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Abstract

Aging entails a multifaceted complex of changes in macro- and micro-structural properties of 

human brain gray matter (GM) and white matter (WM) tissues, as well as in intellectual abilities. 

To better capture tissue-specific brain aging, we combined volume and distribution properties of 

diffusivity indices to derive subject-specific age scores for each tissue. We compared age-related 

variance between younger and older adults for GM and WM age scores, and tested whether 

tissue-specific age scores could explain different effects of aging on fluid (Gf) and crystalized 

(Gc) intelligence in younger and older adults. Chronological age was strongly associated with GM 

(R2 = 0.73) and WM (R2 = 0.57) age scores. The GM age score accounted for significantly more 

variance in chronological age in younger relative to older adults (p < 0.001), whereas the WM age 

score accounted for significantly more variance in chronological age in older compared to younger 

adults (p < 0.025). Consistent with existing literature, younger adults outperformed older adults 

in Gf while older adults outperformed younger adults in Gc. The GM age score was negatively 

associated with Gf in younger adults (p < 0.02), whereas the WM age score was negatively 

associated with Gc in older adults (p < 0.02). Our results provide evidence for differences in the 

effects of age on GM and WM in younger versus older adults that may contribute to age-related 

differences in Gf and Gc.
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Introduction

The brain is comprised of gray matter (GM: hosting neuronal cell bodies) and white matter 

(WM: hosting axonal connections) that are differentially affected by aging (Kochunov et al., 

2007; Levakov et al., 2020). For both tissue types, aging is associated with reductions in 

volume (Ge et al., 2002b; Madan and Kensinger, 2018) and alterations in macromolecule 

density (Ge et al., 2002a) and microstructure (Benedetti et al., 2006; Bennett et al., 2010; 

Bennett and Rypma, 2013). GM volume often shows a monotonic decline across the adult 

lifespan, whereas WM volume decreases only after age 40 (Ge et al., 2002b; Sowell et 

al., 2003). Diffusion tensor imaging (DTI) studies have revealed decreases in measures 

that capture the degree of restricted diffusion (i.e., fractional anisotropy, FA) across the 

adult lifespan in WM (Kennedy and Raz, 2009; Michielse et al., 2010), but increases 

in FA in deep brain GM structures (Pfefferbaum et al., 2010). Other DTI measures of 

microstructural properties such as axial diffusivity (AD) and radial diffusivity (RD) are also 

differentially sensitive to the effects of age on WM and GM structures (Pfefferbaum et 

al., 2010; Sexton et al., 2014). Prior work has investigated the associations between GM 

properties (e.g., volume, myelination, and diffusivity) with WM microstructure across the 

life span (Grydeland et al., 2013; Kochunov et al., 2011; Nazeri et al., 2015), yet less 

attention has been paid to means for assessing age-related differences between GM and WM 

when volume and tissue-wide distribution of microstructural measures are considered at the 

same time.

A handful of studies have assessed the effects of aging on GM and WM tissues in the 

same cohort (Chiapponi et al., 2013; Farokhian et al., 2017) which may have implication 

for age-related differences in behavior (Anatürk et al., 2018). GM and WM volume have 

been associated with the magnitude of diffusivity in WM (e.g., AD and RD) across the adult 

life span though they had weaker associations with WM anisotropy (Pareek et al., 2018; 

Rathee et al., 2016). These effects may highlight differences in processes that contribute 

to age-related differences in volumetric and diffusivity indices. Thus, a more complete 

understanding of GM and WM aging calls for approaches that combine age-related effects 

on both macro-structural (volume) and micro-structural (diffusivity) properties in each tissue 

type, while enabling a direct comparison between age-related differences in WM and GM. 

Here we used a combined set of volumetric and diffusivity measures to study differences in 

the effects of age on GM and WM tissues in younger versus older adults.

Whole-brain distribution of diffusivity measures are useful for characterizing global effects 

of aging on the brain while voxel-wise or ROI analyses offer an opportunity to localize 

the effect of aging on brain tissues. Considering the heterogeneity of aging effects across 

brain regions and across individuals (Raz et al., 2005), we studied whole-brain volumetric 

and microstructural measures of GM and WM across participants (Benedetti et al., 2006; 
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Bennett et al., 2010; Ge et al., 2002b; Salminen et al., 2016) that reflected contributions 

from all tissue sub-regions while not being constrained by selection of individual regions 

within GM and WM. Because of the non-Gaussian distribution of diffusivity measures, 

whole-brain mean measures may be insufficient to capture the shape of distributions 

(Charlton et al., 2006). In this respect, differences in higher moments of whole-brain 

distribution of diffusivity measures, such as increased FA skewness in WM, have been 

effective in characterizing relevant neurological disorders (Benson et al., 2007; de la Plata 

et al., 2011; Della Nave et al., 2007). In the present study we used mean, variance, and 

skewness of brain-wide distribution properties of GM and WM (Charlton et al., 2010; 

Müller et al., 2006) for FA, AD, and RD indices to estimate effects of age on GM and WM.

