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REVIEW

Mechanisms and functions of endocytosis 
in T cells
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Abstract 

Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to 
regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid 
homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocyto-
sis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by 
trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-
independent mechanisms of endocytosis to T cell biology.
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Background
Endocytosis, the generation of internal membranes from 
the plasma membrane by invagination and vesicle scis-
sion, facilitates a range of diverse cellular processes in 
eukaryotes. In addition to enabling the internalization 
of extracellular macromolecules, endocytosis permits 
the compartmentalization of chemistry within cells. Co-
evolution of endocytosis and cellular endosymbiosis, 
the state of one cell living mutualistically within another, 
may have significantly contributed to the complexity of 
eukaryotic cells [1]. Functions regulated at least in part 
by endocytosis include: signal transduction, membrane 
composition, mitosis, adhesion, lipid homeostasis, motil-
ity, and cell morphogenesis. Distinct forms of endocyto-
sis have evolved in eukaryotes, with clathrin-mediated 
endocytosis (CME) being the most well-described and 
universal type. Other forms are limited to and adapted 
for specific cell types or lineage states.

Whereas endocytic regulation of some cellular func-
tions, such as immune surveillance, has been extensively 
described in some immune cell types (such as dendritic 

cells and macrophages), its functional importance in 
T cells has been less appreciated. This review will dis-
cuss the role of endocytosis in the regulation of T cell 
function.

Forms of endocytosis
Clathrin‑mediated endocytosis
Endocytic pathways are often broadly classified by their 
dependence on the hexamer protein clathrin. This is in 
part due to the historical primacy of the characteriza-
tion of clathrin-mediated endocytosis (CME) in 1976 
but also in acknowledgement of its role as the primary 
endocytic route for cellular housekeeping functions [65]. 
In CME, the assembly of clathrin triskelions on spherical 
membrane buds drives the formation of clathrin-coated 
pits (CCPs) 60–120 nm in diameter [66]. CCPs progress 
through a series of well-defined morphological inter-
mediates to form clathrin-coated vesicles (CCVs) upon 
scission from the plasma membrane. Post-scission, the 
clathrin assemblies disintegrate, additional machinery 
is removed by uncoating factors, and uncoated vesicles 
deliver their contents to endosomes by fusion [67]. CCVs 
can be further classified by the differential recruitment of 
over 50 adaptor and accessory proteins, as well as by the 
identity of their lipid and protein cargoes [66].
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For many years, the term “receptor-mediated endo-
cytosis” was used synonymously with CME. It is now 
appreciated, however, that removal of many plasmalem-
mal receptors is accomplished by multiple mechanisms 
that do not require clathrin. Consequently, this usage is 
discouraged and a more descriptive schema—classifica-
tion of endocytic routes by the identity of vesicular mem-
brane components and cargoes—has been adopted.

Clathrin‑independent mechanisms of endocytosis
Some cellular functions, such as response to high inten-
sity stimuli and directed migration, require rapid endocy-
tosis of large patches of membrane. These events require 
membrane fluxes on the millisecond-to-second scale, 
which CME is not sufficient for [68]. In recent decades, a 
number of mechanisms of clathrin-independent endocy-
tosis (CIE) have been discovered and characterized, some 
of which enable rapid, bulk internalization of membrane 
or otherwise facilitate acute responses. Relative to CME, 
flux through CIE pathways accounts for only a small 
proportion of endocytic events in mammalian cells [69]. 
Our present knowledge of CIE is chiefly limited by the 
lack of validated, path-specific molecular determinants 

and cargoes, as well as the existence of shared machinery 
between pathways and these factors confound interpre-
tation of experimental results. Nevertheless, salient fea-
tures of each form have been experimentally elucidated.

Building on the classification of Doherty and McMa-
hon (2009), CIE includes: caveolae-dependent endocy-
tosis, clathrin-independent carrier/GPI-AP-enriched 
early endosomal compartment (CLIC/GEEC) pathway 
endocytosis, flotillin-dependent endocytosis, interleu-
kin 2 receptor beta (IL-2Rβ) pathway endocytosis, Arf6-
dependent endocytosis, phagocytosis, macropinocytosis, 
fast endophilin-mediated endocytosis, activity-depend-
ent bulk endocytosis (ADBE), ultra-fast endocytosis 
(UFE), and massive endocytosis (MEND) [70]. Each 
of these forms of endocytosis, the essential features 
of which are summarized in Table  1, will be discussed 
briefly.

