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Abstract
COVID-19, a life-threatening infection by novel coronavirus, has broken out as a pandemic since December 2019. Eventually, 
with the aim of helping the World Health Organization and other health regulators to combat COVID-19, significant research 
effort has been exerted during last several months to analyze how the various factors, especially the climatic aspects, impact 
on the spread of this infection. However, due to insufficient test and lack of data transparency, these research findings, at times, 
are found to be inconsistent as well as conflicting. In our work, we aim to employ a semantics-driven probabilistic framework 
for analyzing the causal influence as well as the impact of climate variability on the COVID-19 outbreak. The idea here is 
to tackle the data inadequacy and uncertainty issues using probabilistic graphical analysis along with embedded technology 
of incorporating semantics from climatological domain. Furthermore, the theoretical guidance from epidemiological model 
additionally helps the framework to better capture the pandemic characteristics. More significantly, we further enhance the 
impact analysis framework with an auxiliary module of measuring semantic relatedness on regional basis, so as to realisti-
cally account for the existence of multiple climate types within a single spatial region. This added notion of regional semantic 
relatedness further helps us to attain improved probabilistic analysis for modeling the climatological impact on this disease 
outbreak. Experimentation with COVID-19 datasets over 15 states (or provinces) belonging to varying climate regions in 
India, demonstrates the effectiveness of our semantically-enhanced theory-guided data-driven approach. It is worth noting 
that our proposed framework and the relevant semantic analyses are generic enough for intelligent as well as explainable 
impact analysis in many other application domains, by introducing minimal augmentation.

Keywords Semantic Bayesian analysis · Theory-guided approach · Climate variability · COVID-19

Introduction

The novel coronavirus disease 2019 or COVID-19 has 
become a serious health hazard throughout the globe. 
Because of its excessive infectivity, spreading capability, 
and ubiquitous nature, COVID-19 has been categorized as 
pandemic by the World Health Organization (WHO). The 
recent reports have already proved that relying on classic 
infection-control and public-health measures for tackling 
this pandemic are not sufficient [17, 23]. Consequently, 
several research initiatives have been undertaken across the 
globe to fight against this pandemic by leveraging the recent 
advancements in science and technology.

Analyzing the impact of geographic climate variations 
in modulating the COVID-19 outbreak is one of such cur-
rent research concerns which has gained substantial atten-
tion. Numerous research publications in this context can be 
found in the literature. Nevertheless, owing to the diverse 
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screening strategies, poor quality of collected data, and inad-
equate number of COVID tests, these research outcomes 
often become contradictory to each other. For example, a 
collaborative research of China-USA team has observed 
that low humidity, low temperature, and mild diurnal tem-
perature range may promote this disease transmission [13], 
whereas another group of researchers from USA has found 
that the hot and humid climate does not help controlling the 
COVID-19 outbreak [2].

In our proposed impact analysis scheme, we aim at 
addressing such uncertainty issues by intelligent incorpora-
tion of theoretical knowledge from the domain of epidemiol-
ogy and semantic knowledge from the domain of climatol-
ogy. The theoretical guidance from epidemiological model 
helps our impact analysis to remain consistent with the 
underlying theory of the infectious disease spread. On the 
other side, the study of semantic relatedness in the datasets 
aids in reducing uncertainty at the time of learning causal 
relationships between disease development and climate vari-
ability. Unlike majority of the existing models, instead of 
considering the individual climate factors, we deal with the 
overall climatic pattern of the geographical areas. Though 
our present approach of semantics-driven theory-guided 
impact analysis is influenced from our recently introduced 
framework [9], the fundamental difference between the two 
lies in the following two aspects. Firstly, in contrast to [9], 
the semantic analysis in the presently proposed framework 
is probabilistically augmented to account for the real-life 
scenario where the same climate zone may be expanded 
over multiple spatial regions. Secondly, the impact analysis 
in our present scheme is performed with consideration to 
the expected values of relative-recovered cases and per mil-
lion new infected/confirmed cases over the various regions, 
which eventually make our present scheme capable of pro-
viding a more realistic view.

Motivation In essence, our research is motivated by the 
fact that epistemic uncertainty [7] can be reduced using more 
information and knowledge regarding the relevant domain. 
For example, added insights from mathematical models can 
help in handling uncertainty that emerges because of our 
unawareness about the basic tenet of epidemiology [16]. 
Further, the use of additional data samples can also help in 
tackling uncertainty by reducing sampling error during infer-
ence generation. In this regard, we may exploit the seman-
tic relatedness between data collected from different spatial 
regions [9]. For instance, as explained in Fig. 1, the climate 
class (BWk) of the spatial region-2 is quite similar to that of 
region-3 (BWh) and region-4 (BSk), since all these belong 
to arid type of climate. Accordingly, at the time of analyzing 
climatological impact on COVID-19 spread in region-2, we 
may utilize the data samples from region-3 and region-4 as 
well, along with the relevant measures of semantic related-
ness. However, designing appropriate measure of semantic 

relatedness, especially when a region contains multiple cli-
mate types in its various parts, becomes a challenging task. 
Our earlier work [9] assumes that each spatial region belongs 
to strictly one climate zone. Accordingly, it cannot measure 
the semantic relatedness between the data collected from 
region-1 (climate type: BSh + Aw) and that collected from 
other considered spatial regions, as depicted in Fig. 1b, c. 
To overcome this limitation and to make the impact analysis 
model more appropriate for dealing with real-life scenario, 
in this work, we introduce the concepts of ‘regional seman-
tic relatedness’ and ‘semantic generic index’, which aid in 
enhancing the prediction model developed in [9].

