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Abstract

FamEvent is a comprehensive R package for simulating and modelling age-at-disease onset 

in families carrying a rare gene mutation. The package can simulate complex family data for 

variable time-to-event outcomes under three common family study designs (population, high

risk clinic and multi-stage) with various levels of missing genetic information among family 

members. Residual familial correlation can be induced through the inclusion of a frailty term or 

a second gene. Disease-gene carrier probabilities are evaluated assuming Mendelian transmission 

or empirically from the data. When genetic information on the disease gene is missing, an 

Expectation-Maximization algorithm is employed to calculate the carrier probabilities. Penetrance 

model functions with ascertainment correction adapted to the sampling design provide age-specific 

cumulative disease risks by sex, mutation status, and other covariates for simulated data as well 

as real data analysis. Robust standard errors and 95% confidence intervals are available for these 

estimates. Plots of pedigrees and penetrance functions based on the fitted model provide graphical 

displays to evaluate and summarize the models.
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1. Introduction

Family-based studies are efficient study designs, commonly used for linkage (gene 

mapping) and association (gene discovery) studies of both Mendelian and complex 

traits. Family-based designs, unlike population-based designs of unrelated individuals, are 
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robust to population admixture and stratification that can distort disease-gene associations. 

Family-based design is also a very valuable approach to identify and characterize new 

pathogenic variants involved in complex human diseases through next generation sequencing 

technologies. Assessing such designs by simulation studies is an important aspect when 

planning a family study. We provide here a user-friendly R (R Development Core Team 

2019) package for the simulation and estimation of time-to-event data under various family 

designs.

Nearly all of the currently available statistical software for time-to-event or age-at-onset 

data is only suitable for data collected under a random sampling scheme for independent 

individuals. The CRAN Survival Analysis task view (https://cran.r-project.org/web/views/

Survival.html, version 2019-01-26) lists 264 CRAN packages related to survival data, 

including packages for estimating survival and hazard functions, fitting regression models, 

fitting of more complex models such as multistate models, and simulation. One exception 

is the coxme package (Therneau 2019) that can incorporate frailty terms to model 

family time-to-event data as well as to estimate the effects of other fixed covariates 

within a semi-parametric proportional hazards (PH) framework. However, it has functional 

limitations compared with FamEvent (Choi et al. 2019a): it does not simulate family 

data for age-at-onset outcomes, it adopts only a Gaussian distribution for the random 

effects, it does not provide age-dependent penetrance functions or various baseline hazard 

functions that retain the PH assumption. It also does not address important sources of bias 

including correction for non-random sampling and inferring missing genotypes and carrier 

probabilities. Drawbacks shared by both packages include limitations to right-censored data 

and the PH assumption. A specific shortcoming of FamEvent compared with the coxme 
package is its focus on fixed effects in the penetrance function estimation, so that mixed 

effects models are not yet provided. Although both packages can model family age-at-onset 

data, FamEvent provides substantially more functionality than the coxme package and 

corrects for two important sources of bias—sampling of families and missing data.

No other R packages that model family data, such as gap (Zhao 2019, 2007) or pbatR 
(Hoffmann and with contributions from Christoph Lange 2018), found in the Statistical 

Genetics task view (https://cran.r-project.org/web/views/Genetics.html, version 2019-01-26) 

provide functionalities for age-at-onset outcomes. On the other hand, some simulation 

programs have been proposed to simulate family or pedigree data, e.g., SimPed (Leal 

et al. 2005), SIMLA (Schmidt et al. 2005), PBAT (Lange and Laird 2002), SIMLINK 

(Boehnke 1986) (a comprehensive list is available at https://github.com/gaow/genetic

analysis-software/), but none of them can handle time-to-event outcomes. Our R package 

FamEvent is therefore an original contribution that fills a gap in simulating complex 

time-to-event data in the context of family designs and genetic studies. The simulated data 

can mimic real data obtained in these types of family studies. In addition, the estimation 

methods in FamEvent address important features for age-at-onset data from several 

common family-based designs. Thus, FamEvent provides considerably more advantages 

with few drawbacks all within one R package.

In the R package FamEvent, we provide methods to generate and model age-at-onset 

outcomes for families that harbor a genetic mutation. We implement three common 
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family-based designs—population, high risk clinic and multi-stage designs—along with 

ascertainment correction for the estimation of age-dependent penetrance functions, 

specifically adapted to the sampling scheme, using a prospective likelihood. We also handle 

missing genotype data by providing mutation carrier probabilities for family members with 

missing genotypes and estimating age-dependent penetrance functions via an Expectation

Maximization (EM) algorithm. Plot methods are available for simulated family data and 

for fitted penetrance models, respectively. To construct pedigree plots, we implemented a 

pedigree function and its plot method built on kinship2 (Sinnwell and Therneau 2019) 

into the plot.simfam function to graphically display the pedigree structures of specified 

families with indication of the proband and affection and mutation carrier statuses of 

all family members. When mutation carrier status is missing, carrier probabilities can 

be displayed instead. Following penetrance model estimation, the plot.penmodel function 

presents both parametric and non-parametric estimates and their confidence intervals for 

the penetrance functions specific to gender and mutation status groups; parametric age

dependent penetrance curves are estimated from the specified parametric penetrance model 

by using penmodel or penmodelEM functions and non-parametric Kaplan-Meier estimates 

of the penetrance curves are obtained by implementing the survfit function built on the 

survival package (Therneau 2015).

Our comprehensive R package that simulates and models family data will enable 

development of methods to identify additional risk factors, adjust for interventions and 

produce unbiased disease risk estimates. In Section 2 we describe the family-based study 

designs implemented in FamEvent followed by details on the penetrance function and its 

estimation in Section 3.

Methodological details on ascertainment-corrected likelihoods, an EM algorithm, robust 

variance estimation and disease gene carrier probabilities are given in Section 4. Details on 

the key functions from the FamEvent package are provided in Section 5 and four motivating 

examples, including a real data analysis, are given in Section 6. Concluding remarks are 

given in Section 7.

2. Family-based study designs

Family-based designs are popular for studying heritable genetic diseases because high risk 

disease genes are rare in the general population. Often multiple family members are carriers 

of and affected by a disease gene, and can be identified from disease registries or high risk 

disease clinics. The study designs for sampling family data considered in FamEvent include 

population-based, clinic-based and two-stage sampling designs, as described in Table 1.

In population-based studies, an affected family member (proband) leads to selection of the 

family into the study; the probands can be randomly sampled from the disease population 

regardless of their mutation status (POP design) or from the diseased and mutation carrier 

population (POP+ design). In clinic-based studies, the families are selected from high risk 

disease clinics; selection of families is not only based on a single proband but involves 

other affected family members. The CLI design samples families with an affected proband 

and at least two affected family members whereas the CLI+ design samples families with 
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an affected mutation carrier proband and at least two affected members. The two-stage 

sampling is a popular sampling design method for oversampling high risks families, where 

the high risk families are defined as the families with multiple (at least two) affected 

members. In this design, families are sampled in two stages: the first sampling stage is based 

on the population-based study design and the second stage involves oversampling of high 

risk families.

For designing efficient studies, a two-stage family design can be used. In the first stage, case 

patients (i.e., probands) are selected and asked about their family disease history and then 

are stratified into different categories, e.g., high-, intermediate- and low-risks. In the second 

stage, case patients and their relatives are subsampled with different sampling probabilities 

that could depend on their risk category. For a fixed sample size, we can estimate the 

sampling probability for each stratum that minimizes the variance of the estimate of the 

parameter of interest. We illustrate a sample size determination for an optimal two-stage 

design in Section 6.3.

Families identified based on any of these study designs are not representative of the general 

population, since they tend to have higher disease risks from both genetic and non-genetic 

factors. Selection of families via each study design can lead to biased disease risk estimates, 

so adjustment for ascertainment is necessary. The ascertainment correction in the penetrance 

estimation is provided in Section 4.1.

3. Penetrance models

The risks of diseases arising from identified single or multiple genes often vary in the 

age at onset and are associated with individuals’ gender and mutation status, where the 

age-dependent disease risk is referred to as the penetrance. Penetrance in our R package 

is estimated using the cumulative distribution function given the age and gender of the 

individual for the disease or phenotypes associated with the gene of interest. A number of 

factors can impact penetrance such as mutation type, epigenetic factors, gender, modifier 

genes, etc. (Shawky 2014).