Caveolae-dependent endocytosis is characterized 
by its requirement for the integral membrane pro-
tein caveolin-1 and a small number of adaptor pro-
teins of the cavin family (four in mammals), as well 
as by its sensitivity to glycosphingolipid depletion 
[13, 71]. Caveolae, so named for their resemblance to 

Table 1  Modes of endocytosis and their salient features

Note that actin-dependency, dynamin-dependency, and canonical cargoes remain to be clarified for multiple pathways

Actin-dependent Scale (vesicle 
diameter)

Canonical cargoes Cholesterol-
dependent

Dynamin-
dependent

Cell type first 
described in

Clathrin-dependent 
endocytosis

Depends on cell 
type [2]

35–200 nm [3] Tfr [4] Yes [5] Yes [6, 7] A. aegypti oocytes [8]

Caveolae-dependent 
endocytosis

Yes [9–11] 50–80 nm [12] Unclear Yes [13] Yes [14] Murine gall bladder 
epithelium [15]

CLIC/GEEC pathway 
endocytosis

Yes [16, 17] Tubulovesicular, 
40 nm width [18]

CTxB, CD44 [19] Yes [16] No [20] COS, CHO cells [21]

Flotillin-dependent 
endocytosis

Unclear [22] Unclear Unclear Yes [23] Unclear HeLa cells [24]

IL-2Rβ pathway 
endocytosis

Yes [25] 50–100 nm [25, 26] IL-2Rβ [26] Yes [27, 28] Yes [29] IARC 301.5, YT2C2, 
CIAC cells [30]

Arf6-dependent 
endocytosis

Yes [31] 60–200 nm MHC-I, CD59 [32] Yes [32] Unclear CHO cells [33]

Phagocytosis Yes [34, 35] 0.5–3 μm [36–39] Microbial pathogens Yes [40, 41] Yes [42] Ranine phagocytes 
[43]

Fast endophilin-
mediated endocyto-
sis (FEME)

Yes [44] Tubulo-vesicular, 
100 nm–μm length

β1AR [44, 45] Yes [44] Yes [44] BSC1, HEK293 cells 
[44]

Activity-dependent 
bulk endocytosis 
(ADBE)

Yes [46, 47] 150 nm VAMP4 [48] Yes [49] Yes [50] Murine cerebellar 
granule cells [51]

Ultrafast endocytosis 
(UFE)

Yes [52] 60–80 nm [52, 53] Unclear Yes [54] Yes [52] Nematode neurons 
[55]

Massive endocytosis 
(MEND)

No [56, 57]  < 100 nm [57] Phospholemman, 
polypalmitoylated 
proteins [58]

Yes [59] No [56, 57] BHK, HEK293 cells [57]

Macropinocytosis Yes [60, 61] 200 nm–20 μm Non-selective Yes [62, 63] Unclear Murine sarcoma cells 
[64]
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caves, constitute small, flask-shaped membrane bulbs 
50–100  nm in diameter and are enriched in vascu-
lar endothelial cells, epithelial cells, adipocytes, and 
fibroblasts [72, 73]. Trafficking of caveolar endosomes 
and delivery of their lumenal contents to organelles is 
poorly understood, in part because of overlap between 
cargoes sorted into the caveolae-dependent pathway 
and the CLIC-GEEC pathway [19].

Many proteins that are lipid-anchored to the outer leaf-
let of the plasma membrane, such as GPI-anchored ami-
nopeptidases (GPI-APs), are endocytosed in uncoated, 
clathrin-independent carriers (CLICs) that are derived 
from the plasma membrane and enriched in large tubu-
lovesicular structures called GPI-AP Enriched Early 
Endosomal Compartments (GEECs) [20, 21]. Endocyto-
sis via the CLIC-GEEC pathway accounts for a significant 
proportion of internalized membrane and fluid-phase 
contents and in this respect resembles macropinocytosis, 
another form of CIE. Unlike macropinocytosis, however, 
CLIC-GEEC endocytosis is insensitive to amiloride inhi-
bition [74].

The CLIC/GEEC pathway is initiated by membrane 
recruitment of GBF1, a guanine nucleotide exchange fac-
tor (GEF) for the GTP-binding protein ADP-ribosylation 
factor 1 (Arf1) [75]. Consequent to activation of Arf1 by 
GBF1, the Rho GTPase activating protein (GAP) ARH-
GAP10/21 is locally recruited and promotes the GTP 
cycling of Cdc42 [75]. Cdc42 dynamics at the membrane, 
in turn, regulate recruitment of downstream effectors 
that direct actin polymerization and promote the forma-
tion of CLICs. Enrichment of CLICs in GEECs is regu-
lated by recruitment of GTPase regulator associated with 
focal adhesion kinase1 (GRAF1), a BAR-domain-contain-
ing protein that also negatively regulates Cdc42 via its 
Rho-GAP domain [18]. While the CLIC/GEEC pathway 
does not require Dynamin-1 or -2 for endocytosis of its 
cargoes, dynamin does associate with GEECs post-inter-
nalization [20].

