a
development, it is important that in the training phase, data should
be collected prospectively from multiple sources and cleaned
before being run through the system. Secondly, the model should
focus on medically relevant features and not other confounding
variables. Towards this end the clinician and computer science
experts need to work closely in sync to pre-emptively identify the
possible confounding variables and come up with ways to
neutralise them.65

7.3. The law and the prospect of liability

A lot of the current scenarios fall in the gray zone as law is not
very clearly defined on a number of situations pertaining to usage
of AI and diagnosis reliant on feedback from AI.

Though algorithmsmention the scope for false positive and false
negative clearly, one cannot miss the fact that algorithm can misses
a relevant finding on the scan for which it is designed. This can
potentially impact patient management. The way AI is going to
influence medical imaging is by aiding experts quickly find relevant
findings in images saving them time and effort. AI is unlikely to
compete with experts and here is where there is significant scope
for augmenting imaging practises. The existing laws recommend
that clinicians who do rely on interpretation of the scan by AI
should be individually capable of making the diagnosis, such that AI
provides more of assistance and is not the sole authority to dish out
diagnosis.66

A significant number of tools used clinically are developed by
organization or institutes need to invest significantly in the algo-
rithmic design and development process. The algorithmic perfor-
mance and design and bias needs proper assessment. The key
challenges of AI is its “Black-Box” nature as a result clinician may
have no way of assessing how the algorithm came to a conclusion
and hence, no reasonable way of questioning the algorithms
approach.67 To ensure that algorithms performance can be vali-
dated the solution should be bench marked on a set of test dataset.
11
Such an appropriate system can allow transparent assessment of
algorithms in a blind manner. This can help improve confidence of
clinician in the AI solution at the disposal and ensuring the chances
of error are minimal and all scenarios where the algorithm is likely
to err or fail is documented.

While creating such independent test datasets by global bodies
focussed on particular disease or condition. There should be
funding of these bodies through Government support or non-
Governmental organization to ensure that there is transparent
assessment and there is focus on explainability of results. The Eu-
ropean Union recently passed into law Article-22 (4) which man-
dates explainability of the results; other nations too have taken
note and are likely to follow-suit.68 The most basic of steps would
be to have in place bounding boxes and heat maps, which clearly
demarcate the region on the radiograph or CT suspected to have
fractures, neoplasia. Different colours can be used to highlight
different features of the relevant disease, such a display makes it
easy for clinician to then use their clinical experience to assess the
same.

8. Conclusion

AI in MSK trauma is a new and upcoming field with a lot of
promise. Many of the solutions are point solutions that can detect
fractures, complications like bleed, pneumothorax, blurring of fat
planes. Many studies show that imaging experts and clinicians
assisted with AI perform better than those without assistance. The
key to AI adoption for trauma is based on how it's incorporated in
radiology workflows. The adoption of AI in radiology practises
likely to reduce burnout and minimise errors. The tool has
immense potential and likely to be as good as experts in the near
future as the AI will use information frommultiple sources to triage
and recommend a diagnosis based on key clinical information it
may have in handwhich the expert may not have time to assimilate
during the time of review of the image or study, which the AI tool
has already assimilated. The way this tool is likely to work is to be a
virtual assistant to the experts empowering them with the right
information and at the right time enabling faster analysis.
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