Contributions It may be noted from the motivational 
example that, the primary challenges involved in this 
research are, firstly, to define suitable measure for quan-
tifying semantic relatedness, and secondly, to develop a 
scheme for combining climate domain semantics as well 
as epidemiological knowledge into a data-driven model. In 
this work, we address both the aforementioned challenges 
by considering real-life scenario where a spatial region may 
partly belong to multiple climate zones. Accordingly, the 
key contributions of our work are as follows.

– Exploring effective means for representing climatological 
domain knowledge/semantics.

– Defining probabilistic measure of regional semantic 
relatedness (regSR) to account for the existence of mul-
tiple climate types within a spatial region.

– Developing an advanced version of data-driven frame-
work that can offer theory-guided semantics-driven 
analysis of climatological impact on COVID-19 spread, 
while considering real-life scenario for regional distribu-
tion of climate.

Fig. 1  Example showing semantic relatedness between climate type 
of spatial region-2 and that of the others, as per the commonality in 
climate type (denoted by colors)
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– Proposing Semantic-GI as a semantics-driven generic 
index for analyzing the influence of climate variability 
on the regional outbreak of COVID-19.

The proposed model is validated using daily time series 
of COVID-19 data over 15 states (provinces) belonging to 
diverse climate regions in India. Our experimental findings 
indicate that dry (arid/semi-arid) climate zones, like BSh, 
BWh etc., are most susceptible for COVID-19 transmission. 
The temperate climate zones, e.g. Cwa, are also quite vul-
nerable as the daily relative-recovery1 in these zones are 
comparatively lower than that in tropical climate zones. Our 
study also identifies humid climate to be a principal factor 
favoring the daily relative-recovery in India.

Incidentally, our proposed framework is not only appli-
cable for the present purpose of assessing climatological 
impact on COVID-19 spread, but also it is potential enough 
for analyzing the impact of any other categorical factor on 
the possible transmission of COVID-19. For example, given 
the classification of the cities in terms of house rent allow-
ance (HRA) grade, the similar framework can be used for 
analyzing the impact of population density on the COVID-
19 transmission on sub-regional basis. More significantly, 
the proposed measures of regional semantic relatedness and 
Semantic-GI, are some generic notions, which can be suc-
cessfully utilized for semantics-driven explainable analyses 
in diverse application areas of machine learning and com-
putational intelligence.

The rest of the paper is structured as follows. Sec-
tion  “Problem Scenario” describes the overall problem 
scenario. Section “Methodological Overview” discusses on 
the methodological details of the proposed impact analy-
sis model. Section “Experimental Evaluation” presents the 
experimental evaluation of our proposed model in com-
parison with state-of-the-art approaches. Section “Related 
Works” provides a summary of the various related works, 
and finally, we conclude in Section “Conclusions”.

Problem Scenario

Given the daily statistics of COVID-19 case count, including 
confirmed cases, recovered cases, and active cases over a set 
of regions with known climate patterns, the prime goal of 
this research is to explore any possible correlation between 
the various climate types and the development of COVID-19 

in the regions. Accordingly, we aim at answering the follow-
ing research questions (RQs).

– RQ1: Do the climate patterns of the regions have any 
correlation with the daily statistics of confirmed/ recov-
ered case counts?

– RQ2: In case such correlation is identified, which cli-
mate type(s) help(s) increasing/decreasing the infected/
recovered case count the most?

By the term “climate pattern” here we indicate spatial dis-
tribution of various climate classes, including equatorial/ 
tropical (e.g. ‘Am’, ‘As’ etc.), arid (e.g. ‘BWh’, ‘BWk’ etc.), 
and temperate (e.g. ‘Cwa’, ‘Cfa’ etc.) etc., as defined in [12] 
(refer Fig. 1a).

Methodological Overview

An overview of process flow within our proposed frame-
work is shown in Fig. 2. Primarily, the overall process is 
comprised of five major activities: (i) representing climate 
domain semantics, (ii) estimating semantic relatedness on 
regional basis,( iii) modeling probabilistic relationship 
between COVID development and regional climate types, 
based on enhanced semantics-driven theory-guided analysis, 
(iv) conducting predictive analysis for COVID-19 cases, and 
(v) assessing climatological impact on the disease outbreak. 
The various steps in this regard are discussed in the subse-
quent subsections. Both the research questions (RQ1 and 
RQ2) are primarily answered in the final step.

Representing Climate Domain Semantics

The objective here is to represent the climatological domain 
knowledge in the form of a semantic graph/network which 
can be utilized in successive step to reduce epistemic uncer-
tainty of learning probabilistic relationship between regional 
variability of climate types and COVID development.