Flotillin-dependent endocytosis is a form of CIE 
requiring flotillin (reggie) proteins, genes for which are 
highly conserved among metazoans [76]. Flotillins are 
characterized by N-terminal hydrophobic stomatin/pro-
hibitin/flotillin/HflK/C (SPFH) domains shown to regu-
late membrane targeting in adipocytes and C-terminal 
flotillin domains necessary for oligomerization [77–79]. 
Flotillins associate with lipid rafts and generate mem-
brane invaginations through mechansims that remain 
largely undefined [80]. The role of dynamin in flotillin-
dependent endocytosis is also unclear, as is the mecha-
nism governing cargo specificity. For these reasons, some 
have argued that flotillins may not characterize a distinct 
endocytic pathway at all but instead function as adaptors 
in other forms of CIE [81].

Many cytokine receptors are internalized via a choles-
terol-sensitive pathway termed RhoA-dependent IL-2Rβ 
endocytosis for the receptor that historically first defined 
it. This form of CIE, which is initiated at the base of 
membrane protrusions, requires activation of the small 
GTPases RhoA and Rac1 as well as signaling through 
p21-activated kinases (Paks) [25, 26]. Two rounds of actin 
polymerization drive vesicular budding, maturation, and 
scission to form vesicles 50–100  nm in diameter [25, 
26]. Dynamin has been shown to coordinate progressive 
recruitment of the actin effectors WAVE and N-WASP in 
IL-2Rβ endocytosis [25].

A variety of cell surface proteins, including those 
regulating nutrient and cholesterol homeostasis, are 
internalized in a manner requiring the small GTPase 
ADP-ribosylation factor 6 (Arf6) [82]. Arf6 GTP-loading 
in tubular endosomes promotes their recycling to the 
plasma membrane as well as the generation of actin-rich 
protrusions [31]. Mechanistically, Arf6-GTP activates 
phosphatidylinositol-4-phosphate 5-kinase, which in 
turn recruits additional signaling molecules to sites of 
active cytoskeletal arrangement to promote cargo inter-
nalization [83]. Intracellularly, Arf6-GDP associates with 
tubular early endosomes, then Rab5-positive sorting 
endosomes [84]. Subsequent trafficking events are regu-
lated by the CME adaptor protein AP-2 [85]. Thus, Arf6 
has been implicated in both CIE and dynamin-2-depend-
ent CME [86].

Phagocytosis a form of CIE that involves the spe-
cific recognition and uptake of particles > 500  nm into 
membrane-derived vesicles known as phagosomes [87]. 
Phagocytosis is essential for development and tissue 
homeostastis, as well as a first line of defense against 
pathogens by innate immune cells [87]. Phagocytosis in 
these cells enables presentation of antigen to lymphocytes 
and activation of adaptive immune responses. Phagocytic 
target ligands are recognized by surface receptors that 
can be broadly classified as opsonic and non-opsonic. 
Opsonic receptors recognize foreign particles indirectly 
by binding host-derived opsonins [87]. Non-opsonic 
receptors include those that recognize pathogen-associ-
ated molecular patterns, as well as those that recognize 
apoptotic and necrotic cells [87]. Ligand binding initiates 
intracellular signaling cascades that activate the non-
receptor protein tyrosine kinase Syk, generate phospho-
inositide second messengers, and recruit activated Rho 
GTPases [87–89]. GTP-loaded Rho GTPases coordinate 
actin polymerization in phagocytic cups to engulf and 
internalize the particle [87].

Pinocytosis refers to non-specific endocytosis of con-
tents dissolved in the fluid phase into vesicles of any 
size [90]. Micropinocytosis, the ingestion of fluid-phase 
contents into vesicles < 100 nm in diameter, is today and 
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archaic term as it is now known to encompass a number 
of distinct endocytic pathways described elsewhere in 
this review. Macropinocytosis, however, refers to a dis-
tinct, evolutionarily-ancient, bulk form of endocytosis 
that is actin-mediated and leads to the generation of vesi-
cles (macropinosomes) ranging in size from 200  nm to 
5 µm in diameter [91]. All forms of fluid-phase endocy-
tosis regulate cellular absorption of water, nutrients, and 
ions from the extracellular environment, though macro-
pinocytosis regulates these processes at high throughput 
scale.

Macropinosomes are generated from large membrane 
ruffles and lamellapodial protrusions that either meet 
other protrusions at their distal margins or collapse back 
into the plasma membrane. In some respects macropino-
cytosis resembles phagocytosis, but unlike phagocytosis 
it is uniquely inhibited by amilorides, which block plasma 
membrane Na+/H+ exchangers [60, 92]. Macropinocyto-
sis has been adapted for roles in diverse cellular processes 
including directed cell migration, feeding, and immune 
surveillance in antigen-presenting cells [91, 93, 94]. It is 
also exploited by some cancers to enable metabolic adap-
tion and survival under nutrient-depleted conditions 
[95–97]. Growth factor-stimulated macropinocytosis 
has been shown to rely on sustained signaling through a 
Receptor Tyrosine Kinase (RTK)/PI3K signaling axis but 
RTK-independent, constitutive macropinocytosis has 
also been demonstrated [98].