Variations in intellectual abilities across the adult lifespan have been observed since the 

inception of psychometric assessment (Foster and Taylor, 1920). At the population level, 

aging has been associated with monotonic declines in novel problem-solving and reasoning 

abilities (fluid intelligence, Gf), and stability or improvement in general world knowledge 

and vocabulary (crystalized intelligence, Gc) (Salthouse, 2004). In addition, structural 

properties of GM and WM have been associated with individual differences in intelligence 

(Chen et al., 2020; Nestor et al., 2015). These results suggest potential differences in the 

neurobiological substrates that contribute to the effects of aging on fluid and crystalized 

abilities (Colom et al., 2009; de Mooij et al., 2018; Góngora et al., 2020; Ohtani et al., 2017; 

Penke et al., 2012; Wickett et al., 2000), which may be related to different effects of aging 

on GM and WM. Thus, as a secondary aim, we explored tissue specific contributions to 

age-related individual differences in Gf and Gc (Colom et al., 2010).

Here we provide a novel assessment of aging of brain tissues by examining the degree to 

which a combination of volume and distribution properties of diffusivity measures of WM 

and GM predicted chronological age in younger and older adults. Previous research has 

highlighted differences in myelination growth and degenerative processes before and after 

age 40 (Ge et al., 2002b; Sowell et al., 2003), suggesting non-identical age effects on GM 

and WM (Abe et al., 2008; Bender et al., 2016; Pfefferbaum and Sullivan, 2015; Raz et al., 

2005). Thus, we hypothesized that WM and GM are differently affected by aging in younger 

versus older adults and that these differences may contribute to age-related differences in 

Gf and Gc (Cole et al., 2017a). We computed the age score of WM and age score of GM 

and compared the extent to which they are associated with chronological age in younger 

versus older adults (n = 97). We explored the degree to which estimates of GM and WM age 

scores predicted Gf and Gc abilities in a subgroup of younger (n = 20) and older (n = 19) 

participants, and assessed the specificity of the associations with Gf and Gc to sub-regions 

of WM and GM.

Results

GM and WM age scores.

We calculated subject-specific estimates of volume and distribution properties (mean, 

variance, and skewness) of FA, AD, and RD, separately for whole-brain WM (Fig. 1A–

C) and whole-brain GM (Fig. 1D–F) in 97 adults (age: M = 43.74, SD = 19.65). For 

GM, a stepwise regression of chronological age on the 10 volumetric and diffusivity 
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predictors (see Methods) resulted in the selection of volume, FA (variance), AD (mean, 

skewness), and RD (mean, variance) as significant predictors of chronological age. For 

WM, a stepwise regression of chronological age on the 10 volumetric and diffusivity 

predictors resulted in the selection of FA (skewness), AD (mean), and RD (variance) as 

significant predictors of chronological age. For each participant, GM and WM age scores 

were calculated using regression coefficients obtained for the tissue-specific predictors while 

omitting the participant from the model (Fig. 1G, see Methods). Between iterations of 

omitting each participant, the maximum coefficient of variation for the GM parameters 

estimates was 5.3% whereas for WM it was 2.7%. The GM age score accounted for 73% of 

chronological age variance, whereas the WM age score accounted for 57% of chronological 

age variance across the adult lifespan (Fig. 2A, B). For GM, the standard deviation of the 

difference between the age score and chronological age was 10.1 years whereas for WM 

it was 12.9 years. Replacing the stepwise regression with a lasso regression for variable 

selection resulted in almost identical age scores (see Methods and Supplementary Results 

and Supplementary Fig. 1).