Formation of Semantic Network

The typical semantic network used in our proposed model 
is shown in Fig. 3. The network is generated by combining 
semantic hierarchies rooted at the various major concepts 
related to climate pattern, namely precipitation (P), main 
climate (MC), and temperature (T), as mentioned in Köppen 
Geiger climate classification [12]. More specific concepts 
(such as ‘summer dry’(s), ‘desert’ (W), ‘hot arid’ (h), ‘cold 
arid’ (k), etc.), which can be directly related to any of these 
root concepts, are represented by the intermediate nodes in 
the network. Finally, the exact climate classes (such as As, 
BWh, Cwa, etc.) which are indirectly related to multiple root 

1 The ‘relative recovery’ is defined as the relative count of recovered 
case with respect to the confirmed case count on the same day. 
Accordingly, relative recovery =

(daily recovered case count)

(daily confirmed case count)
 , and hence, it is 

not exactly the same as the ‘recovery rate’.
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concepts via intermediate ones, are represented by the leaf 
nodes in the semantic network (refer Fig. 3).

Measuring Semantic Relatedness

To measure the semantic relatedness (SR) between any pair 
of climate classes (say CT1 and CT2 ), the conceptual relation-
ship as represented through the semantic network is utilized 
[9]. Formally, SR can be presented as follows.

Here, maxl = max(l1,… , lR) represents the maximum of 
the shortest path lengths l1, l2,… , lR between CT1 and CT2 
via each of the R root concepts; maxd = max(l1,⋯ , lR) rep-
resents the maximum of the subsumer depth d1, d2,… , dR 
relevant to CT1 and CT2 , measured in regards to each of the 
R root concepts. � and � are scaling parameters that help 
adjusting the contribution of maxl and maxd , respectively. 

(1)SR
(
CT1,CT2

)
= e−�⋅maxl

⋅

e�⋅D⋅maxd − e−�⋅D⋅maxd

e�⋅D⋅maxd + e−�⋅D⋅maxd
.

D represents the degree of conceptual overlap, defined as 
follows [9].

Definition 1 Semantic relatedness SR(CTi,CTj) is a quantita-
tive measure of commonality between climate type CTi and 
CTj , computed with respect to the semantics of main climate 
as well as temperature and precipitation pattern. To be noted, 
given the underlying semantics in the form of hierarchical 
representation, the SR measure can also be applied on any 
pair of concepts from domains beyond climatology.

Measuring Semantic Relatedness on Regional Basis

In this stage we aim at determining the semantic related-
ness of data collected from various spatial regions belonging 

(2)D =

⎧
⎪⎨⎪⎩

2, ifCT1 andCT2 overlap in terms ofMC

1, if the overlap is in terms ofP and∕or T

0, ifCT1 andCT2 have no overlapping concept.

Fig. 2  Proposed framework: overall process flow. [The red boxes indicate our major contributing steps.]

Fig. 3  Semantic network corresponding to the climatological concept defined in Fig. 1a [9]
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to different climate types. As per the semantic relatedness 
measure defined above, the semantic relatedness between 
data collected from a spatial region r under climate type 
CTr and that collected from regions under climate type CTj , 
can be estimated as regSR (r,CTj) = SR(CTr,CTj) . Note 
that, here we use subscript to denote specific climate type 
and superscript to denote the spatial region to which the 
climate type is associated with. However, it is quite com-
mon that a large spatial region is covered with multiple 
climate zones in its various parts. That means, CTr can be 
a set of climate types, and therefore we may define it as 
CTr =

{
CTr

1
,CTr

2
,…

}
 . In such case, the semantic related-

ness must also consider the percentage of area covered by 
each climate type within the region. The higher the covered 
area percentage the more the probability of the data being 
collected from the particular climate zone. Accordingly, to 
tackle the issue of presence of multiple climate types within 
a region, we enhance the regional semantic relatedness 
measure in following manner.

where P(CTr
i
) denotes the probability of presence of a cli-

mate type CTi ( i = 1, 2,… ) in a region r, P(CTr�

j
) denotes the 

probability of presence of a climate type CTj in region 
r�(≠ r) , n is the total number of spatial regions (including r). 
The P(CTr

i
) can be estimated as the area of climate type CTi 

covered in per unit area of the region r. Similarly, P(CTr�

j
) 

can be estimated as the area of climate type CTj covered in 
per unit area of the region r′.

Definition 2 Regional semantic relatedness regSR (r,CTi) is 
a quantitative measure of semantic relatedness between the 
data collected from region r and that collected from regions 
having climate type CTi . The regSR(r,CTi) assumes that 
the region r may be associated with multiple climate types 
which may or may not include CTi . Moreover, here, the data 
collected from CTi may be associated with multiple regions.