Parametric hazard regression models are implemented in penetrance studies as they can 

relate covariates, including genetic factors and gender, to the age-at-onset outcome. We 

first describe proportional hazard models, a most popular model for time-to-event data, 

which assumes no additional familial variations given the inherited disease gene. Additional 

variations to induce familial correlation due to unobserved genetic or environmental risk 

factors are modelled using two approaches: shared frailty model and two-gene model.

Proportional hazard models

Flexible functional forms are adopted for the baseline hazard function that retains the PH 

assumption and that also makes ascertainment correction easier.

The PH regression model with a baseline hazard h0(t) that relates an individual’s mutation 

status G and other measured covariates X to the age-at-disease onset can be expressed as 

follows:
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ℎ(t; G, X) = ℎ0(t)eβX
⊤X + βGG, (1)

where βX is the vector of regression coefficients for measured covariates X and βg is 

the regression coefficient for the genetic variable G. This PH regression model is used to 

estimate the probabilities of disease onset at age t via its cumulative distribution function 

(CDF)

P (T ≤ t; G, X) = ∫
0

t
ℎ(s; G, X) exp −∫

0

s
ℎ(v; G, X)dv ds

= 1 − S(t; G, X),
(2)

where S(t; G, X) = exp −∫0
tℎ(v; G, X)dv  is the survival function at age at disease onset 

t. Penetrance functions for variable age at disease onset are based on this CDF, which 

conditions on measured covariates including mutation status and gender (Wijsman 2005).

The baseline hazard h0(t) is usually unspecified in PH models for evaluating covariate 

effects. For the purpose of estimating survival probabilities, a parametric assumption of 

the h0(t) is made. The possible choices for the parametric baseline hazard distribution 

are Weibull, log-logistic, log-normal, Gompertz, gamma, and more flexible distributions, 

including the log-Burr and a piecewise constant baseline. The generalized log-Burr 

distribution allows a flexible baseline that includes the Weibull model (η → ∞) or the 

log-logistic model (η = 1) as special cases (Lawless 2003; Kopciuk et al. 2009). The Weibull 

model is quite flexible but does have a monotonic functional form of the hazard whereas 

the log-logistic specification does not. The hazard and cumulative hazard functions are 

summarized in Table 2.

Shared frailty models

The shared frailty model is used in conjunction with the PH model, where the frailty term 

acts multiplicatively on the baseline hazard function to describe the unknown common risks 

shared within family.

Let Tfi denote the age at disease onset for individual i in family f and Zf > 0 be the frailty 

shared within family f. The shared frailty models can be expressed as:

ℎ tfi ∣ Zf, Gfi, Xfi = Zfℎ0 tfi  exp βX
⊤Xfi + βGGfi , (3)

where h0(tfi) is the baseline hazard function and Xfi is a vector of covariates for individual i 
in family f and Gfi is a genetic covariate indicating carrier status of a mutated gene.

As the frailty is an unknown quantity, the penetrance function is obtained by integrating over 

the frailty distribution, G(z), where the indexes i and f are dropped for simplicity of notation,
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P (T ≤ t ∣ X, G) = 1 − ∫
0

∞
 exp −∫

0

t
ℎ(v; z, X, G)dv dG(z)

= 1 − ℒ H0(t) exp βX
⊤X + βGG

(4)

where ℒ(s) is the Laplace transform of the frailty distribution, H0(t) = ∫0
tℎ0(v)dv is the 

cumulative baseline hazard function and X and G are their covariates and mutation status of 

a gene, respectively.

The penetrance function is determined by the choice of baseline hazard and frailty 

distributions with given covariate values and regression coefficients. The possible choices 

of the baseline functions and the frailty distributions and their Laplace transforms are listed 

in Tables 2 and 3, respectively. For example, if Weibull baseline and gamma frailty are 

assumed, the penetrance function can be obtained as

1 − 1 +
(λt)ρ exp βX

⊤X + βGG
κ

−κ
. (5)

Two-gene models

In the two-gene model, we suppose that in addition to a major gene, G1, families share a 

second gene, G2, that induces familial correlation. G2 is considered as a covariate, that acts 

multiplicatively on the baseline hazard, but is completely unobserved. The two-gene model 

can be written, dropping indexes i and f, as:

ℎ t ∣ X, G1, G2 = ℎ0(t) exp βX
⊤X + βG1G1 + βG2G2 , (6)

where G1 and G2, respectively, indicate carrier (= 1) or non-carrier (= 0) status of the major 

and second genes.

Similarly, the penetrance function for the two-gene model is obtained depending on the 

choice of hazard function and the status of the second gene,

1 − exp −H0(t) exp βX
⊤X + βG1G1 + βG2G2 . (7)

However, as the second gene G2 is unobserved, the penetrance functions can be obtained as 

a weighted sum over the two possible values of the second gene status.

1 − ∑
G2 = 0, 1

exp −H0(t) exp βX
⊤X + βG1G1 + βG2G2 p G2 ,

(8)

where p(G2) is the probability of the second gene status, which is determined by the 

assumed allele frequency, and G2 takes values of 1 or 0, representing carrier or non-carrier, 

respectively.
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4. Methods

4.1. Ascertainment correction

Assuming, without loss of generality, that the affected family member (proband) who led to 

selection of the family into the study is a disease gene carrier, then ascertainment correction 

for the selection process takes one of two forms. If the proband is randomly sampled from 

the population (POP or POP+ design), say through a disease registry, then ascertainment 

correction depends only on this individual. If the proband is selected from a high risk disease 

clinic (CLI or CLI+ design), then ascertainment correction involves other, possibly affected 

family members. In the prospective likelihood method, the ascertainment correction is based 

solely on the probability of individuals being affected before their age at examination (Choi 

et al. 2008).

For family f of size nf, we define Df = Df1, …, Dfnf , Gf = Gf1, …, Gfnf  and 

Xf = Xf1, …, Xfnf  as the vector forms that represent their phenotypes (disease outcomes), 

genotypes and covariates, respectively. The contribution of family f to the ascertainment

corrected prospective likelihood is

Lf = P Df ∣ Gf, Xf, Af = P Af ∣ Df, Gf, Xf P Df ∣ Gf, Xf
P Af ∣ Gf, Xf

∝ P Df ∣ Gf, Xf
P Af ∣ Gf, Xf

,
(9)

where we assume that P (Af|Df, Gf, Xf) is 1 if family f qualifies for ascertainment (Af), 

and 0 otherwise. The numerator, regardless of family study design, assumes conditional 

independence of family members’ phenotypes given their genotypes, and is specified as

P Df ∣ Gf, Xf = ∏
i = 1

nf
P Dfi ∣ Gfi, Xfi

= ∏
i = 1

nf
ℎ tfi ∣ Gfi, Xfi

δfiS tfi ∣ Gfi, Xfi .
(10)

Ascertainment correction of family f from the population-based designs (POP or POP+) 

depends on the proband (p) in family f being affected before his or her current age at 

examination afp , and hence, the denominator P (Af|Gf, Xf) can be written as

P Af ∣ Gf, Xf = P T < afp ∣ Gfp, Xfp , (11)

where Gfp and Xfp represents the proband’s genotype and observed covariates in family f. 

For the clinic-based designs (CLI or CLI+), the ascertainment correction is determined by 

three additional family members—another affected sibling and at least one affected parent.
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By the conditional independence assumption of disease status given genotype information, 

the denominator for the clinic-based designs is given by

P Af ∣ Gf, Xf = P T < afp ∣ Gfp, Xfp P T < afs ∣ Gfs, Xfs
× 1 − P T ≥ aff ∣ Gff, Xff P T ≥ afm ∣ Gfm, Xfm ,

(12)

where indices fp, fs, ff, fm represent the proband, proband’s sibling, father and mother in 

family f, respectively.

In two-stage sampling, the ascertainment correction is based on the sampling weights 

derived from an inverse probability of sampling families, which are implemented into 

the composite likelihood as a weighted product of ascertainment-corrected likelihoods 

corresponding to each family (Choi and Briollais 2011; Lawless et al. 1999). The likelihood 

contribution of n families sampled from two-stage sampling is written as

L = ∏
f = 1

n
Lf

wf, (13)

where Lf is the ascertainment-corrected likelihood for family f by a population-based design 

used at the first stage and wf represents the sampling weight for family f at the second 

stage, which is obtained by the inverse probability of sampling family from the two stages of 

sampling.

4.2. EM algorithm for missing genotype data

In addition to ascertainment or selection correction, family members with phenotype 

(disease outcome) but no genotype information can be included via an Expectation

Maximization (EM) algorithm. Given their family’s observed genotypes and phenotypes, 

the probabilities of an individual’s possible genotypes are computed in the Expectation or 

E-step. In the Maximization or M-step, the model parameters are estimated by maximizing 

a weighted log-likelihood. The conditional genotype probabilities found in the E-step form 

these weights.