A notable difference between the tissue-specific age scores was the inclusion of volume for 

predicting the GM age score but not for predicting the WM age score. We directly tested 

the contribution of volume only to the effects of age on WM and GM. We found that the 

GM age score obtained by using volume as the only predictor explained 31% of the variance 

in chronological age, whereas the WM age score obtained based on volume as the only 

predictor, explained 5% of the variance in chronological age. Inclusion of diffusivity-related 

regressors for estimating the GM age score accounted for significantly higher proportions 

of variance in chronological age than when only GM volume was used as a predictor 

(R2 = 0.73 vs. R2 = 0.31, F(5, 90) = 28.29, p < 0.0001). This observation suggested that 

distribution properties of diffusivity indices of GM are sensitive to aspects of aging that 

are not captured by conventional volumetric measures. By contrast, distribution properties 

of diffusivity indices captured most of age-related differences in WM. The data suggest 

that distribution properties of diffusivity measures are significant predictors of age-related 

differences in both GM and WM.

GM and WM age in younger and older adults.

For GM and WM, we separately assessed age-related differences in younger and older 

adults. The patterns of age-related differences in the adult life span suggested that WM and 

GM may differ in the extent to which they are affected by aging in younger versus older 

adults (Fig. 2A, B). To assess this more directly, we defined younger and older age groups 

with a threshold of 40 years of age (Ge et al., 2002a; Sowell et al., 2003) and calculated 

GM and WM age scores for each age group (Fig. 1G). In each age group, we assessed 

the extent that GM and WM age scores accounted for variance in chronological age. For 

younger adults, the WM age score accounted for significantly less variance in chronological 

age than the GM age score (R2 = 0.24 vs. R2 = 0.45; p < 0.003, two-tailed, pcorrected < 

0.05; Fig. 2C, Supplementary Fig. 2A). In contrast, for older adults, the GM age score 

accounted for significantly less variance in chronological age than the WM age score (R2 

= 0.22 vs. R2 = 0.36; p < 0.02, two-tailed, pcorrected < 0.05; Fig. 2C, Supplementary Fig. 

2B). In addition, for each tissue type, we assessed the extent that age scores accounted for 
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variance in chronological age in younger and older adults. We found that the GM age score 

accounted for significantly more variance in chronological age in younger than older adults 

(R2 = 0.45 vs. R2 = 0.22; p < 0.001, two-tailed, pcorrected < 0.05; Supplementary Fig. 2C). 

Meanwhile, the WM age score accounted for significantly more variance in chronological 

age in older than younger adults (R2 = 0.36 vs. R2 = 0.24; p < 0.025, two-tailed, pcorrected 

< 0.05; Supplementary Fig. 2D). These results support the position that the effect of aging 

on different brain tissues is different for younger and older adults and suggest a shift from 

larger age-related differences in GM in younger adults to larger age-related differences in 

WM in older adults. Notably, estimates of motion were not significantly different between 

the two age groups (t(94) = 1.18, p = 0.24, see Methods).

Aging in GM and WM substructures.

We explored which GM and WM subs-regions showed the highest age-related differences in 

younger and older adults (see Methods, Fig. 2C). In younger adults, GM structures including 

the postcentral gyrus, posterior cingulate, rostral anterior cingulate, and supramarginal 

gyrus contributed the most to these age-related differences (> 95 percentile; Fig. 2D; 

Supplementary Table 2). In older adults, WM structures in anterior corpus callosum, and 

WM near fusiform and lingual gyri contributed the most to age-related differences, but also 

the pars opercularis of the inferior frontal gyrus in GM (> 95 percentile, uncorrected; Fig. 

2D; Supplementary Table 3).

Brain age and intellectual abilities.

We assessed the extent to which GM and WM age scores were associated with individual 

differences in WASI matrix reasoning (indexing fluid intelligence: Gf) and WASI vocabulary 

(indexing crystalized intelligence: Gc). First, we examined age-group differences in 

intellectual abilities. Consistent with prior findings, younger adults outperformed older 

adults in Gf (Supplementary Table 1, t(37) = 3.00, p = 0.0048, two-tailed), and older adults 

outperformed younger adults in Gc (Supplementary Table 1, t(37) = 2.82, p = 0.0077, 

two-tailed). We then compared how GM and WM age scores were related to intellectual 

abilities within age groups (Supplementary Table 4). For younger adults, only GM age 

scores significantly correlated with Gf (Fig. 3A, Supplementary Fig. 3A), where higher GM 

age scores were associated with lower Gf scores (r(18) = −0.53, p = 0.017, two-tailed). 