Semantic Analysis of Relationship Between Climate 
Type and COVID Case Development

This step aims at modeling the causal influence of climate 
variability over the dynamics of new confirmed cases, active 
cases, and recovered cases of COVID-19. In this context, we 
employ semantically enhanced Bayesian network [6], where 
the Bayesian model handles the uncertainty by its probabil-
istic analysis for learning causal relationship. The incorpora-
tion of climate domain semantics further helps in tackling 

(3)

regSR(r,CTj)

=
1

(n − 1)

∑
r�(≠r)

max

(
P
(
CTr

i

)
⋅ P

(
CTr�

j

)

⋅SR

(
CTr

i
,CTr�

j

))
,∀CTr

i
∈ CTr

,

the uncertainty by reducing sampling error during inference 
generation step. The Bayesian network structure as used in 
our model is shown in Fig. 4. This directed acyclic graph 
primarily represents the causal dependency among climate 
type (CT), confirmed case (CC), recovered case (RC) and 
active case (AC). To generate this dependency structure, we 
employed structure learning based on a combination of HPC 
(hybrid parents and children) and pairwise mutual informa-
tion algorithms [10, 14].

Semantically‑Enhanced Bayesian Modeling of Causal 
Relationships

Given the causal dependency graph, the conditional proba-
bility distributions for confirmed case count (CC), recovered 
case count (RC) and active case count (AC) in any spatial 
region r for each timestamp can be obtained through seman-
tic Bayesian analysis as follows.

where,

(4)

P†
(
CC|CTr

)
= � ⋅

(∑
j

regSR
(
r,CTj

)
× P

(
CC|CTj

))

(5)
P†

(
RC|CC,CTr

)

= � ⋅

(∑
j

regSR

(
r,CTj

)
× P

(
RC|CC,CTj

))

(6)
P†

(
AC|CC,RC,CTr

)

= � ⋅

(∑
j

regSR

(
r,CTj

)
× P

(
AC|CC,RC,CTj

))
,

(7)P
�
CC�CTj

�
=

1

�CC

√
2�

e
−

1

2

�
CC−�0j

�CC

�2

Fig. 4  Causal dependency between climate type and COVID-19 case 
counts
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In Eqs. 4–9, �  denotes the normalization constant, CTj 
denotes the j-th climate type, and regSR(r,CTj) denotes 
the semantic relatedness between COVID data collected 
from region r and those collected from regions having 
climate type CTj ; the �CC , �RC , and �AC are the standard 
deviations corresponding to confirmed case count, recov-
ered case count, and active case count, respectively; the {
�0j

}
 , 
{
�1j, �2j

}
 , and 

{
�3j, �4j, �5j

}
 are parameters regulating 

the means of confirmed case count, recovered case count, 
and active case count, respectively. These can be computed 
by employing maximum likelihood analysis of Expectation 
Maximization (EM) algorithm [11].

Theoretical Analysis for Data Sample Generation

It is interesting to note here that every epidemic/pandemic, 
like COVID-19, has some particular temporal development 
pattern which is governed by several other factors including 
susceptible population size, contagiousness or transmissi-
bility of the disease, and so on. Accordingly, if the disease 
infected case counts predominantly show upsurge during the 
initial phase, then the purely data-driven techniques, includ-
ing the dynamic Bayesian models, cannot properly guess 
the declining trend of the infected case count in long run. 
It is therefore necessary to provide theoretical guidance to 
the data-driven models so that the learnt parameters remain 
consistent with the underlying physics of epidemiological 
development.

To incorporate theoretical knowledge, first, we utilize 
the kinetic scheme as defined by Kermack-McKendrick 
SIR Model [22]. This is an epidemiological model that can 
mathematically express (refer Eqs. 10–12) the dynamic 
interaction among susceptible (S), infected (I), and recov-
ered/removed (R) fraction of population in a region. Sub-
sequently, we follow this system of differential equations 
to generate training samples of COVID-19 cases ensuring 
that the parameters learnt through our semantic Bayes-
ian analyses are compatible with the underlying theory of 
epidemiology.

(8)P
�
RC�CC,CTj

�
=

1

�RC

√
2�

e
−

1

2

�
RC−(�2j ⋅CC+�1j)

�RC

�2

(9)P
�
AC�CC,RC,CTj

�
=

1

�AC

√
2�

e
−

1

2

�
AC−(�5j ⋅CC+�4j ⋅RC+�3j)

�AC

�2

.

(10)
dS

dt
= − �SI

(11)
dI

dt
= �SI − �I

In Eqs. (10)–(12), � and � indicate the effective contact rate 
and the mean recovery rate, respectively, and t indicates the 
time. Given the new confirmed case count (CC) and the new 
recovered case count (RC) as recorded on every t basis, R(t) 
can be estimated as cusum(RC), and I(t) can be estimated 
as (cusum(CC)− cusum(RC)) for each t, where cusum() is 
the function to compute cumulative sum [9]. As per the SIR 
model, S(t) + I(t) + R(t) is assumed to remain constant for all 
t and the sum is equal to the population size of the region. It 
may please be noted here that, to be consistent with the terms 
used by Mathematical Association of America (MAA), we 
have sometimes used the word “Recovered” to indicate ‘R’, 
which though includes recovered as well as death case count.

Typical pattern of temporal development of COVID-19 
cases, as obtained by employing SIR model, is shown in 
Fig. 5a. Our framework utilizes these theory-governed tem-
poral distributions of active cases, new confirmed cases, and 
new recovered cases (refer Fig. 5b, c) to produce appropri-
ate training samples that can eventually help the parameter 
learning process to remain congruous with the physical 
understanding of COVID-19 spread. Note that, despite the 
availability of various enhanced versions of SIR model, we 
choose the basic one for our epidemiological modeling, 
since the recent findings [19] demonstrate that this simplest 
version can also adequately model COVID-19 dynamics.