The vector of genetic covariates in family f, Gf, is partitioned into observed genotypes Gf
o

and missing genotypes Gf
m. Both the measured covariates Xf and phenotypes Df are fully 

observed, with the phenotypes subject to right censoring. Then the single-iteration EM is 

implemented as follows:

E-step Compute the possible genotype probabilities for each individual i with missing 

genotype in family f as

wgfi = P Gfi = gfi ∣ Df, Xf, Gf
o , (14)

where gfi can take the value 1 or 0 to represent a carrier or non-carrier of the mutated 

gene, respectively, and their probabilities P Gfi = 1 ∣ Df, Xf, Gf
o  and P Gfi = 0 ∣ Df, Xf, Gf

o
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can be obtained empirically from the family data or analytically from the assumed 

penetrance model. The empirical carrier probabilities (non-carrier probabilities just as 

the complementary probability) can be obtained with observed genotype and phenotype 

information for each subset of the data defined by Df, Xf, Gf
o  after excluding the probands. 

Based on the penetrance model, these carrier probabilities are obtained as the posterior 

distribution with the assumed or estimated allele frequency (as shown in Section 4.4). 

For individuals with known carrier status, their weights are one. Then, the conditional 

expectation of the log-likelihood function of the complete data given the observed data (D, 
X, Go) can be written as a weighted log-likelihood which has the form

Eθ ℓ (θ) ∣ D, X, Go = ∑
f

n
∑

i

nf
∑

gfi ∈ Gfi
wgfilog P Dfi ∣ Xfi, Gfi = gfi, Af , (15)

where Gfi is the set of all possible genotypes for individual i in family f.

M-step Maximize the weighted log likelihood to obtain the parameter estimates in the 

model.

No iteration between the E and M steps is necessary when the empirical carrier probability 

is used as the possible genotype probabilities only need to be calculated once in the E-step. 

Otherwise, the E-M steps iterate until convergence.

4.3. Robust variance estimation

To account for familial correlation, as our penetrance model assumes conditional 

independence of the individuals in the family, the robust variance estimator of the parameter 

estimates θ is provided in a ‘sandwich’ form (White 1982) as

Var(θ) = I0(θ)−1 ∑
f

∂ ℓf (θ)
∂θ

∂ ℓf (θ)
∂θ

⊤
I0(θ)−1, (16)

where I0(θ) is the observed information matrix obtained from

I0(θ) = − ∂2 ℓ (θ)
∂θ∂θ⊤ ,

ℓf(θ) is the ascertainment-corrected log-likelihood for family f and ℓ (θ) = ∑f ℓf (θ).

The robust variance-covariance matrix then can be consistently estimated by evaluating the 

Var(θ) at the maximum likelihood estimates.

4.4. Disease gene carrier probabilities

Mutation carrier probabilities for relatives with missing genotype information can be 

estimated using observed genotypes within the families or alternatively, with the addition 

of phenotype information. The carrier probability can be calculated based on only observed 
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genotypes using Mendelian transmission probabilities or using data-driven probabilities 

empirically calculated from the aggregated data for each subgroup based on relation, 

proband’s mutation status, mode of inheritance, disease status and disease-allele frequency 

in the population. It can be also obtained based on both observed genotype and phenotype 

information using the penetrance model fit.

The carrier probability for individual i conditional on the observed phenotype and carrier 

status of his or her family members is calculated by

P Gi = 1 ∣ Di, Goo

= P Di ∣ Gi = 1 P Gi = 1 ∣ Go

P Di ∣ Gi = 1 P Gi = 1 ∣ Go + P Di ∣ Gi = 0 P Gi = 0 ∣ Go , (17)

where Gi indicates the carrier status of individual i and Go represents the observed carrier 

status in his or her family members, Di represents the observed phenotype (ti; δi) of 

individual i in terms of age at disease onset ti and disease status indicator δi (1 for affected 

individuals and 0 for unaffected individuals).

5. Package description

The R Package FamEvent is available for download from CRAN (The Comprehensive R 

Archive Network 2019). This package will appeal to users who want to simulate complex 

pedigree data for age-at-onset phenotypes for families who carry a major gene and/or users 

who want to estimate disease gene penetrance functions using their own family data with 

correction for selection bias and missing genotype information. Plotting functions permit 

visual examination of individual pedigrees, the true penetrance functions and the estimated 

penetrance functions based on the fitted model. Mutation carrier probabilities for individuals 

with missing genotype information are estimated using information on family members 

genotypes and possibly phenotypes. The main functions used in FamEvent are summarized 

in Table 4 and their usage in practice is described in this section.

The package in R is installed and loaded in the usual way:

R> install.packages(“FamEvent”)

R> library(“FamEvent”) 

5.1. Penetrance curves

The function penplot enables researchers to see the shape of the penetrance function and 

to choose appropriate penetrance functions for checking the performance of a penetrance 

model or planing a simulation study.

The shape of penetrance functions is determined by choosing the baseline hazard 

distribution (base.dist) with their parameter values (base.parms), the regression coefficient 

values for gender and major gene (vbeta) and the source of residual familial correlation 

(variation). Familial correlation can be induced by either a shared frailty (variation = 
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“frailty”) or a second gene shared within the family (variation = “secondgene”). The default 

is “none” implying that event times are independent given major genotypes. When variation 

= “frailty”, the choice of the frailty distribution (frailty.dist) and the variance of the frailty 

distribution (depend) should be specified.

For example, the following function call will display the penetrance functions and return 

penetrance estimates by age 70 specific to gender and mutation-status, based on the Weibull 

baseline distribution with scale parameter, λ, set to 0.01, shape parameter, ρ, set to 3 and 

familial correlation induced by a shared frailty within each family which follows a gamma 

distribution with mean 1 and variance 1 that was specified by the argument depend = 1. We 

can also specify the minimum age of disease onset agemin for the penetrance function to 

start.

R> penplot(base.parms = c(0.01, 3), vbeta = c(−1.3, 2.35),

+ base.dist = “Weibull”, frailty.dist = “gamma”, variation = “frailty”,

+ depend = 1, agemin = 20) 

Call: gamma frailty with Weibull baseline

Penetrance by age 70:

  male-carrier female-carrier male-noncarr female-noncarr

    0.26319239 0.56723000 0.03294418 0.11111111 

5.2. Family data generation

The simfam function generates data for all family members, including their age, gender, 

family relation, disease gene mutation status, and times to an event, based on the penetrance 

model associated with mutated genes and gender as we described in Section 3. The 

principles of generating family data were described in Choi et al. (2008). Each family 

consists of three generations—two parents and their offspring whose number ranges in size 

from 2 – 5, one of whom is the proband. Each offspring has a spouse and their children 

whose number ranges in size from 2 – 5. The age difference between the second and third 

generations is assumed to be 20 years on average. Given the study design, the proband’s 

mutation status is generated first and their age at onset generated conditional on the mutation 

status. Other family members’ mutation statuses are determined based on the proband’s 

status and then their ages at onset are generated. Finally, their affection status is determined 

if their ages at onset are before their current age. This procedure is repeated until the 

ascertainment criteria specified by the study design is satisfied.

The standard code with default values for generating family data is

R> simfam(N.fam, design = “pop”, variation = “none”, interaction = FALSE,

+ base.dist = “Weibull”, frailty.dist = NULL, base.parms, vbeta,

+ depend = NULL, allelefreq = c(0.02, 0.2), dominant.m = TRUE,

+ dominant.s = TRUE, mrate = 0, hr = 0, probandage = c(45, 2),

+ agemin = 20, agemax = 100)
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With the simfam function, family data can be simulated under various family study designs 

(design) listed in Table 1. For the two-stage design (design = “twostage”), the proportion 

of high risk families to be included in the sample should be specified by argument hr. 

Simulating families under the clinic-based (“cli” or “cli+”) or the two-stage designs can 

be slower since the ascertainment criteria for the high risk families are diffcult to meet in 

such settings. In particular, the “cli” design could be slower than the “cli+” design since the 

proband’s mutation status is randomly selected from a disease population in the “cli” design, 

so his or her family members are less likely to be mutation carriers and to be affected, 

whereas when the probands are all mutation carriers (“cli+”), their family members have 

higher chance to be carriers and affected by disease. Therefore, the “cli” design requires 

more iterations to sample high risk families than the “cli+” design. All simulations that 

include variation = “frailty” could be slower in order to generate families with specific 

familial correlations induced by the chosen frailty distribution.