We replicated this analysis using a secondary measure of Gf (Supplementary Table 1) and 

found a similar association with GM age scores in younger adults (r(18) = −0.55, p = 0.011, 

two-tailed), but not with WM age scores. No such effects were observed in older adults 

(p > 0.4). For older adults, only WM age scores significantly correlated with Gc (Fig. 3C, 

Supplementary Fig. 3B). Specifically, higher WM age scores were associated with lower Gc 
(r(17) = −0.54, p = 0.017, two-tailed).

Regional associations with intelligence.

Lastly, we repeated the above analysis (performed at the tissue level) for GM and WM sub­

regions. We used an exploratory leave-one-out approach to characterize the contributions 

of individual GM and WM sub-regions to behavioral associations with brain age. We 

found that putamen and pallidum GM structures significantly contributed the most to 

the Gf association with the GM age score in younger adults (< 5 percentile, ΔR2 > 
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0.06, uncorrected; Fig. 3B; Supplementary Table 5). We also found that WM structures 

near inferior parietal lobule and superior temporal gyrus contributed the most to Gc 
association with the WM age scores in older adults (< 5 percentile, ΔR2 = 0.026; Fig. 

3D; Supplementary Table 6).

Discussion

To address our primary aim of examining tissue-specific aging patterns, the present results 

showed that brain WM age (R2 = 0.57) and GM age (R2 = 0.73) can be estimated by 

combining related diffusivity and volumetric measures. We showed that WM and GM are 

differentially sensitive to the aging process in younger versus older adults. Specifically, 

age-related differences in GM in younger adults were significantly larger than that in older 

adults (R2 = 0.45 vs. R2 = 0.24, Fig. 2C), whereas age-related differences in WM in older 

adults were significantly larger than that in younger adults (R2 = 0.36 vs. R2 = 0.22, Fig. 

2C). Our analysis benefited from the inclusion of parameters such as variance and skewness 

of DTI measures which characterize the heterogeneity and bias in the whole brain FA, AD, 

and RD (Fig. 1). Between age groups, GM age scores accounted for more chronological 

age variance in younger versus older adults, whereas the WM age score accounted for 

higher chronological age variance in older than younger adults. Based on these observations, 

future longitudinal studies could investigate whether age-related GM changes precede WM 

changes. This pattern of results, however, is consistent with extant literature demonstrating 

that, whereas GM volume shows a monotonic decline across the adult lifespan, WM volume 

shows accelerated declines after the fourth decade of life (Ge et al., 2002b; Sowell et al., 

2003).

The distinct characteristics of GM and WM aging that we observed are differentially related 

to fluid and crystalized abilities in younger and older adults. Despite higher fluid ability 

in younger than older adults, individual differences in Gf in younger adults were better 

predicted by aging effects on GM than on WM. Notably, younger individuals with higher 

GM age scores than their peers had lower fluid abilities. At the same time, older adults 

had higher Gc scores than younger adults and individual differences in Gc in older adults 

were best predicted by effects of age on WM than GM. That is, older individuals with 

higher WM age scores than their peers had lower crystalized abilities. Our results highlight 

age-related differences in the contributions of GM and WM to age-related differences in Gf 
and Gc, respectively. Both fluid and crystallized abilities rely on interactions between brain 

structures through GM and WM (Colom et al., 2009; Deary et al., 2010; Luders et al., 2009; 

Ritchie et al., 2015). Our results highlight the contribution of GM to age-related differences 

in Gf in younger adults that may be related to the effects of aging on neuronal populations 

in GM in a manner that limits their ability to process cognitively demanding functions 

of Gf (Genç et al., 2018). In contrast, the WM contribution to age-related differences in 

Gc in older adults may be driven by effects of advanced aging on integrity of axons in 

WM (Westlye et al., 2010) and their ability to facilitate information transfer in networks 

of distributed regions throughout the cortex that are involved in knowledge retrieval 

(Stamatakis et al., 2011). Together, these findings suggest that there may be a dissociation 

between the contribution of GM aging to individual differences in Gf in younger adults 

and the contribution of WM aging to individual differences in Gc in older adults. Given 
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the cross-sectional nature of our study, we cannot address how measures of brain structure 

and intelligence may change and influence one another over age. Thus, generalizability of 

our findings requires longitudinal data to determine the trajectories of GM and WM aging 

patterns over the life span and to further investigate their relationship to changes in Gf and 

Gc.