Fast Endophilin Mediated Endocytosis (FEME) is a 
form of CIE regulated by the BAR-domain-containing 
protein endophilin, which has five paralogs in humans 
(A1, A2, A3, B1, and B2) [45]. FEME is a non-constitutive 
mode of endocytosis that occurs in response to activation 
of G-protein-coupled receptors (GPCRs) and cytokine 
receptors by their ligands. Activated receptors are sorted 
into pre-existing membrane clusters of endophilin that 
are rapidly (~ 5–10  s) internalized in tubulo-vesicular 
carriers 100  nm to microns in length that most closely 
resemble CLICs [44]. This form of CIE is dynamin-
dependent, and, like many other forms of endocytosis, is 
regulated by phosphoinositide and kinase signaling [45]. 
In addition to its essential role in FEME, endophilin has 
been implicated in both IL-2Rβ endocytosis and CME; 
knock-down of endophilin has been shown to decrease 
the rate of IL-2Rβ internalization and to be required for 
the uncoating of CCVs in CME [44, 99].

Two high-capacity modes of CIE of special impor-
tance in neurons are Activity-Dependent Bulk Endocy-
tosis (ADBE) and Ultrafast Endocytosis (UFE). Both are 
dynamin-dependent forms of CIE that, like FEME, are 
characterized by their rapidity. ADBE has been shown 
to internalize large patches of membrane and aid in 
the retrieval of synaptic vesicles (SVs) at central nerve 

terminals in response to high neuronal activity [46]. 
Mechanistically, ADBE requires interaction between 
dynamin and syndapin 1 to associate with N-WASP, an 
effector of actin nucleation and polymerization [100]. 
UFE occurs in response to more mild stimulation, 
50–100 ms after propagation of an action potential, and 
enables the recycling of synaptic vesicle components, 
such as SNAREs and synucleins [52, 101]. Like FEME, 
endophilin has been implicated in regulation of UFE 
[102].

Lastly, Massive ENDocytosis (MEND) is a dynamin-
independent form of CIE that does not require actin 
remodeling [57]. As the name suggests, MEND enables 
the internalization of very large membrane patches in 
response to metabolic stress, Ca2+ signaling, and other 
stimuli, in a manner driven by membrane phase sepa-
ration [56, 103]. In this process, membranes of heter-
ogenous lipid composition can partition into different 
nanodomains with intrinsic curvature, which facilitates 
endocytosis without actin remodeling.

T cell endocytosis
CME and CIE facilitate a range of T cell specific func-
tions, as summarized in Table 2. Chief among these are 
the regulation of plasma membrane immune receptors 
and signaling, including internalization and recycling of 
T cell antigen receptors (TCRs). Endocytic mechanisms 
are also critical for stable conjugate formation between T 
cells and APCs. They also enable trogocytic exchange of 
receptor complexes between individual T cells, as well as 
between T cells and APC. Lastly, TCR-stimulated uptake 
of key amino acids by macropinocytosis plays a critical 
role in promoting T cell anabolism and growth by sus-
taining activation of the mechanistic target of rapamycin 
complex 1 (mTORC1).

Plasma membrane immune receptor and ligand regulation
Endocytosis of plasma membrane receptors and the traf-
ficking, recycling, and targeted degradation of recep-
tor components are integral to many cellular responses, 
including those of T cells. Both CME and CIE pathways 
have been shown to regulate plasma membrane immune 
receptors in both TCR αβ and γδ T cells.

The immune checkpoint protein CTLA-4, which nega-
tively regulates TCR αβ T cell activation by out-compet-
ing CD28 and trans-endocytosing its ligands CD80 and 
CD86, is constitutively internalized by CME [104, 105]. 
This occurs in a ligand- and dynamin-independent man-
ner and results in both recycling to the cell surface and 
trafficking to lysosomes for degradation. Constitutive, 
ligand-independent internalization continues even as 
CTLA-4 surface expression is upregulated during T cell 
activation.
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In thymus-dependent humoral immune responses, 
transient expression of the transmembrane glycoprotein 
CD40-L on CD4+ TCR αβ T cells provides an essential, 
contact-dependent, co-stimulatory signal to cognate B 
cells. CD4+ T cell CD40-L binding to CD40 on B cells 
initiates an intracellular signaling cascade that promotes 
the generation of class-switched, high-affinity antibod-
ies, as well as the establishment of B cell memory and 
differentiation into long-lived plasma cells. In addition 
to the well-established transfer of CD40-L from Tfh cells 
to cognate B cells via an unknown exocytic mechanism, 
down-modulation and lysosomal degradation of plasma 
membrane CD40-L has also been shown to occur in T 
cell tumor lines [116]. Endocytosis of CD40-L in these 
cells requires actin polymerization, though its depend-
ence on clathrin and dynamin have not been established.