Popular hazard function distributions—such as Weibull, loglogistic, Gompertz, lognormal, 

gamma, or logBurr—are available to generate the baseline hazard distribution. Residual 

familial correlation can be created by incorporating a frailty term (variation = “frailty”) 

with a choice of lognormal or gamma distribution or via a two-gene model (variation = 

“secondgene”). For the major and possibly second gene, users can specify if the genetic 

model is dominant or recessive (dominant.m for the major gene and dominant.s for the 

second gene) and their population allele frequencies (allelefreq). Additional parameter 

option values can fix the proportion of missing genotypes (mrate) and the minimum 

(agemin) and maximum (agemax) age of disease onset.

Details of selected arguments for the simfam function are described in Table 5.

The following example shows the use of simfam function to generate 200 families using 

set.seed(4321) from the study design “pop+”, where families are sampled based on affected 

and mutation carrier probands. The ages to disease onset are assumed to follow a Weibull 

baseline hazard distribution with the effects of gender and mutation status set at βs = −1.13, 

βg = 2.35, respectively. The familial correlation is due to a shared frailty following a gamma 

distribution with mean 1 and variance 1. The allele frequency of the major gene is assumed 

to be 0.02.

R> fam <- simfam(N.fam = 200, design = “pop+”, variation = “frailty”,

+ base.dist = “Weibull”, frailty.dist = “gamma”, depend = 1,

+ base.parms = c(0.01, 3), vbeta = c(−1.13, 2.35), allelefreq = 0.02,

+ agemin = 20)

Table 6 presents the simulated data for the first family, which includes the founders, 

probands, ages at disease onset, gene carriers assuming a dominant model as well as other 

variables needed for estimation.

The data frame includes columns famID, indID, motherID, fatherID for family, individual, 

mother and father IDs, respectively; generation which takes values 1, 2, 3 or 0, where 0 
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indicates spouses; and gender indicating males (= 1) and females (= 0). majorgene indicates 

the genotype status of a major gene of interest, denoting 1 for AA, 2 for Aa and 3 for aa, 

where A is a disease-causing allele. ageonset is the age of disease onset generated by the 

penetrance model shown in (3). However, we do not observe ageonset beyond the current 

age (currentage), so time takes the minimum value of ageonset and currentage and status 

indicates disease status at current age, i.e., 1 if the disease is observed by current age and 

0 otherwise. mgene records the mutated gene carrier status derived from the major gene 

genotype, indicating 1 if carrier of disease gene, 0 otherwise. relation represents the family 

members’ relationship with the proband as described in Table 7.

In addition, data include the family size fsize, the number of affected family members 

naff and sampling weight weight for each family. For example, the family with famID = 

1 has 18 members and includes only one affected individual in addition to the proband. 

The individual with indID = 3 is the proband whose current age is 47 years old, he was 

affected (status = 1) at age 47 and is a mutation carrier (mgene = 1) with genotype Aa 

(majorgene = 2). Figure 1 also graphically displays the pedigree of this family, where the 

red colour indicates the proband, right shading indicates mutation carriers, non-shading for 

non-carriers, left filled symbol indicates affected by the disease and non-filled symbol for 

unaffected by the disease.

The output of simfam function is an object of class ‘simfam’. The ‘simfam’ class has 

its own summary and plot methods: summary function prints the summary of generated 

data and plot function provides the pedigree plots of specified families with indication of 

family members’ affection status and mutation carrier status. Examining several individual 

pedigrees is helpful for assessing the genetic transmission model, number of carriers and 

affected individuals within the simulated families.

R> summary(fam)

Study design:                            pop+

Baseline distribution:                   Weibull

Frailty distribution:                    gamma

Number of families:                      200

Average number of affected per family:   2.02

Average number of carriers per family:   5.88

Average family size:                     15.27

Average age of onset for affected:       43.31

Sampling weights used:                   1

R> plot(fam, famid = 1, pdf = TRUE, file = “pedigreeplot.pdf”)

5.3. Penetrance model estimation

The penetrance model is estimated with either the penmodel function for complete genetic 

data or the penmodelEM function in presence of missing genetic data using the EM 

algorithm. These functions provide the model parameter estimates with their conventional 

standard errors based on the Hessian matrix or robust standard errors based on the sandwich 
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variance formula if robust = TRUE. The output of penmodel or penmodelEM is an object 

of class ‘penmodel’, which has a list with elements of model parameter estimates, their 

covariance matrix, standard errors, (or robust covariance matrix, robust standard errors if 

robust = TRUE is specified).

The corresponding program codes for fitting a proportional hazard model for complete or 

missing genetic data are:

penmodel(formula, cluster = “famID”, gvar = “mgene”, parms, cuts = NULL,

  data, design = “pop”, base.dist = “Weibull”, agemin = NULL,

  robust = FALSE) 

penmodelEM(formula, cluster = “famID”, gvar = “mgene”, parms, cuts = NULL,

  data, design = “pop”, base.dist = “Weibull”, agemin = NULL,

  robust = FALSE, method = “data”, mode = “dominant”, q = 0.02)

Both functions take the formula expression as used in other regression models with time-to

event data using the Surv function and covariates, name of the cluster variable (cluster), 

name of the genetic variable (gvar), initial parameter values including baseline parameters 

and regression coefficients (parms), family data set (data), as well as specification of the 

family study design (design), baseline hazard distribution (base.dist) options, allowing for 

the same or different choice of baseline hazard from the simulated data. In addition to the 

options for base.dist listed in Table 5, base.dist = “piecewise” fits a piecewise constant 

baseline hazard function with specified cuts that define the intervals where the hazard 

function is constant. A prospective likelihood that corrects for ascertainment is used with the 

type of correction depending on the family study design specified in the design argument.

When imputation of missing genotype is needed, the penmodelEM function implements 

the EM algorithm to estimate the disease gene carrier probabilities for family members 

who are missing this key variable. Two methods are available: if sufficient genotype 

information is available within every family, then carrier probabilities can be empirically 

calculated from the aggregated data for each subgroup based on generation and proband’s 

mutation status (method = “data”) otherwise they can be calculated based on Mendelian 

transmission probabilities by selecting method = “mendelian” with mode of inheritance 

(mode) specifying as either “dominant” or “recessive” and the allele frequency (q) as a value 

between 0 and 1.

The output of penetrance model fit includes the parameter estimates, their variance 

covariance matrix, the corresponding standard errors (SEs), the log-likelihood and Akaike 

information criterion (AIC) values at its maximum value. In addition, robust SEs and 

‘sandwich’ variance covariance matrix are provided if robust = TRUE. Robust SEs could 

be smaller than the conventional SEs when the sample sizes are small or a parameter 

is estimated from effectively few non-zero covariate values (Fay and Graubard 2001). 

When sample sizes are small, the robust SE can be biased downward and some particular 

techniques can be used to correct this bias (see for example, Imbens and Kolesár (2016)). 
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Conventional SEs could be considered instead although we do not expect a large difference 

from the robust SE.

The ‘penmodel’ class has its own print, summary and plot methods. The summary method 

returns and displays the model parameter estimates of transformed baseline parameters 

and regression coefficients with their SEs (or robust SEs if robust = TRUE), t statistics 

and corresponding two-sided p values. The plot method produces a graph of estimated 

penetrance functions for four subgroups by gender and mutation status in different colours 

along with Kaplan-Meier curves from family data used for fitting the model excluding 

probands, in order to naïvely correct for ascertainment. Thus, this plot displays both 

parametric and non-parametric estimates of penetrances from the minimum to the maximum 

age at onset, along with their 95% confidence intervals if conf.int = TRUE.

Continuing our example from Section 5.2, we fit the data set consisting of 200 families (data 

= fam) to a penetrance model for the right censored time-to-event outcome, Surv(time, 

status), with two covariates, gender and mgene, assumed a Weibull baseline hazard 

distribution and accounted for the family study design (design = “pop+”) used to sample 

the families. We specified the name of the cluster variable as cluster = “famID”, the name of 

genetic variable as gvar = “mgene” and the initial values of the baseline parameters, λ and ρ, 

as well as the gender and mutation effects on the baseline hazard function as parms = c(0.01, 

3, −1.13, 2.35). The summary of the model fit is given below and the plot function generates 

the penetrance curves shown in Figure 2.