Predictive Analysis for COVID‑19 Cases

After the causal relationships are learnt, the semantically-
enhanced theory-guided model can be used for inferring 
the COVID-19 case counts (confirmed case count, active 
case count and recovered case count) given the evidence 
on climate variability in a region r. For this purpose, our 
framework employs semantic Bayesian inference generation 
[6, 8] in following manner.

Here, P(CTr) denotes the marginal probability of presence of 
various climate types in region r, and this can be estimated 
as 

∑
i P(CT

r
i
) , where CTr

i
∈ CTr (refer Section “Measuring 

Semantic Relatedness on Regional Basis”). To be noted, this 
semantically enhanced inference generation for COVID-19 
cases overcomes uncertainty issue, emerging due to sample 

(12)
dR

dt
=�I.

(13)
P†(CC|CTr) =

∑
RC

∑
AC

{
P(CTr).P†(CC|CTr).

P†(RC|CC,CTr).P†(AC|CC,RC,CTr)
}

(14)
P†(RC|CTr) =

∑
CC

∑
AC

{
P(CTr).P†(CC|CTr).

P†(RC|CC,CTr).P†(AC|CC,RC,CTr)
}
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scarcity, and also maintains the theoretical guidelines which 
are utilized at the time of estimating P†(RC|CC,CTr) , 
P†(AC|CC, RC,CTr) etc., in the parameter learning phase.

Assessing Climatological Impact on COVID‑19 
Outbreak

This is the ultimate step which aims at assessing whether 
the regional climate variability has any correlation with the 
patterns of confirmed and recovered case development for 
COVID-19. Since, instead of the continuous climatic factors, 
our framework deals with the categorical values of climate 
types, we use ANOVA test [21] for analyzing the correlation 
with climate variability.

Additionally, we propose Semantic-GI as a generic index 
(correlation measure) so as to utilize the underlying seman-
tics from climate domain. The Semantic-GI is measured as 
follows.

where, n is the total count of study regions considered. 
These belong to diverse climate zones, x′ is the mean of 
COVID case counts (confirmed case count or recovered case 
count) per million individual over all the regions, xr is the 
COVID case count per million individual at a particular spa-
tial region r, and swrq is the semantic weight between region 
r and region q. The semantic weight between any pair of 
regions r and q associated with climate classes CTr and CTq , 
is defined as follows.

In case each of the considered spatial regions (r and q) are 
associated with single climate type, i.e., if CTr and CTq con-
tain only one element each, then the Eq. 16 is simplified as 
follows: swrq = SR(CTr,CTq).

It can be interpreted from Eq. 15 that, similar to the 
Semantic-I measure [9], our presently proposed Semantic-
GI is also founded on the concept of semantic auto-corre-
lation. However, our computation of semantic weight (sw) 
wisely takes into account the presence of multiple climate 
types within each spatial region (refer Eq. 16), which makes 
our model more appropriate to deal with real-world sce-
nario. The proposed Semantic-GI can be used to analyze 
whether the COVID-19 case counts associated with the 

(15)

Semantic-GI =
n ⋅

∑n

r=1

∑n

q=1
swrq ⋅ (xr − x�)(xq − x�)

�∑n

r=1

∑n

q=1
swrq

�
⋅

�∑n

r=1
(xr − x�)2

� ,

(16)swrq =

⎧
⎪⎨⎪⎩

1, if r == q

max
�
P(CTr

i
) ⋅ P

�
CT

q

j

�
⋅ SR

�
CTr

i
,CT

q

j

��

∀CTr
i
∈ CTr,CT

q

j
∈ CTq, otherwise.

various regions with semantically related climate type form 
a cluster pattern or a disperse pattern. In specific, a positive 
value of Semantic-GI indicates a cluster pattern, whereas 
a negative value of Semantic-GI indicates a disperse pat-
tern. In the same way as defined for Moran’s index of spatial 
auto-correlation [5], the significance of Semantic-GI value 
can be quantified through Z-test. If Z-score > 2.58 , it can 
be claimed with 99% confidence that there is a cluster pat-
tern, whereas if Z-score < −2.58 , with the same level of 
confidence it can be claimed that there is a disperse pattern. 
Otherwise, the pattern is random. Together, the ANOVA test 
and the Semantic-GI test help answering the RQ1.

To resolve the RQ2, our framework draws more specific 
conclusions regarding the influence of climate variability. 
Accordingly, the Semantic-GI analysis is followed by com-
parative study of semantically averaged case count (daily 
relative-recovered case count and daily new confirmed case 
count) for each climate type. The semantically averaged case 
count ( sAvgi ) corresponding to a climate type CTi is meas-
ured with consideration to the presence of multiple climate 
types within each spatial region, in following manner.

where �1 =
1∑

j SR(CTi,CTj)
 is the normalization constant, and 

regsAvgj is the semantically averaged case count correspond-
ing to a climate type CTj over all the considered region r. 
The regsAvgj can be mathematically presented as follows, 
where xr indicates the latest count of case (daily new con-
firmed case or relative-recovered case) per million people in 
r-th spatial region, and �2 =

1∑
r regSR(r,CTj)

 is the normaliza-

tion constant.