Given the regional differences in effects of aging on GM and WM (Kochunov et al., 

2007; Pfefferbaum et al., 2010; Sexton et al., 2014), we further characterized age-related 

sensitivity across multiple regions of interest for both tissues types and estimated their 

contribution to the associations with intellectual abilities. Results revealed that areas within 

the frontoparietal network (implicated in Gf) (Jung and Haier, 2007) show the highest 

age-related differences in GM in younger adults. In addition, we found that the putamen 

and pallidum were most important for the association between GM age scores and Gf. 
Considering the action of multiple neurotransmitters in putamen and pallidum and their 

diverse anatomical projections to the cortex, these structures may serve as key gateways for 

functions related to Gf (Burgaleta et al., 2014; Rhein et al., 2014; Rypma et al., 1999). The 

importance of the inferior parietal lobule and superior temporal gyrus for the associations 

between WM age scores and Gc (Supplementary Table 6) is consistent with the recognized 

role of these regions in memory and language processing (Bigler et al., 2007; O’Connor 

et al., 2010). It is important to point out that our study was limited to measuring Gf and 

Gc using a limited set of psychometric tests in a notably small sample. Moreover, some of 

our diffusivity measures may be influenced by the presence of iron, which accumulates in 

select basal ganglia nuclei (including the putamen and pallidum) across the adult life span 

(Langley et al., 2019). Future work utilizing latent factors of behavioral measures in a larger 

sample and with improved image acquisition and distortion correction approaches (Yamada 

et al., 2014) is needed to assess the validity of our results.

Age-related differences in brain structures have been of interest since neuroimaging 

has become widely accessible (Coffey et al., 1992; Meyer et al., 1994). Advances in 

methodological approaches have led different research groups to provide estimates of 

brain age with high accuracy using volumetric or morphometric variables that are derived 

from structural data (e.g., T1-weighted images) (Beheshti et al., 2019; Cole et al., 2017b; 

Franke et al., 2010). Multimodal approaches that, for example, integrate diffusivity and 

volumetric characteristics have been helpful for studying the interacting effects of aging 

and neuropsychiatric disorders on the brain (Shahab et al., 2019) and have improved the 

predictions of brain age (Niu et al., 2020). Our multimodal approach involved identifying 

age-related measures of macrostructure (i.e., volume) and microstructure (i.e., distribution 

properties of DTI data) to study cross-sectional age-related differences in GM and WM. 

Results revealed that AD and RD indices in GM were significant predictors of age, 

particularly in younger adults. Across the adult life span, when combined with volumetric 

measures, the GM age score accounted for about 74% of chronological age variance 

(mean error of 8.39 years in predicting chronological age). DTI measures have been 

assessed within GM structures in aging and neuropsychiatric disorders (Müller et al., 2006; 

Nazeri et al., 2017; Venkatesh et al., 2020). Age-related differences in GM diffusivity 

may reflect a composite of changes in glial cell bodies, dendrites, and axonal-dendritic 

terminal density (Abdelkarim et al., 2019; Kim et al., 2013) that may affect the quality 
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of proximal intercellular connectivity due to reductions in dendritic arborization or spine 

numbers (Fukutomi et al., 2019; Hof and Morrison, 2004; Peters, 2002). Notably, our results 

suggested that volumetric measures alone may not be able to fully capture age-related 

differences in GM. For WM, age-related differences were more pronounced later in our 

sample (> 40 year), primarily affecting FA (as well as AD and RD), possibly due to factors 

such as axonal degeneration, demyelination, and gliosis (Bennett et al., 2010; Kraus et al., 

2007; Peters, 2009). Though the median age in our sample was 40 years old, prior work has 

indicated this age may be a pivotal point for aging of WM and GM. Specifically, decreases 

in GM density that were accompanied by increases in WM volume before age 40 (Ge et 

al., 2002b), have been suggested to reflect increases in myelination, while degenerative 

processes have been linked to GM volume decline after age 40 (Sowell et al., 2003). 

However, there are indications that WM volumetric increases peak at the fifth decade of life, 

while thickening in GM structures such as inferior parietal and posterior temporal regions is 

inversed following the fifth decade of life (Sowell et al., 2003; Tau and Peterson, 2010). It 

is noteworthy that cerebrospinal fluid volume is another important contributor to age-related 

differences in the brain which we did not assess in this paper (Levakov et al., 2020). Our 

approach of estimating brain age relied on selecting most relevant distribution properties 

of diffusivity measures that was presumably robust to heterogeneity in the effect of aging 

on brain regions. Future research on brain age estimation may compare our approach with 

other approaches that rely on extracting the mean of structural (or functional) measures 

from regions of interest (Niu et al., 2020). Future work should also investigate the shared 

and unique age-related variance in structural properties of GM and WM and incorporate 

additional measures of myelination and morphometry in multivariate models of brain age.