R> fit <- penmodel(Surv(time, status) ~ gender + mgene, cluster = “famID”,

+ gvar = “mgene”, parms = c(0.01, 3, −1.13, 2.35), data = fam,

+ design = “pop+”, base.dist = “Weibull”, robust = TRUE)

R> summary(fit) 

Estimates:

          Estimate Std.  Error Robust SE t value     Pr(>|t|)

log(lambda) −4.345   0.06489     0.06177 −70.350     0.009049 **

log(rho)     1.066   0.04075     0.03813  27.947     0.022770 *

gender      −1.003   0.14877     0.15130 −6.628      0.095336 .

mgene        2.085   0.17462     0.16008  13.023     0.048790 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

R> plot(fit, conf.int = FALSE, add.KM = TRUE, MC = 100) 

Estimates:

log(lambda)  log(rho)      gender    mgene

  −4.345359  1.065674   −1.002791 2.084711 

Penetrance (%) by age 70:

  male-carrier female-carrier male-noncarr female-noncarr

    0.56770489     0.89833272   0.09902695     0.24742489
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5.4. Age-specific penetrance estimation with confidence intervals and standard errors

At given age(s) and fixed covariate values, the penetrance function provides penetrance 

estimates with 95% confidence intervals (CIs) and SEs of the penetrance estimates through 

Monte Carlo (MC) simulations of the estimated penetrance model. Provided a model fit 

from penmodel or penmodelEM, parameter estimates of both the transformed baseline 

parameters and regression coefficients along with their variance-covariance matrix are used 

as the inputs to a multivariate normal distribution. Based on these inputs, MC = n sets 

of parameters are generated for given age(s) and fixed covariates and their corresponding 

penetrance estimates calculated. For baseline parameter estimation, a log transformation is 

applied to both scale and shape parameters (λ, ρ) for the Weibull, loglogistic, Gompertz, 

gamma baseline distributions, to (λ, ρ, η) for the log-Burr distribution and to the piecewise 

constant parameters for a piecewise baseline hazard. But for the lognormal baseline 

distribution, the log transformation is applied only to ρ, not to λ, which represents the 

location parameter for the normally distributed logarithm.

Empirical estimates of the the 95% CIs at given age(s) are based on the 2.5th and 97.5th 

percentiles of the penetrance functions estimated from the n simulated data values. The SE 

of the penetrance estimate, also for given age(s), is calculated via the standard deviation 

of the n simulated penetrance functions. Both the 95% CIs and SEs are obtained for fixed 

covariates at the given age(s). For example, using the penetrance model fitted to the 200 

families in Section 5.3, the penetrance estimates by age 50, 60, and 70 for male mutation 

carriers fixed = c(1, 1) can be obtained using 100 MC simulations (MC = 100) as follows:

R> penetrance(fit, fixed = c(1,1), age = c(50, 60, 70), CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper         se

1  50   0.1733465 0.1383407 0.2106344 0.01990850

2  60   0.3551920 0.2969823 0.4246954 0.03577366

3  70   0.5677049 0.4805629 0.6607012 0.04785525

5.5. Carrier probability estimation

The carrierprob function estimates mutation carrier probabilities for relatives with missing 

genotype information using observed genotypes within the families condition = “geno” or 

alternatively, with the addition of phenotype information, using condition = “geno+pheno”. 

When condition = “geno”, inputs for carrierprob include two methods of estimation: 

method = “mendelian” uses Mendelian transmission probabilities or method = “data” uses 

data-driven probabilities calculated from the aggregated data for each subgroup based on 

relation, proband’s mutation status, mode of inheritance, disease status and disease-allele 

frequency in the population. When condition = “geno+pheno”, method = “model” should be 

used to calculate the carrier probabilities based on both observed genotype and phenotype 

information, where the penetrance model should be specified by fit obtained from either the 

penmodel or penmodelEM functions.
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The carrierprob function returns a dataframe that includes the estimated carrier probabilities, 

named carrp.geno or carrp.pheno, appended after the last column in the family data set, 

indicating carrier probabilities based on observed genotypes only and those based on both 

observed genotypes and phenotype, respectively.

6. Illustrating examples

6.1. Penetrance estimation in presence of missing genotype data

The presence of missing genotypes is a common issue in genetic studies. The R package 

FamEvent can be used to generate and analyze family data with missing genotypes for 

the major gene. For example, we can generate families with 30% of missing genotypes, 

assuming a Weibull baseline function with scale and shape parameters of 0.01 and 3, 

βsex = 0.5 and βgene = 2. Given the parameter values in the Weibull model, the function 

penplot displays penetrance functions (not shown) and also returns the true penetrance 

values by age 70. In our situation, those are 0.868, 0.708, 0.240, and 0.153 in male carriers, 

female carriers, male non-carriers, and female non-carriers, respectively. For this example, 

set.seed(4321) was used.

R> fam <- simfam(N.fam = 300, design = “pop+”, base.dist = “Weibull”,

+ allelefreq = 0.02, base.parms = c(0.01, 3), vbeta = c(0.5, 2),

+ probandage = c(45, 2.5), agemin = 15, mrate = 0.3)

R> penplot(base.parms = c(0.01, 3), vbeta = c(0.5, 2),

+ base.dist = “Weibull”, agemin = 15)

Call: Weibull baseline

Penetrance by age 70:

  male-carrier female-carrier male-noncarr female-noncarr

     0.8682518      0.7075186    0.2399006      0.1532713

For model fitting in the presence of missing genotypes, we can consider two approaches: 

complete-case analysis and an EM algorithm as implemented in FamEvent. The complete

case approach simply ignores the missing genotypes, i.e., considers only the subset of 

individuals with complete information. Alternatively, the EM algorithm approach can 

infer missing genotypes by computing the conditional probability of being carriers given 

the phenotype information in the family (see Section 3.3). In FamEvent, the complete

case analysis is performed with the penmodel function and the EM algorithm with the 

penmodelEM function. The penetrance estimates by age 70 and their CIs and SEs for male 

and female carriers are obtained with penetrance function. The command lines and output 

are:

R> fam0 <- fam[ ! is.na(fam$mgene), ]

R> fit0 <- penmodel(Surv(time, status) ~ gender + mgene, cluster = “famID”,

+ gvar = “mgene”, parms=c(0.01, 1, 0.5, 2), data = fam0, design = “pop+”,

+ base.dist=“Weibull”)
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R> summary(fit0)

Estimates:

            Estimate Std. Error  t value Pr(>|t|)

log(lambda)  −4.6506    0.06469  −71.891 0.008855 **

log(rho)      1.0669    0.03543   30.113 0.021133 *

gender        0.4626    0.13011   3.556  0.174542

mgene         2.0634    0.15650   13.185 0.048191 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

R> penetrance(fit0, fixed = c(1,1), age = 70, CI = TRUE, MC = 100)

R> penetrance(fit0, fixed = c(0,1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper        se

1  70   0.8545536 0.8016831 0.9027098 0.0286689

Fixed covariate values: gender = 0 mgene = 1

  age penentrance     lower     upper         se

1  70   0.7029629 0.6336492 0.7653958 0.03707987

R> fitEM <- penmodelEM(Surv(time, status) ~ gender + mgene, cluster = 

“famID”,

+ gvar = “mgene”, parms = c(0.01, 1, 0.5, 2), data = fam, design = “pop+”,

+ base.dist = “Weibull”, method = “mendelian”)

R> summary(fitEM)

Estimates:

            Estimate Std. Error t value Pr(>|t|)

log(lambda)   −4.652    0.05503 −84.532 0.007531 **

log(rho)       1.079    0.03199  33.715 0.018877 *

gender         0.384    0.11011   3.488 0.177765

mgene          2.174    0.13259  16.400 0.038770 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

R> penetrance(fitEM, fixed = c(1, 1), age = 70, CI = TRUE, MC = 100)

R> penetrance(fitEM, fixed = c(0, 1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper         se

1  70   0.8563912 0.8168521 0.8993619 0.02294077

Fixed covariate values: gender = 0 mgene = 1

  age penentrance     lower     upper         se

1  70   0.7333461 0.6782508 0.7916241 0.03105126

The accuracy and precision of parameter and penetrance estimates for the two approaches 

are summarized in Table 8. The estimates obtained from these two approaches are similar 

since the missing genotypes were generated at random from simfam function.

6.2. Sample size and power calculation

Sample size calculation is a critical task when designing a new family study. In penetrance 

estimation studies, the goal is to collect enough families to detect a genetic relative risk 
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associated for a known mutation or genetic variant with a specified statistical power and/or 

to estimate the penetrance function at a certain age in gene carriers with a certain precision. 

We can use our R package FamEvent to perform the sample size calculation in these two 

situations.