By contrast, the rapid internalization of IL-2R com-
plexes from the surface of activated TCR in αβ T cells 
has been shown to occur by CIE [111]. IL-2Rβ endo-
cytosis was first demonstrated to be clathrin-independ-
ent in studies employing dominant-negative mutants 
of the essential clathrin coated pit and vesicle compo-
nent Eps15 [111]. Endocytosis of IL-2Rβ complexes in 
these experiments occurred normally in the absence of 
CME as measured by transferrin uptake. In addition to 
dynamin, IL-2Rβ internalization requires the cytoplas-
mic tail of the component γc chain, as well as both the 
catalytic activity and p85 regulatory subunit of PI3K 
[117, 118]. The constituent subunits of the receptor par-
tition into different compartments soon after internali-
zation, with the comparatively stable α chain confined 
to transferrin-positive recycling endosomes (suggest-
ing partial utilization of the CME pathway) whereas 
the β and γc chains are sorted into late endosomes and 

thereafter targeted to lysosomes for degradation [119]. 
The proteasome has also been shown to be important, 
not for the initial phase of IL-2Rβ endocytosis but for 
its continuance and lysosomal targeting of the β and 
γc subunits [120]. The co-localization of endophilin 
with IL-2Rβ vesicular cargoes in the human T cell line 
Kit255, as well as the specific diminution of IL-2Rβ 
internalization in cells depleted of endophilin, impli-
cate FEME as a mechanism of IL-2Rβ endocytosis [44]. 
Whether these represent two distinct endocytic path-
ways or simply utilize shared machinery remains to be 
clarified.

WC1 proteins, transmembrane glycoproteins of the 
scavenger receptor cysteine-rich family, are co-recep-
tors of the TCR in γδ T cells. They are thought to func-
tion as bacterial pattern recognition receptors that 
regulate cell activation by co-ligation with the γδ TCR 
[121]. WC1 is endocytically down-regulated in response 
to non-specific stimulation by phorbol 12-myristate 
13-acetate (PMA) [122]. It has been shown in Jurkat T 
cells that a dileucine motif in the cytoplasmic domain 
of WC1 regulates co-receptor endocytosis induced 
by PMA [121]. In this system, sustained co-ligation of 
the TCR and a transmembrane fusion protein consist-
ing of the CD4 extracellular domain joined to the WC1 
transmembrane and cytoplasmic domains enhanced T 
cell activation, as measured by elevated IL-2 produc-
tion [121]. Like the CD3γ, CD3δ, and CD4 intracellular 
domains, the proximal cytoplasmic tail of WC1 con-
tains a [DE]XXXL[LIM] dileucine motif known to bind 
to the adaptor protein (AP-2) components of CCPs and 
CCVs [121]. The presence of this motif on WC1 fam-
ily proteins suggests that endocytosis of the WC1 co-
receptor in γδ T cells is regulated by CME.

Table 2  Forms of endocytosis described in T lymphocytes

Described in T cells Function in T cells

Clathrin-dependent endocytosis Yes Plasma membrane receptor regulation [104, 105], TCR αβ 
endocytosis [106–108]

CLIC/GEEC pathway endocytosis Yes TCRζ endocytosis [109]

Flotillin-dependent endocytosis Yes TCR αβ recycling [110], conjugate formation with APCs [110]

IL-2Rβ pathway endocytosis Yes IL-2Rβ complex endocytosis [25, 111]

Arf6-dependent endocytosis Yes Conjugate formation with APCs [112]

Phagocytosis Yes Host defense/immune surveillance (γδ T cells) [113, 114], 
trogocytosis (TCR αβ T cells) [115]

Caveolae-dependent endocytosis No N/A

Macropinocytosis Yes mTORC1 activation and growth [98]

Fast endophilin-mediated endocytosis (FEME) Yes IL-2Rβ complex endocytosis [44]

Activity-dependent bulk endocytosis (ADBE) No N/A

Ultrafast endocytosis (UFE) No N/A

Massive endocytosis (MEND) No N/A
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Endocytosis of the TCR in αβ T cells
In the absence of stimulation, non-engaged TCRs are 
constitutively internalized by dynamin-dependent CME 
and recycled back to the cell surface [106]. Endocyto-
sis of engaged TCRs, on the other hand, occurs by both 
CME and CIE [110]. Mechanosensory cues appear to 
play a role in dictating which mode predominates: TCR 
triggering with soluble anti-CD3 antibodies promotes 
internalization by CME, whereas triggering by anti-CD3 
immobilized on plastic promotes CIE of engaged TCRs 
[106].