Conclusion

By introducing a composite index of macrostructural and microstructural properties, we 

derived estimates of brain age (age scores) for GM and WM and reported different effects 

of age on these tissue types. We provided evidence that relative to volumetric measures, 

distribution properties of diffusivity indices accounted for distinct age-related variance in 

both GM and WM. GM showed higher age-related differences in younger than older 

adults whereas WM showed higher age-related differences in older than younger adults. 

We also showed that age-related differences in GM and WM may have implications for 

predicting Gf and Gc, respectively. The GM age score was significantly associated with 

Gf in younger adults, whereas the WM age score was significantly associated with Gc in 

older adults. Prominent theories of aging suggest that changes over the adult life span are 

intrinsic, progressive, and deleterious (Viña et al., 2007) and may reflect a complex set 

of responses (Goh and Park, 2009; Rypma and D’Esposito, 2000) to damage and error in 

cellular mechanisms (Abdelkarim et al., 2019; Jin, 2010). Our results may be informative 

for characterizing cross-sectional effects of age on different brain tissues and may have 

implications for future research on the shift from excelling at novel problems solving (Gf) 
in younger adults to the state of specializing and succeeding in recruiting past knowledge 

and experience (Gc) in older adults. Future work may also assess the extent to which these 

observations form the basis of an aging model in which cognitive flexibility in younger 

adults coupled with stores of knowledge and experience gained by older adults could result 
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in enhanced productivity across generations (Kaplan et al., 2000). Finally, our measures 

of brain aging may have implications for diagnosis and monitoring of age-related brain 

disorders that differentially affect WM and GM such as Alzheimer’s disease.

Methods and materials

Participants.

100 individuals were recruited for this study (18–78 years old). Three individuals were 

excluded due to distorted structural data (n = 1), abnormal findings in the white matter 

(n = 1), and excessive motion during the DTI scan (n = 1). Participants (n = 97, age 

= 43.47±19.65 years old, 58 females) had at least a high school degree and had normal 

or corrected-to-normal vision. Participants were recruited through the University of Texas 

at Dallas and from local, online, and newspaper advertising. All participants performed 

within the age-expected range (scores ≥ 26) on 2 brief measures used to screen for 

general cognitive functioning: the Mini Mental State Examination (Folstein et al., 1975) 

and Telephone Interview for Cognitive Status (Brandt et al., 1988). Informed consent was 

obtained from participants and they received either payment or course credit for their 

participation. The University of Texas at Dallas Institutional Review Board approved the 

experimental procedures. Prior to participation, individuals were screened for conditions 

that would prevent them from being able to enter the magnetic resonance imaging (MRI) 

scanner (e.g., being pregnant, having ferrous metal implants, having difficulty lying in 

the supine position for 30 minutes, and being claustrophobic), or influence their cognitive 

functioning and/or contribute to brain pathology (e.g., history of stroke, dementia, diabetes, 

and unmanaged depression or hypertension).

Measures of Intelligence.

Intelligence was measured using standardized WASI vocabulary test for crystalized 

intelligence (Gc) and WASI matrix reasoning for fluid intelligence (Gf) (Wechsler, 1999) 

(Supplementary Table 1). These measures were only available in 20 younger and 19 older 

participants, though our prior work has shown age-related effects on the association between 

behavior and DTI indices in a comparable sample size (Bennett et al., 2012). A secondary 

measure of fluid intelligence included a composite of z-scores of WAIS-III Symbol Search 

(# correct - # incorrect), WAIS-III Digit Span total, and Trail Making B tests, which indexed 

processing speed, working memory, and executive functioning of fluid abilities, respectively 

(Reitan and Wolfson, 1985; Tulsky et al., 2003). No adjustments for age were carried out for 

comparisons with the imaging measures.

Scanning protocol.

MRI images were acquired using a Philips Achieva 3.0 Tesla MRI system (Philips Medical 

System, The Netherlands) at the Advanced Imaging Research Center at the University of 

Texas Southwestern Medical Center. Participants lay in the supine position in the scanner 

with an 8-element, SENSE, receive-only head coil. Fitted padding was used to minimize 

head movements. For structural MR, a high resolution T1-weighted MPRAGE image was 

acquired with the following parameters: scan time = 237 s, TR = 8.1 ms, TE = 3.7 ms, 

flip angle = 12°, FOV = 256 × 256 × 160 mm3, spatial resolution = 1-mm isotropic, and 
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160 sagittal slices. A diffusion weighted echo planar imaging sequence was acquired using 

gradient values of b = 0 (one image) and b = 1000 s/mm2 (applied in 30 directions) and the 

following parameters: scan time = 265 s, TR = 5630 ms, TE = 51 ms, 65 axial interleaved 

slices (2.2 mm slice thickness, no gap), acquisition matrix = 112 × 112 (2 mm in-plane 

resolution) reconstructed at 256 × 256.