Once the sAvgi for each climate type CTi is estimated, these 
can be graphically plotted to draw conclusion on which par-
ticular climate type has higher/lower impact on the develop-
ment of COVID-19. The qualitative estimate of ‘higher’ or 
‘lower’ can be decided based on the expected value (refer 
Table 2). For the confirmed case, the expected value is com-
puted considering all the spatial regions, irrespective of the 
climate types. On the other side, for the relative-recovered 
case, the expected value becomes 1, indicating 
daily recovered case count

daily confirmed case count
= 1.

The various symbols used in this section (Section “Meth-
odological Overview”) are summarized in Table 1.

(17)sAvgi = �1 ⋅
∑
j

(
SR(CTi,CTj) × regsAvgj

)
,

(18)regsAvgj = �2 ⋅
∑
r

(
regSR(r,CTj) × xr

)
.



 SN Computer Science (2021) 2:452452 Page 8 of 18

SN Computer Science

Experimental Evaluation

This section evaluates our proposed impact analysis frame-
work with consideration to the COVID-19 spread scenario 
in India, which is presently found to be one of the most 
adversely affected countries in the world.

Dataset and Study Area

The experimentation is carried out using the daily data2 over 
COVID-19 case count. This includes active cases, new con-
firmed cases, and recovered cases over 15 different states in 
India (Fig. 6). All these states belong to variants of climate 
zones. Moreover, a single state may have multiple climate 
zones in its various parts which can be prudently handled 
by our model. The details of all the considered states are 
presented in Tables 3 and 4 which show that the considered 
states are associated with 6 different climate types/classes: 

Am, As, Aw, BSh, BWh, and Cwa [12]. The semantic relat-
edness (SR) among these climate types, and the regional 
semantic relatedness (regSR) with various climate types, 
have been calculated as per our proposed approach and the 
same are summarized in Tables 5, 6. The entire experiment 
is carried out considering the daily time series of active, 
confirmed, and recovered case count from the mid of March 
2020 to the mid of November 2020.

Baselines and Experimental Set‑Up

Since, in literature there has not been an agreed gold stand-
ard in terms of assessing climatological impact on COVID-
19 outbreak, we primarily compare only the prediction 
power of our enhanced semantics-driven approach, with the 
existing linear regression (LR) [1] and nonlinear regression 
(NLR) [13] models. We also consider our recently intro-
duced semantically-enhanced th-eory-guided model (SETG) 
[9] as one of the baselines, since our presently proposed 
enhanced semantics-driven theory-guided model is inspired 
from SETG.

The proposed enhanced semantics-driven theory-guided 
predictive analysis and all the baselines are executed in 

Table 1  Symbols and notations used in the Section “Methodological Overview”

Notation Meaning

� Effective contact rate (theoretical)
� Mean recovery rate (theoretical)
AC Daily active case count
CC Daily new confirmed case count
CT Climate type
CTi i-th Climate type
CTr Set of climate types associated with region r
CTr

i
i-th climate type associated with region r

D Degree of conceptual overlap
I Infected fraction of regional population
n Total number of spatial regions under study
P Probability distribution corresponding to standard Bayesian network
P† Probability distribution corresponding to semantic Bayesian network
R Number of roots in the semantic network
R Recovered/removed fraction of regional population
RC Daily new recovered case count
regSR(r,CTi) Regional semantic relatedness between data collected from region r and that collected from that from 

regions having climate type CTi
regsAvgi Semantically averaged case count relevant to climate type CTi over all the considered region r
S Susceptible fraction of regional population
SR(CTi,CTj) Semantic relatedness between climate type CTi and CTj
sAvgi Semantically averaged case count (new confirmed or new recovered case) relevant to climate type CTi
sw Semantic weight
swrq Semantic weight between region r and q
xr COVID case count (new confirmed or new recovered case) per million individual associated with region r

2 Data source: https:// covid 19ind ia. org.

https://covid19india.org
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R-tool3 (version 4.0.0) in Windows 64-bit OS (3.1 GHz 
CPU processor and 4 GB RAM). The SIR-based theoretical 
modeling of COVID-19 and the structural learning of the 
Bayesian network have been conducted using ‘SimInf’ and 
‘bnlearn’ packages of the R-tool.