The clathrin-dependent pathway requires dynamin and 
is similarly regulated by a CD3γ dileucine endocytosis 
motif. Endocytosis and signaling from engaged TCRs is 
tightly coupled, as it is for other signaling components of 
TCR microclusters, such as LAT, ZAP-70, and SLP-76. It 
has been shown in CD4+ and CD8+ human T cell lines 
that the Src family kinase Lck, a key component of the T 
cell signalosome, promotes CME of the TCR upon recep-
tor engagement and lysosomal degradation [107, 123]. 
It does so by inducible phosphorylation of tyrosine resi-
dues on the clathrin heavy chain (CHC) which interact 
with the clathrin light chain to regulate cage assembly 
[107]. Basal Lck phosphorylation of the CHC also plays a 
role in constitutive endocytosis of the TCR, as unstimu-
lated cells deficient in Lck exhibit no TCR internalization 
[107]. Another Src family kinase that regulates proximal 
TCR signaling, Fyn, also promotes CME of the TCR, 
since human T cell lines deficient in CD45, and therefore 
unable to activate Lck or Fyn, exhibit less internalization 
than those deficient in Lck alone [123, 124].

An adaptor protein critical for the early-stage assembly 
of CCPs, the FCH domain only 1 (FCHO1) protein, also 
plays a critical role in CME of engaged TCRs. First identi-
fied by whole exome sequencing in human patients with 
combined immunodeficiency, loss-of-function muta-
tions in FCHO1 profoundly impair ligand-induced TCR 
clustering and endocytosis [108, 125]. FCHO1 deletion 
in Jurkat T cells recapitulates this phenotype and can be 
rescued by expression of wild-type FCHO1 [108].

Another adaptor critical for CME of engaged TCRs is 
the cytoplasmic protein intersectin 2, which has been 
shown to promote the translocation of Cdc42 and its 
effector Wiskott-Aldrich Syndrome protein (WASP) to 
CCVs in Jurkat cells [126]. Intersectin 2 also activates 
Cdc42 by its Dbl homology (DH)/RhoGEF domain. 
Overexpression of intersectin 2 in Jurkats substantially 
increases TCR internalization whereas expression of an 
intersectin 2ΔDH construct markedly reduced it [126]. 
In this way, intersectin 2 may link the machinery of actin 
polymerization with that of CME in T cells.

Sustained TCR signaling is required for full cell acti-
vation and this depends critically on the delivery of 

signaling-competent, TCR-laden recycling endosomes 
to the immunological synapse (IS) [127]. This mecha-
nism compensates for the activation-induced down-
modulation of engaged receptors, which is required 
for serial triggering of receptors and desensitization of 
stimulated cells. It has also recently been shown that 
activated TCR-CD3ζ complexes internalized by CME 
continue to signal from endosomes positive for insulin 
responsive aminopeptidase (IRAP) and Syntaxin 6, and 
that this activity is required for efficient anti-tumor T 
cell responses [128].

Interestingly, selective triggering of the TCR complex 
has been shown to also cause the concomitant down-
regulation of non-engaged TCRs in a manner regulated 
by protein kinase C θ (PKCθ) and the CME adaptor AP-2 
[129]. Bystander TCR downmodulation that occurs con-
comitantly with TCR ligation, however, uniquely requires 
protein tyrosine kinase (PTK) activity [106].

The clathrin-independent pathway of TCR endocyto-
sis uniquely utilizes the Rras subfamily GTPase TC21. 
TC21 promotes internalization by a mechanism reliant 
on the small GTPase RhoG, previously implicated in both 
phagocytosis and caveolar endocytosis [115, 130, 131].

The CLIC-GEEC pathway of CIE has also been impli-
cated in TCR endocytosis in activated Jurkat T cells. In 
this system, CD3 triggering resulted in TCRζ accumula-
tion in tubular invaginations of the plasma membrane 
that are shaped by actin polymerization downstream of 
the Rho GTPase Cdc42 [109]. The BAR domain-contain-
ing protein GRAF1 is recruited to these structures, where 
it promotes Cdc42 GTP hydrolysis via its GAP domain. 
These tubular invaginations mature into endocytic vesi-
cles that show co-localization of the internalized TCR 
with cholera toxin B and CD44, established cargoes of 
the CLIC-GEEC pathway [109].