DTI preprocessing.

Diffusion-weighted data were processed using the University of Oxford’s Center for 

Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) 

release 4.0 (http://www.fmrib.ox.ac.uk/fsl). The first volume that did not have gradient 

applied (b = 0) was used to generate a binary brain mask with the ‘bet’ function in 

FSL. Subject movements and eddy current-induced distortions were corrected using the 

‘eddy_correct’ function in FSL. Estimates of displacement relative to the first image were 

computed using the alignment parameters obtained from the motion correction step. One 

participant with mean relative displacement of 2.46 mm (> 10 × SD) was excluded from the 

sample (as mentioned in the Participants section). Mean estimates of relative displacement 

were not significantly different between the younger and older participants, split at age 40 

years (Myoung = 0.58 mm, SDyoung = 0.12 mm; Mold = 0.61 mm, SDold = 0.13 mm; t(94) 

= 1.18, p = 0.24, two-tailed). Finally, the ‘dtifit’ function in FSL was used to independently 

fit diffusion tensors to each voxel, with the brain mask limiting the fitting of tensors to brain 

space. The output yielded voxel-wise maps of FA, AD (the primary direction of diffusion), 

and RD (calculated as the average of the two non-primary diffusion directions).

Anatomical data processing.

Cortical and subcortical segmentations were performed using FreeSurfer v5.1 in the subject­

space (Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA; https://

surfer.nmr.mgh.harvard.edu/fswiki). The generated segmentations were inspected relative 

to the structural MR image for quality assurance. When necessary, the volumes were 

edited to ensure alignment with brain boundaries as suggested by the FreeSurfer manual. 

The ‘wmparc’ FreeSurfer output file was used to create a single GM mask (including 

cortical, subcortical and cerebellar regions) and a single WM mask (including cerebrum 

and cerebellar regions) for each participant. In addition, ‘wmparc’ was used to extract 43 

bilateral GM regions and 41 bilateral WM regions for each subject for the regional analyses. 

It is noteworthy that absolute estimates of regional volumes are different across FreeSurfer 

versions, but analyses that relied on the relative difference between regional volumes such 

as correlations between regional volumes and age were preserved within FreeSurfer versions 

(Bigler et al., 2020). For each participant, the skull-stripped anatomical brain was aligned 

with an affine transformation to the diffusion data using the ‘flirt’ function in FSL. The 

same transformation parameters were applied to the GM and WM masks. Finally, the masks 

were resampled to match the resolution of DTI. All images were visually inspected to ensure 

proper alignment between anatomical masks and DTI maps.

WM and GM age scores.

A total of 10 regressors were initially included in the analysis for each tissue type. 

Specifically, from the anatomical masks of GM and WM, a measure of total volume was 
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calculated for each tissue type (or region) in the subject space (1 regressor). For the DTI 

data, within anatomical mask of each tissue (or sub-region) measures of mean, variance, 

and skewness were calculated for FA, AD, and RD distributions in the subject space (9 

regressors) (Fig. 1A–F) in MATLAB (The MathWorks Inc., Natick, MA). We included 

variance which represented relative spread (indexing heterogeneity) of the whole-tissue 

distribution in diffusivity indices and included skewness which represented asymmetry 

(bias) in the data away from the mean. Fig. 1G shows a schematic view of our procedure for 

estimating tissue-specific age scores. For each tissue type, we performed an initial stepwise 

regression of chronological age on all 10 regressors to select tissue-specific age-related 

regressors using data from the entire cohort (or when indicated for each age group). This 

dimension reduction was performed to alleviate multicollinearity between the regressors 

(Graham, 2003). Stepwise regression was performed in MATLAB using the ‘stepwisefit’ 

function with the default settings (penter = 0.05, premove = 0.1, no initial fit specified). 