Performance Metrics

The prediction performance has been measured in terms of 
root mean squared error (RMSE) and mean absolute error 
(MAE) [20], as defined below. (19)RMSE =

√√√√ 1

N

N∑
i=1

(
Voi

− Vpi

)2

Fig. 5  Typical example of 
theoretically derived temporal 
pattern of COVID cases in 
Maharashtra, India: a overall 
development of susceptible, 
recovered, and infected cases, 
b development patterns of new 
confirmed and new recovered 
cases, c development pattern of 
latest active cases

Table 2  Qualitative estimate of COVID-19 case development with 
respect to expected value

Quantitative estimate of COVID-19 case 
development

Qualitative estimate

< 50% of Expected value Low
50–100% of Expected value High
100–200% of Expected value Very high
> 200% of Expected value Extremely high

Fig. 6  Various Indian states (along with state codes) considered in the 
present case study. The color codes follow the Köppen–Geiger clas-
sification of regional climate [12]

3 https:// cran.r- proje ct. org/ bin/ windo ws/ Rtools/.

https://cran.r-project.org/bin/windows/Rtools/
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where, Voi
 indicates the count of COVID-19 case (con-

firmed case or recovered case) which is actually observed 
on the i-th day of prediction, and the Vpi

 is the corresponding 
predicted value. In our experimental study, the prediction is 
made for succeeding 2 months, based on the daily observed 
data till 17-Sep-2020. Further, apart from the comparative 
study with respect to prediction performance, we also per-
form impact analysis using ANOVA test as well as using 
proposed Semantic-GI test.

Results and Discussions

The results of comparative prediction performance are pre-
sented in Tables 7, 8 and in Figs. 7, 8, whereas the sum-
mary of impact analysis is presented through Table 9 and in 
Figs. 9, 10. Our interpretations from the results are discussed 
below.

(20)MAE =
1

N

N∑
i=1

|||Voi
− Vpi

|||.
Table 3  Summary of the considered states in India

N north, S south, E east, W west

State Name Code Location Major climate 
class

Population [18]

Assam AS N-E Cwa 31,205,576
Bihar BR E Cwa 104,099,452
Chhattisgarh CT Central Aw 25,545,198
Delhi DL N BSh 16,787,941
Gujarat GJ W BSh, BWh, Aw 60,439,692
Karnataka KA S–W Aw, BSh 61,095,297
Kerala KL S Am 33,406,061
Madhya 

Pradesh
MP Central As 72,626,809

Maharashtra MH W BSh, BWh 112,374,333
Manipur MN N–E Cwa 2,855,794
Orissa OR E Aw 41,974,218
Rajasthan RJ W BWh, BSh 68,548,437
Tamil Nadu TN S Aw 72,147,030
Uttar Pradesh UP N Cwa 199,812,341
West Bengal WB E Aw 91,276,115

Table 4  Area of different major 
climate types per unit area in 
various Indian states

State code Major climate types

Am As Aw BSh BWh Cwa

AS 0 0 0 0 0 1
BR 0 0 0 0 0 1
CT 0 0 1 0 0 0
DL 0 0 0 1 0 0
GJ 0 0 0.28 0.56 0.16 0
KA 0 0 0.56 0.44 0 0
KL 1 0 0 0 0 0
MP 0 1 0 0 0 0
MH 0 0 0.7 0.3 0 0
MN 0 0 0 0 0 1
OR 0 0 1 0 0 0
RJ 0 0 0 0.5 0.5 0
TN 0 0 1 0 0 0
UP 0 0 0 0 0 1
WB 0 0 1 0 0 0

Table 5  Semantic relatedness 
(SR) between various climate 
types

Climate Type Am As Aw BSh BWh Cwa

Am 1 0.6 0.6 0 0 0
As 0.6 1 0.6 0 0 0
Aw 0.6 0.6 1 0 0 0.4
BSh 0 0 0 1 0.6 0
BWh 0 0 0 0.6 1 0
Cwa 0 0 0.4 0 0 1
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Comparative Study of Predictive Analytics

Tables 7, 8 evidently shows that the proposed semanti-
cally-enhanced theory-guided model has better prediction 
potential compared to other baselines. In respect of both 
MAE and RMSE, the proposed model is able to outper-
form all the other baselines in predicting recovered and 
confirmed case counts for 10–11 states from amongst the 
total 15 Indian states considered. More importantly, the 
superiority of the proposed model is prominent in case of 
those states (e.g. MH: Maharashtra) where the confirmed 
case counts are substantially high in recent days. This is 
so, primarily because our proposed model has implanted 
mechanism of following epidemiological development 
theory, which is completely ignored by the considered LR 
and NLR approaches. Accordingly, it can be well antici-
pated that for wide-ranging prediction over future several 
months our proposed model would be more appropriate 
than the others. Though SETG works as per theoretical 
guidance as well, our presently proposed model outper-
forms SETG with average 11% improvement (reduction) 
in prediction error.4. This demonstrates the effectiveness 
of enhancing our model by introducing the concept of 
regional semantic relatedness that can handle the pres-
ence of multiple climate types within each spatial region.

Our predicted count of daily new confirmed cases and 
new recovered cases from 18-Sep-2020 to 16-Nov-2020 
are graphically presented in Figs. 7, 8. It is evident from 

the figures that the predicted values from our proposed 
semantics-driven theory-guided model match well with the 
observed values for both daily confirmed case and daily 
recovered case count, given the climate type of the region.