A number of proteins associated with CIE pathways 
appear to regulate TCR endocytosis through their effects 
on endocytic trafficking. The actin-binding protein HIP-
55 is recruited to the IS in activated Jurkat cells and 
associates with early endosomes and dynamin [132]. In 
these cells, HIP-55 expression promotes basal and ligand-
dependent TCR down-modulation, most likely by inter-
fering with receptor recycling [132].

Members of the EPS15 Homology Domain-containing 
(EHD) family of endocytic traffic regulators are expressed 
in murine CD4+ T cells and have also been implicated 
in the regulation of cell surface receptors. CD4+ T cells 
from conditional knockout EHD1/3/4 mice exhibit 
reduced proliferation and IL-2 secretion in response 
to antigen stimulation in vitro, as well as impaired TCR 
recycling, and enhanced lysosomal degradation of TCR 
components [133]. Support for a role in these processes 
comes from the association of EHD proteins with Rab 
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effector proteins, which regulate endocytic trafficking 
[133].

Membrane-organizing flotillin proteins incorporate 
into pre-assembled signaling platforms that asymmetri-
cally localize to one pole in hematopoietic cells, includ-
ing T cells [134]. Immediately upon internalization, 
engaged TCRs are incorporated into a stable, mobile 
endocytic network defined by flotillins [110]. Consistent 
with the idea that flotillins may function as adaptors for 
other endocytic pathways, as opposed to demarcating 
a distinct, bona fide form of endocytosis, they are not 
required for internalization of engaged TCRs. Like EHD 
proteins, flotillins may regulate TCR surface expression 
by promoting endocytic recycling. Flotillins are required 
for the trafficking of downmodulated TCRs to Rab5-pos-
itive sorting endosomes, from Rab5- to Rab11a-positive 
recycling endosomes, and their recycling to the IS [110, 
135].

Arf6‑mediated endocytosis and flotillins in APC conjugate 
formation
The formation of stable conjugates between T cells and 
APCs requires Arf6, Rab22, and flotillins [112]. Expres-
sion of a constitutively-active form of Arf6 in Jurkat 
T cells inhibits endocytosis of MHC class I, and causes 
other cargoes important for IS formation, such as CD4 
and LFA-1, to accumulate in enlarged, Arf6-positive 
vacuoles [112]. Consequently, conjugate formation with 
APCs is impaired. In addition to Arf6, the GTPase Rab22 
(a.k.a. Rab22a) is also required to form stable Jurkat–Raji 
(B) cell conjugates as expression of a dominant-negative 
form of it (Rab22S19N) is sufficient to impair their for-
mation [112]. Additionally, Jurkat T cells deficient in flo-
tillin1/2 show are unable to form stable conjugates with 
Raji cells, demonstrating a requirement for flotillin pro-
teins in this process as well [110].

Phagocytosis in TCR γδ T cells
Previously thought to be limited to cells of the myeloid 
lineage, it is now known that human peripheral γδ T 
cells not only have phagocytic capabilities but can act as 
“professional” phagocytes in that they are capable of pre-
senting processed antigen on MHC class II to TCR αβ T 
cells [113, 114]. Indeed, TCR γδ T cells can ingest entire 
bacteria, such as L. monocytogenes and E. coli [113, 114]. 
Presumably the maturation of phagosomes in these cells 
resembles and depends on the same machinery as other 
professional phagocytes (e.g., Rab5/7, RILP, etc.) though 
very little is currently known about this.

Trogocytosis
Trogocytosis refers to the exchange of intact membrane 
patches between cells. While not, strictly-speaking, a 

form of endocytosis, in  vitro studies have suggested a 
mechanism with qualitative similarity to that of phago-
cytosis. An increasing body of evidence suggests not 
only that T cell trogocytosis is a ubiquitous phenomenon 
in vivo, but that it constitutes an important mechanism 
of intercellular communication and immune modula-
tion [136–139]. Trogocytosis has even been shown to 
convey novel functional capabilities from one cell type to 
another through the acquisition of membrane-associated 
molecules [136, 140].

In Jurkat T cells, TCR-mediated trogocytic uptake of 
peptide:MHC complexes from antigen-presenting cells 
requires TC21 (Rras2) and the phagocytosis-associated 
GTPase RhoG [115, 141]. In CD4+ TCR αβ T cells, tro-
gocytic exchange of peptide:MHC complexes has been 
shown to influence T effector cell polarization [138]. 
When stimulated by murine fibroblasts and peptide-
pulsed bone marrow-derived dendritic cells expressing 
peptide:MHC complexes, trogocytosis-positive CD4+ 
T cells activated the transcription factor GATA-3 and 
produced IL-4 both in vitro and in vivo, consistent with 
Th2 polarization [138]. The mechanism responsible for 
this polarization remains to be elucidated, though it may 
relate to the strength and duration of TCR stimulation.