Next, we removed one participant from the sample, and used a full multivariate regression 

of chronological age on the selected regressors to estimate regressor coefficients. This 

was done to obtain unbiased estimates of regressor coefficients and to alleviate the data 

overfitting problem due to presence of multiple regressors (Hawkins, 2004). Finally, these 

regressor coefficients were used to estimate a tissue-specific age score for the removed 

participant. This procedure was repeated for all participants (Fig. 1G). The common 

variance (R2) between chronological age and the tissue-specific age scores were computed 

to index the quality of fit. We also repeated the variable selection step with lasso regression 

in MATLAB using 20-fold cross-validation to find the sparsest model that was within one 

standard error of the minimum mean square error (Tibshirani, 1996) (see Supplementary 

Results and Supplementary Fig. 1). For the regional analyses, a similar procedure was 

performed (as shown in Fig. 1G) where volume and distribution properties of diffusivity 

indices were extracted for each of GM and WM sub-regions identified in ‘wmparc’ (see 

Anatomical data processing).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Histograms of gray matter and white matter diffusion indices. The subject-level histograms 

(160 bins) of voxel-wise DTI measures including fractional anisotropy (FA), axial diffusivity 

(AD), and radial diffusivity (RD) for white matter (A–C) and gray matter (D–F). Average 

histograms for younger (< 40 years old) and older (> 40 years old) participants are also 

shown in solid green and dashed red lines, respectively. (G) Age-score estimation procedure. 

Left of the dotted line. For each tissue type, volume and distribution properties of diffusivity 

indices were extracted, and stepwise regression was applied to select the most relevant 
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predictors of chronological age across all participants. Right side of the dotted line. Each 

participant was removed from the sample and multivariate regression of chronological age 

on the selected predictors was applied to estimate regression coefficients. The estimates 

of regression coefficients were used to derive a tissue-specific age score for the removed 

participant. These steps (right of the dotted line) were repeated for all participants.
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Fig. 2. 
Contributions of gray matter (GM) and white matter (WM) to predicting age-related 

differences in the brain. (A–B) The scatter plots show the GM and WM age scores 

(estimated using multivariate models, Fig. 1G) against the chronological age. Logarithmic, 

exponential, and quadratic fits (each with 3 parameters) were separately tested for the GM 

and WM age scores. A logarithmic function appeared to better fit the WM age scores 

(RMSE = 8.84) than quadratic (RMSE = 8.89) or exponential (RMSE = 9.25) fits, while 

exponential (RMSE = 9.95) and quadratic (RMSE = 9.95) functions appeared to better fit 
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the GM age scores than a logarithmic fit (RMSE = 10.65). (C) R2 of correlation between 

chronological and age scores obtained for GM and WM sub-regions for the younger and 

older adults. Each datapoint represents one region of interest. In younger adults, whole brain 

GM-age scores (thick dark-gray line) accounted for more of the variance in chronological 

age than whole brain WM-age scores (thick light-gray line, **p = 0.002, two-tailed). In 

older adults, whole brain WM-age scores (thick light-gray line) accounted for more of 

the variance in chronological age than whole brain GM-age scores (thick dark-gray line, 

*p = 0.015, two-tailed). Dashed lines show the 95-percentile of the R2 distribution for all 

GM and WM sub structurers. (D) Contribution of different WM and GM sub-regions to 

predicting chronological age in younger (top row) versus older (bottom row) adults (see also 

Supplementary Tables 2 & 3).
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Fig. 3. 
Gray matter (GM) and white matter (WM) age score associations with fluid and crystallized 

abilities (as measured by WASI matrix reasoning and WASI vocabulary tasks, respectively) 

in younger and older adults. (A) Solid lines show the R2 of the associations with intelligence 

measures for whole brain WM and GM age scores. The dashed lines show the 5-percentile 

limit for the distribution of R2 estimates, each obtained after excluding one tissue sub­

regions from the analysis. A region was considered relevant when its exclusion from the 

model resulted in a drop in R2 estimate below this limit. Whole-brain GM age scores 
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significantly contributed to predicting fluid ability in younger adults (p < 0.02, two-tailed). 

(B) Putamen and pallidum GM sub-regions significantly contributed to these effects in 

younger adults (< 5 percentile, ΔR2 > 0.06, Supplementary Table 5). (C) Whole-brain WM 

age scores significantly contributed to predicting crystallized ability in older adults (p < 

0.02, two-tailed). (D) WM sub-regions nearby inferior parietal lobule and superior temporal 

gyrus significantly contributed to these effects in the older adults (< 5 percentile, ΔR2 > 

0.025, Supplementary Table 6).
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