For the first situation, we can construct the Wald test statistic as

W = β − β0 /SE(β ) N(0, 1) under the null hypothesis,

where β  is the estimated log hazard ratio (HR) associated with a given mutation, β0 its value 

under the null hypothesis (e.g., β0 = 0) and SE(β ) is a standard error estimate of β . For the 

one-sided test H0 : β ≤ β0 vs. H1 : β > β0, the power of the Wald test is defined as: P (W 
> Z1−α) under the alternative hypothesis, where Z1−α is the (1−α)th quantile of the standard 

normal distribution. The power function for β > β0 can then be obtained from the asymptotic 

normality of the maximum likelihood estimator as

P β − β + β − β0 /SE(β ) > Z1 − α = P (β − β)/SE(β ) > Z1 − α − β − β0 /SE(β )
= Φ −Z1 − α + β − β0 /SE(β ) ,

where Φ(.) the cumulative normal distribution.

We can then perform some simulations with FamEvent package to determine the number 

of families needed to achieve a certain power. Since β and β0 are fixed, simulating different 

family sizes will affect the standard error of β  and hence the power of the test. For example, 

we simulated 50 families under the POP+ design, using a Weibull baseline function with 

shape and scale parameters of 0.01 and 3, a gender effect with βgender = 1 (i.e., HR = 2.72), 

a dominant model for the major gene with allele frequency of 0.02 for the minor allele and 

βgene = 1 (HR = 2.72).

We obtained a robust standard error for βgene of 0.34. If we assume β0 = 0 and a one-sided 

test with α = 0.05, the power of the Wald statistic to test for βgene > 0 is 89.8%.

R> fam50 <- simfam(50, design = “pop+”, variation = “none”,

+ base.dist = “Weibull”, base.parms = c(0.01, 3), vbeta = c(1, 1),

+ allelefreq = 0.02, probandage = c(45, 2.5), agemin = 20)

R> fit50 <- penmodel(Surv(time, status) ~ gender + mgene, cluster = “famID”,

+ gvar = “mgene”, parms = c(0.01, 3, 1, 1), data = fam50, design = “pop+”,

+ base.dist = “Weibull”, robust = TRUE)

R> summary(fit50)

Estimates:

            Estimate Std. Error Robust SE t value Pr(>|t|)

log(lambda)   −4.875    0.20437   0.21674 −22.493 0.02828 *

log(rho)       1.090    0.09317   0.08719  12.503 0.05081 .

gender         1.756    0.44694   0.46596   3.769 0.16509
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mgene          1.384    0.37311   0.34382   4.025 0.15504

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Empirically, we can also obtain the power for testing βgene > 0 from simulations using 

fampower function. Based on 100 simulations of 50 POP+ families, the power of 87% was 

obtained using the following code, i.e., the probability of 87% to reject the null hypothesis 

when the true effect size βgene = 1.

R> fampower(N.fam = 50, N.sim = 100, effectsize = 1, beta.sex = 1, side = 1,

+ base.dist = “Weibull”, design = “pop+”, base.parms = c(0.01, 3),

+ probandage = c(45, 2.5), agemin = 20)

Number of families = 50

1 sided test

alpha = 0.05

Effect size = 1

Power = 0.87 

For the second situation, using similar code as above we can obtain the penetrance estimate 

in gene carriers at 70 years of age and its 95% CI. With 50 POP+ families and under the 

assumptions given above, the penetrance estimate at 70 years is 73.20% (SE = 8.74%) in 

males and 20.34 (SE = 8.82%) in females.

R> penetrance(fit50, fixed = c(1,1), age = 70, CI = TRUE, MC = 100) R> 

penetrance(fit50, fixed = c(0,1), age = 70, CI = TRUE, MC = 100) 

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper         se

1  70   0.7320258 0.5337312 0.8658422 0.08741793 

Fixed covariate values: gender = 0 mgene = 1

  age penentrance      lower     upper         se

1  70    0.203384 0.09210014 0.4149234 0.08821385

If an investigator wants a standard error for the penetrance estimate to reach a maximum of 

5% in both males and females, about 200 POP+ families would be needed as shown below 

the output from fitting the 200 simulated families.

R> penetrance(fit200, fixed=c(1,1), age=70, CI=TRUE, MC=100)

R> penetrance(fit200, fixed=c(0,1), age=70, CI=TRUE, MC=100)

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper         se

1  70   0.6070111 0.4905026 0.6932932 0.05064867 

Fixed covariate values: gender = 0 mgene = 1
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  age penentrance     lower    upper         se

1  70   0.2494493 0.1721935 0.367085 0.04612641

6.3. Optimal designs

Designing efficient studies is an important aspect of family studies. We illustrate this 

problem by considering a two-stage family design. Typically case patients (i.e., probands) 

are selected in the first stage and asked about the history of disease in their family and 

stratified into different categories, e.g., high-risk (High), intermediate-risk (Med) and low

risk (Low). In the second stage, case patients and their relatives are subsampled with 

different sampling probabilities that could depend on their risk category. For a fixed sample 

size, the goal is to estimate the sampling probability for each stratum that minimizes the 

variance of the estimate of the parameter of interest.

To construct an optimal design we therefore determine some optimal weights for each 

stratum and then decide the optimal sample sizes accordingly (in our case, the number 

of families to include into the study). The optimal weighting problem was discussed by 

Lindsay (1988) who obtained optimal weights in a way that maximizes the information over 

a class of estimating functions. Let w be the vector of weights, S the vector of component 

scores and U the score function based on the full likelihood. Then, the optimal weights are 

obtained by minimizing with respect to w,

Eβ U − w⊤S 2,

and are given by

wopt = [Var(S)]−1E(US),

with E(US) = E(S2) where S2 denotes the vector whose elements are the squared elements of 

S and the variance Var(S) is a block matrix where the size of each block depends on the size 

of the stratum.

Consider the problems of determining the optimal weights for estimating: 1) the log hazard 

ratio measuring the effect of a mutation on a time-to-event outcome, and, 2) the penetrance 

of the mutation by age 70. We simulated family data corresponding to the three risk 

categories (High, Med, Low) assuming that High corresponds to the CLI+ design, Med 

to POP+ and Low to POP. We simulated 150 families from each design. To simulate the 

family data, we used a Weibull baseline function with shape and scale parameters of 0.01 

and 3, respectively, a gender effect with βsex = 1 (HR = 2.72), a dominant model for the 

major gene with allele frequency of 0.02 for the minor allele, a mean and standard deviation 

for the proband’s age of 45 and 2.5 years, respectively, and a minimum age at onset for 

the disease of 20 years. We assumed βgene = 1.5, 0.8, and 0.5 for the High, Med and Low 

designs, respectively, and the associated penetrance as given in Table 9. The command lines 

to generate and fit family data are similar to the one described in Section 6.1.
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We are first interested in an optimal design for the log HR estimates. The variances for 

the log HR estimates in high-risk, intermediate-risk and low-risk families are 0.132, 0.212 

and 0.522, respectively (Table 9). As the sampling probabilities are inversely proportional 

to these variances, if we plan to have a total sample size of n = 300 families, we need the 

collection of 212 high-, 75 intermediate-, and 13 low-risk families. However, if one wants 

to optimize the design for the penetrance estimate in males this will lead to the collection 

of 290 high-, 8 intermediate-, and 2 low-risk families and in females of 150 high-, 104 

intermediate-, and 46 low-risk families, respectively.

6.4. Real data analysis

To analyze real data using penmodel or penmodelEM, the data should be prepared following 

the same data frame that the simfam function provides. The data frame should include 

column names famID, indID, motherID, fatherID, proband (coded 1 for proband, 0 for 

non-proband), gender (coded 1 for male, 0 for female), currentage, time, status (coded 1 for 

affected, 0 for unaffected), mgene (coded 1 for carrier, 0 for noncarrier, or NA for missing). 

When data includes a sampling weight, it should be named as weight in the data frame. 

Without this weight variable, all families will be equally weighted. In addition, agemin has 

to be specified by attr(data, “agemin”) = 18, for example.

The package includes data named LSfam from 32 Lynch Syndrome (LS) families identified 

through the Ontario Familial Colorectal Cancer Registry (OFCCR) (Cotterchio et al. 
2000). Lynch Syndrome is an autosomal dominant condition caused by several DNA 

mismatch repair (MMR) genes, predominantly MLH1 and MSH2, that predisposes carriers 

to colorectal cancers.

The OFCCR used the population-based Ontario Cancer Registry to identify incident 

colorectal cancer (CRC) cases (probands), aged 20 – 74, diagnosed from July 1997 to 

July 2000. Probands were screened for any MMR gene mutations. For each proband found 

to carry an MMR mutation, all first- and second-degree relatives of the proband’s family 

were considered to be eligible for the study. The data set includes a total of 765 individuals. 

