Table 2:
Possible choices of baseline hazard functions. f(t; λ, ρ) = λ(λt)ρ−1e−λt/Γ(ρ) is the density of gamma distribution; is the survival function of gamma distribution; ϕ and Φ are pdf and CDF of the standard normal distribution, respectively; for the piecewise constant hazard, 0 = τ0 < τ1 < ⋯ < τJ = ∞, Δj(t) = 0 if t < τj−1, t − τj−1 if τj−1 ≤ t < τj, or τj − τj−1 if t ≥ τj, j = 1, …, J.
Distribution | Hazard h(t) | Cumulative hazard H (t) | |
---|---|---|---|
Weibull | ρλ(λt)ρ−1 | (λt)ρ | λ > 0 , ρ > 0 |
Log-logistic | log{1 + (λt)ρ} | λ > 0 , ρ > 0 | |
Log-normal | −∞ < λ < ∞ , ρ > 0 | ||
Gompertz | λ > 0 , ρ > 0 | ||
Gamma | f (t; λ, ρ)/S(t; λ, ρ) | −log S(t; λ, ρ) | λ > 0 , ρ > 0 |
Log-Burr | η log{1 + (λt)ρ/η} | λ > 0 , ρ> 0 , η > 0 | |
Piecewise constant | λi for t ∈ [τj−1, τj) | λj > 0 , j = 1,…, J |