Even more remarkably, virus-specific CD8+ cytotoxic 
T lymphocytes (CTLs) are capable of transferring their 
TCRs via trogocytosis to recipient CTLs of different 
clonotypic specificity [142]. Acquisition of donor TCRs 
confers the ability to recognize additional antigen and 
enables expansion of virus-specific clones independent 
of proliferation [142]. On the other hand, the detrimen-
tal potential of trogocytosis-mediated T cell plasticity is 
demonstrated by a recent study by Haimeh et al. examin-
ing chimeric antigen receptor (CAR) T cell responses in a 
mouse leukemia model. In this work, trogocytic acquisi-
tion of target antigen by CAR T cells not only reduced 
target density on tumor cells but promoted “fratricidal” 
(mutual) CAR T cell killing and exhaustion [143].

Macropinocytosis
Macropinocytosis has been described in both murine 
and human primary TCR αβ T cells. It is a constitu-
tive activity in naïve T cells that is upregulated several-
fold in response to stimulation and activation [98]. One 
established function of macropinocytosis in T cells is to 
internalize and deliver free amino acids (as opposed to 
protein) obtained from the extracellular space to the lyso-
some [98]. Intralumenal amino acids signal, most likely 
through a membrane transceptor, to promote the activa-
tion of the mechanistic target of rapamycin complex 1 
(mTORC1), a central regulator of anabolism and cellu-
lar growth [98]. In this way, macropinocytosis promotes 
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nutrient acquisition and growth signaling in T cells pre-
paring to undergo clonal expansion (Fig. 1).

It is interesting to speculate on the reasons why TCR-
stimulated macropinocytosis is required for optimal acti-
vation of naïve CD4+ and CD8+ T cells. After all, most if 
not all of the forms of endocytosis previously described 
are sufficient to transport amino acids and a wide variety 
of amino acid transporters are expressed in these cells. 
One possibility is that transport through other endocytic 
pathways does not license lysosomal delivery of inter-
nalized cargoes. Some pathways clearly are sufficient for 
this purpose: the IL-2-IL2R complex has been shown to 
deliver IL-2 to primary T cell lysosomes, albeit with a 
required stopover at the proteasome beforehand [120].

A more likely explanation is that while naïve T cells 
express abundant plasma membrane amino acid trans-
porters, their flux capacity is insufficient to meet the 
demand of T cell activation. Activation requires dramatic 
increases in amino acid and glucose uptake to enable 
previously metabolically quiescent cells to upregulate 
aerobic glycolysis and glutaminolysis. Consequently, 
TCR signaling and co-stimulation substantially increases 
expression and plasma membrane localization of GLUT1 

and amino acid transporters such as LAT1, SNAT-1, 
and SNAT-2 [144]. It’s possible that lysosomal import of 
cytoplasmic amino acids requires an adaptor that is not 
abundantly expressed in naïve or nascently-activated T 
cells. Such is the case for the adaptor LAPTM4b, which 
recruits the LAT1 transporter to the lysosome and is 
required for mTORC1 activation in HeLa cells [145].

Another possibility is that, bulk acquisition of amino 
acids by macropinocytosis may more rapidly or effi-
ciently activate lysosomal mTORC1 complexes than the 
transcription, translation, and membrane-targetting of 
activation-induced transporters will permit. The nearly 
indetectable levels of LAT1 protein in naïve human T 
cells support this hypothesis [146].

A last (and not mutually exclusive) possibility is that 
maximal mTORC1 activation in these cells requires 
not only an intralysosomal amino acid sufficiency sig-
nal but also a second signal conveyed by cytoplasmic 
amino acid sensors like Sestrin2 and CASTOR1. In this 
way, mTORC1 may function like an AND gate, sensitive 
to both intracellular and extracellular amino acid signal 
inputs, where a concentration gradient exists between 
lysosomal and cytoplasmic amino acid pools.

Fig. 1  Macropinocytosis in T cells. T cells use macropinocytosis to deliver extracellular amino acids (LQRS) to lysosomes necessary for the activation 
of mTORC1 that drives T cell growth (see text for details)
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Conclusions
The term endocytosis encompasses a range of diverse 
cellular mechanisms for regulating membrane com-
position and internalizing contents from the extra-
cellular space. While CME has been shown to be the 
principal housekeeping mode of endocytosis in resting 
cells, multiple, overlapping modes of CIE have more 
recently been described in most eurkaryotic cell types. 
In T cells both CME and CIE are employed to facilitate 
cell-specific functions, including regulation of T cell 
receptor internalization and signaling, interaction with 
APCs, effector cell polarization, and nutrient acquisi-
tion. With the exception of caveolae-dependent endo-
cytosis and several high capacity modes of endocytosis 
that appear to be specific to neurons, flux through CIE 
pathways regulates and enables a range of critical T cell 
functions.
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