Excluding individuals without information on age at diagnosis or examination or disease 

status, n = 503 individuals are used for analysis including 32 probands and 471 relatives. 

The probands are all mutation carriers and of the 471 relatives, 60 are known mutation 

carriers, 62 are known non-carriers, and the mutation statuses of the rest are unknown. After 

loading the data, data(“LSfam”), summary.simfam(LSfam) and plot.simfam(LSfam) can be 

applied to provide a summary of the data and a graphical display of the pedigree structure 

for the first family, respectively. Using the LS family data, we aimed to estimate the effects 

of gender and mutation status on CRC risk and to provide age-specific penetrance estimates 

specific to gender and mutation status by taking missing genetic information into account. 

To begin, we specified the minimum age of onset as 18 years and used those whose age at 

onset or current age is greater than the minimum age into the analysis. What follows are 

two penetrance models fitted using baselines hazard distributions—Weibull and piecewise 

constant with cut points at c(30,40,50,60).
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R> data(“LSfam”)

R> attr(LSfam, “agemin”) <- 18

R> fitLS.Weibull <- penmodelEM(Surv(time, status) ~ gender + mgene,

+ design = “pop+”, cluster = “famID”, gvar = “mgene”,

+ parms = c(0.05, 2, 1, 3), base.dist = “Weibull”, method = “mendelian”,

+ data = LSfam[ ! is.na(LSfam$time), ])

R> summary(fitLS.Weibull)

Estimates:

            Estimate Std. Error t value Pr(>|t|)

log(lambda)  −4.7159    0.10741 −43.906 0.01450 *

log(rho)      1.0455    0.07044  14.843 0.04283 *

gender        0.4518    0.21070   2.144 0.27779

mgene         2.3436    0.27743   8.447 0.07501.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

R> plot(fitLS.Weibull, add.KM = FALSE, conf.int = TRUE, ylim = c(0, 1),

+ print = FALSE)

R> penetrance(fitLS.Weibull, fixed = c(1, 1), age = 70, CI = TRUE, MC = 100)

R> penetrance(fitLS.Weibull, fixed = c(0, 1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper         se

1  70   0.8441975 0.7643877 0.9244254 0.04455421 

Fixed covariate values: gender = 0 mgene = 1

  age penentrance     lower     upper         se

1  70   0.6937294 0.6034767 0.8011827 0.05491901 

Based on the penetrance model with a Weibull baseline hazard distribution, the penetrance 

estimates by age 70 for male and female carriers are 84.42% (95% CI = (76.44, 92.44)%) 

and 69.37% (95% CI = (60.35, 80.12)%), respectively.

What follows is the penetrance model fitted with a piecewise-constant baseline. Although 

it provides more flexibility, it takes longer time to converge as it uses more parameters 

to estimate the baseline hazard. The penetrance estimates by age 70 for male and 

female carriers are 80.47% (95% CI = (70.37, 90.59)%) and 67.22% (95% CI = (58.89, 

78.04)%), respectively, which are slightly lower compared to the Weibull baseline hazards 

model. The AIC values for these models are 1111 and 1149, respectively obtained from 

fitLS.Weibull$AIC and fitLS.piece$AIC.

R> fitLS.piece <- penmodelEM(Surv(time, status) ~ gender + mgene,

+ design = “pop+”, cluster = “famID”, gvar = “mgene”,

+ base.dist = “piecewise”, parms = c(rep(0.01, 5), 1, 1.5),

+ cuts = c(30, 40, 50, 60), method = “mendelian”,

+ data = LSfam[ ! is.na(LSfam$time), ] ) 

R> summary(fitLS.piece)
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Estimates:

       Estimate Std. Error t value Pr(>|t|)

log(q1) −8.1065     0.4346 −18.654 0.03409 *

log(q2) −7.0434     0.3649 −19.304 0.03295 *

log(q3) −5.8203     0.3141 −18.530 0.03432 *

log(q4) −5.4490     0.3118 −17.474 0.03639 *

log(q5) −4.9240     0.2801 −17.578 0.03618 *

gender   0.3815     0.2110   1.808 0.32163

mgene    1.9561     0.2581   7.580 0.08351 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

R> plot(fitLS.piece, add.KM = FALSE, conf.int = TRUE, ylim = c(0,1),

+ print = FALSE)

R> penetrance(fitLS.piece, fixed = c(1, 1), age = 70, CI = TRUE, MC = 100)

R> penetrance(fitLS.piece, fixed = c(0, 1), age = 70, CI = TRUE, MC = 100)

Fixed covariate values: gender = 1 mgene = 1

  age penentrance     lower     upper         se

1  70    0.804729 0.7036892 0.9059321 0.05401238 

Fixed covariate values: gender = 0 mgene = 1

  age penentrance    lower    upper         se

1  70    0.672183 0.588948 0.780449 0.05204197

Figure 3 displays the penetrance curves ranging from 20 to 80 years for four groups specific 

to gender and mutation status based on the Weibull (left panel) and piecewise constant (right 

panel) baselines.

7. Conclusions

FamEvent is a comprehensive R package for simulating and modelling time-to-event data 

from family-based study designs. Family-based designs continue to be powerful approaches 

to study complex diseases with a genetic basis, even with increasingly low costs for whole 

genome sequencing. For example, a recent consortium for affective and psychotic disorders 

has been developed to identify genetic factors for mental illness (Glahn et al. 2019). Genetic 

factors are being identified from family studies in vastly different diseases, disorders and 

behaviours including the intergenerational transmission of divorce (Salvatore et al. 2018), 

Alzheimer’s Disease (Beecham et al. 2017), human longevity (Yashin et al. 2018), and the 

impact of the rearing environment on children’s behaviour (Liu and Neiderhiser 2017).

Common issues encountered in family-based designs, regardless of the research domain, 

include missing genotype information on family members, selection of the families and 

residual correlation after conditioning on the major gene. Substantial bias in penetrance 

parameter estimates as well as underestimation of variability can occur without addressing 

these issues in the analysis of data. No existing R packages, such as gap, pbatR, or coxme, 

address the missing genotype information or selection bias in their methods. FamEvent 
is a versatile and user-friendly R package for simulating and fitting time-to-event data in 

complex pedigrees under various sampling designs. It assumes the segregation of a major 
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gene with or without the presence of residual correlation due to a second gene or shared 

frailty. The simulated data can mimic real data obtained in many types of family studies. 

Mutation carrier probabilities for individuals with missing genotypes can also be estimated 

using information on the relatives’ genotypes and possibly phenotypes using the carrierprob 

function in the FamEvent package.

Plotting functions permit visual examination of individual pedigrees, as well as the true 

and estimated penetrance functions while several summary and print options provide the 

key parameter and penetrance estimates from fitted models or details of the simulated 

family data set. The power of detecting a genetic effect in the penetrance model based on 

a family-based simulation study is available in the fampower function. The FamEvent R 

package also includes data from 32 Lynch Syndrome families segregating MMR mutations 

selected from the Ontario Familial Colorectal Cancer Registry, including 765 relatives; these 

data will permit other users to evaluate their models or methods. This package addresses 

important features of age-at-onset data from common family-based designs, generates data 

that mimics real family data, and provides important tools for investigators planning family

based studies or analyzing their corresponding data.

Future extensions will include more sophisticated functions for penetrance estimation as 

well as the simulation of time-to-event data in the context of familial sequencing studies. 

For instance, we have started to use FamEvent in combination with our other R package 

sim1000G (Dimitromanolakis et al. 2019), which simulates genetic variants according 

to the 1000 Genomes data. The penetrance function can then depend on a multi-allelic 

genetic marker, where the marker can be composed of rare or common genetic variants 

or a combination of both. This is particularly useful to simulate a pattern of familial 

aggregation of age-at-onset outcomes given a complex genetic architecture. For example, 

we recently used FamEvent to simulate a familial aggregation of age at colorectal cancer 

onset in Familial Colorectal Cancer Type X families to investigate the type of genetic 

architecture that could explain this familial aggregation (Choi et al. 2019b). FamEvent was 

also used in combination with sim1000G to assess the power of rare variant association 

tests in family designs for time-to-event data (Dimitromanolakis et al. 2019) and to simulate 

sister pair data under early age at onset ascertainment, where the genetic model reflects 

a scientific hypothesis of locus heterogeneity (Romanescu et al. 2018). This demonstrates 

that FamEvent can have a broad range of applications in complex genomic studies and we 

anticipate more to come. This will motivate our future extensions of FamEvent.
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Figure 1: 
Pedigree plot generated by plot function for a selected family.
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Figure 2: 
Penetrance curves estimated with ascertainment correction.
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Figure 3: 
Penetrance functions estimated using Weibull (left) and piecewise constant (right) baselines 

for Lynch Syndrome families recruited from the OFCCR.
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Table 1:

Family-based study designs implemented in FamEvent package.

Design Description and ascertainment criteria

POP population-based design with affected probands whose mutation status can be either carrier or non-carrier.

POP+ population-based design with affected and mutation carrier probands.

CLI clinic-based design that includes affected probands with at least one parent and one sibling affected.

CLI+ clinic-based design that includes affected and mutation carrier probands with at least one parent and one sibling affected.

Two-stage two-stage sampling design that includes random sampling of families in the first stage and oversampling of high risk families in 
the second stage.
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Table 2:

Possible choices of baseline hazard functions. f(t; λ, ρ) = λ(λt)ρ−1e−λt/Γ(ρ) is the density of gamma 

distribution; S(t; λ, ρ) = 1 − ∫0
tf(x; λ, ρ)dx is the survival function of gamma distribution; ϕ and Φ are pdf and 

CDF of the standard normal distribution, respectively; for the piecewise constant hazard, 0 = τ0 < τ1 < ⋯ < τJ 

= ∞, Δj(t) = 0 if t < τj−1, t − τj−1 if τj−1 ≤ t < τj, or τj − τj−1 if t ≥ τj, j = 1, …, J.

Distribution Hazard h(t) Cumulative hazard H (t)

Weibull ρλ(λt)ρ−1 (λt)ρ λ > 0 , ρ > 0

Log-logistic
ρλ(λt)ρ − 1

1 + (λt)ρ
log{1 + (λt)ρ} λ > 0 , ρ > 0

Log-normal
ϕ (logt − λ)/ρ /(ρt)

Φ −(logt − λ)/ρ −log Φ − logt − λ
ρ −∞ < λ < ∞ , ρ > 0

Gompertz λeρt λ
ρ eρt − 1 λ > 0 , ρ > 0

Gamma f (t; λ, ρ)/S(t; λ, ρ) −log S(t; λ, ρ) λ > 0 , ρ > 0

Log-Burr
ρλη(λt)ρ − 1

η + (λt)ρ
η log{1 + (λt)ρ/η} λ > 0 , ρ> 0 , η > 0

Piecewise constant λi for t ∈ [τj−1, τj) ∑j = 1
J λjΔj(t) λj > 0 , j = 1,…, J

J Stat Softw. Author manuscript; available in PMC 2021 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 33

Table 3:

Possible choices of frailty distributions for familial correlation. ϕ(x; k) is the density function of the normal 

distribution with mean 0 and variance k.

Distribution Laplace transform ℒ(s)
Gamma (1 + s/k)−k k > 0

Lognormal ∫−∞
∞ exp −sex ϕ(x; k)dx k > 0
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Table 4:

Description of main functions in FamEvent package.

Functions Description

carrierprob computes the carrier probability from observed genotype or phenotype data or from the penetrance model fit.

fampower computes the power of detecting genetic effect in the penetrance model based on a family-based simulation study.

penetrance estimates the cumulative disease risks (penetrances) and confidence intervals at given age(s) based on the fitted penetrance 
model.

penmodel fits penetrance models for complete family data.

penmodelEM fits penetrance models for family data with missing genetic information.

penplot plots the penetrance functions given the values of baseline parameters and regression coefficients and choices of baseline and 
frailty distributions.

simfam simulates family data.
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Table 5:

Description of arguments for simfam function.

Argument Description

N.fam Number of families to generate.

design Family-based study design. Possible choices are “pop”, “pop+”, “cli”, “cli+”, “twostage”.

variation Source of familial correlation. Possible choices are “frailty” for frailty shared within families, “secondgene” for second gene 
variation, “none” for no familial correlation given major genotypes.

interaction Logical; if TRUE, allows the interaction between gender and major gene.

depend Variance of the frailty distribution. Dependence within families increases with depend value.

base.dist Choice of baseline hazard distribution. Possible choices are “Weibull”, “loglogistic”, “Gompertz”, “lognormal”, “gamma”, 
“logBurr”.

base.parms Vector of baseline parameter values.

vbeta Vector of regression coefficients for gender, major gene, interaction between gender and major gene (if interaction = TRUE), and 
second gene (if variation = “secondgene”).

frailty.dist Choice of frailty distribution. Possible choices are “gamma”, “lognormal” or NULL.

mrate Proportion of missing genotypes; value between 0 and 1.

hr Proportion of high risk families, which include at least two affected members, to be sampled from the two stage sampling (design 
= “twostage”); value should lie between 0 and 1.

probandage Vector of mean and standard deviation of the proband’s age.

agemin Minimum age of disease onset.

agemax Maximum age of disease onset.
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Table 6:

The simulated data for family 1 from simfam function

famID indID gender motherID fatherID proband generation majorgene secondgene

1 1 1 1 0 0 0 1 2 0

2 1 2 0 0 0 0 1 2 0

3 1 3 0 2 1 1 2 2 0

4 1 4 1 0 0 0 0 3 0

5 1 9 0 3 4 0 3 2 0

6 1 10 1 3 4 0 3 3 0

7 1 11 1 3 4 0 3 3 0

8 1 12 1 3 4 0 3 3 0

9 1 13 1 3 4 0 3 2 0

10 1 5 0 2 1 0 2 2 0

11 1 6 1 0 0 0 0 3 0

12 1 14 0 5 6 0 3 3 0

13 1 15 0 5 6 0 3 2 0

14 1 16 0 5 6 0 3 3 0

15 1 7 0 2 1 0 2 2 0

16 1 8 1 0 0 0 0 3 0

17 1 17 0 7 8 0 3 3 0

18 1 18 0 7 8 0 3 2 0

ageonset currentage time status mgene relation fsize naff weight

1 103.76925 69.19250 69.19250 0 1 4 18 2 1

2 64.88982 67.31119 64.88982 1 1 4 18 2 1

3 45.84891 47.57119 45.84891 1 1 1 18 2 1

4 269.71990 47.37403 47.37403 0 0 6 18 2 1

5 69.78355 27.80081 27.80081 0 1 3 18 2 1

6 192.09392 25.34148 25.34148 0 0 3 18 2 1

7 124.54791 23.42188 23.42188 0 0 3 18 2 1

8 115.05352 25.20730 25.20730 0 0 3 18 2 1

9 117.02180 23.33795 23.33795 0 1 3 18 2 1

10 66.73818 40.44924 40.44924 0 1 2 18 2 1

11 236.29150 47.44871 47.44871 0 0 7 18 2 1

12 90.52633 18.75310 18.75310 0 0 5 18 2 1

13 75.09973 18.17504 18.17504 0 1 5 18 2 1

14 92.65091 18.49978 18.49978 0 0 5 18 2 1

15 69.86995 43.10898 43.10898 0 1 2 18 2 1

16 179.44599 42.12909 42.12909 0 0 7 18 2 1

17 143.52790 19.55723 19.55723 0 0 5 18 2 1

18 57.56951 20.63106 20.63106 0 1 5 18 2 1

J Stat Softw. Author manuscript; available in PMC 2021 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 37

Table 7:

Family relation code used in simulated data.

Relation Description

1 Proband (self)

2 Brother or sister

3 Son or daughter

4 Parent

5 Nephew or niece

6 Spouse

7 Brother or sister in law
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Table 8:

The accuracy and precision of parameter and penetrance (%) estimates using complete case analysis and the 

EM algorithm for 300 POP+ simulated families with 30% missing genotypes.

Complete case EM algorithm

Parameter True value Estimate SE Estimate SE

β sex 0.5 0.46 0.13 0.38 0.11

β gene 2.0 2.06 0.16 2.17 0.13

Penetrance (%) by age 70

male carrier 86.83 85.46 2.87 85.64 2.29

female carrier 70.75 70.30 3.71 73.33 3.11
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Table 9:

Estimates of the log hazard ratio (HR) for mutation gene and penetrance at 70 years under different family 

designs with family size n = 150. The standard error of the estimates are indicated in brackets.

Penetrance at 70 years Penetrance at 70 years

Design Log HR in men (%) in women (%)

CLI+ (High) 1.84 (0.13) 97.12 (0.95) 75.63 (4.34)

POP+ (Med) 0.95 (0.21) 62.08 (5.62) 25.08 (5.23)

POP (Low) 0.46 (0.52) 35.92 (13.73) 14.17 (7.86)
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