Impact Analysis Based on ANOVA Test and Semantic‑GI

As mentioned earlier, in our proposed framework, the impact 
analysis is conducted using both statistical ANOVA test and 
Semantic-GI test (refer Table 9). The ANOVA test is per-
formed to analyze the significance of correlation between 
the daily count of confirmed/recovered cases and the vari-
ability of the climate types. Besides, the Semantic-GI test is 
conducted to analyze the same with regard to the semantic 
relatedness in the climate types, where a region may con-
tain more than one type of climate in its different parts. To 
handle the uncertainty issue, both the tests are carried out on 
the data predicted by our enhanced semantics-driven theory-
guided model.

As indicated by small F-values and large p-values 
obtained from the ANOVA test (refer Table 9), both con-
firmed and recovered case counts are not significantly cor-
related with the climate variability over the various states 
or provinces.

However, with respect to the Semantic-GI measures 
and the associated Z-scores (refer Table 9), we can infer 
that the daily counts of both confirmed cases and recovered 
cases have significantly high semantic correlations with the 

Table 6  Regional semantic 
relatedness (regSR) with data 
collected from various climate 
zones in India

State code Major climate types

Am As Aw BSh BWh Cwa

AS 0 0 0.3 0.1 0.1 1
BR 0 0 0.3 0.1 0.1 1
CT 0.6 0.6 0.8 0.2 0.1 0.4
DL 0 0 0.1 0.6 0.5 0
GJ 0.3 0.3 0.3 0.6 0.6 0.1
KA 0.3 0.3 0.5 0.4 0.4 0.3
KL 1 0.6 0.5 0.2 0.2 0
MP 0.6 1 0.5 0.2 0.2 0
MH 0.4 0.4 0.6 0.5 0.4 0.2
MN 0 0 0.3 0.1 0.1 1
OR 0.6 0.6 0.8 0.2 0.1 0.4
RJ 0 0 0.1 0.5 0.5 0
TN 0.6 0.6 0.8 0.2 0.1 0.4
UP 0 0 0.3 0.1 0.1 1
WB 0.6 0.6 0.8 0.2 0.1 0.4

4 By the term “improvement” here, we indicate relative percentage 
improvement, or in specific, percentage reduction in produced error 
in comparison with the baseline considered. For example, if the 
SETG model (as baseline) produces error value of esetg and the pro-

posed model produces error value of eprop , then the relative improve-
ment is 

(
(esetg−eprop)∗100

esetg

)
%.

Footnote 4 (continued)
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climate variations. As per the very high Z-scores, it can be 
claimed with 99% confidence that the semantically similar 
climate zones have very similar statistics for the daily con-
firmed/recovered case count. This answers the RQ1.

Subsequently, to answer RQ2, i.e. to understand the 
impact of region-specific climate, we perform in-depth 
analyses considering semantically averaged confirmed/
recovered case count ( sAvgi ) for each climate type sepa-
rately (refer Fig. 9). From the figure we notice that, com-
pared to the expected value (indicated by the red line), the 
daily confirmed case counts in BSh (hot semi-arid) and 
BWh (hot arid) type climate zones are substantially ( ≈ 
150%) high. However, confirmed case counts in humid-sub-
tropical (Cwa) and tropical (Am, As, Aw) zones are not so 
high. This forms a significant cluster pattern which is also 

reflected by positive Semantic-GI with high Z-score. It can 
therefore be inferred that the arid/dry climate, attributed by 
very low humidity or little precipitation, is more vulner-
able for COVID infection. A contrasting scenario can be 
observed for COVID-19 recovered case. For example, the 
daily relative-recovery in the tropical/equatorial climate 
zones (Am, As, Aw etc.) is extremely high, whereas that in 
the hot arid (BWh) and hot semi-arid (BSh) climate zones 
is quite low ( ≈ 20%), compared to the expected value. Thus, 
the humidity is found to show a significant positive cor-
relation with the recovery. In other words, the higher the 
humidity, the more the relative-recovery from COVID-19. 
Furthermore, as can be noted from the Fig. 9, the temperate 
climate zones (e.g. Cwa) are also quite vulnerable for severe 
COVID transmission, since unlike the tropical climate, the 

Fig. 7  Observed vs. Predicted count of daily new confirmed COVID-19 cases in some specific states in India
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relative-recovery in temperate zones is not too high (only 
60% above the expected value) while the confirmed cases per 
million individual in these zones are prominently (around 
85%) higher than the expected value. Hence, based on the 
extent of the vulnerability for COVID-19 transmission, 
we can arrange our studied climate zones as follows: 
Tropical{Am,As,Aw} < Temperate{Cwa} < Arid/Semi-arid 
{BSh,BWh} . This answers the RQ2.

The semantic weight matrix as used in our case study is 
depicted in Fig. 10a and the same is represented in terms 
of semantic neighborhood graph (with consideration to 7 
selected states) in Fig. 10b, to help in better interpretation. 
It can be interestingly noted from this graph that though a 

pair of states (e.g. GJ: Gujarat and DL: Delhi) may not be 
treated as neighbors from spatial perspective, they can still 
become semantic neighbors of each other, if their semantic 
weight, i.e. the degree of semantic relatedness in their cli-
mate types, is non-zero.

Significance of Our Research Outcomes

Overall, our research provides insights into climatological 
impact on infection as well as recovery from the novel coro-
navirus disease. Our semantically enhanced theory-guided 
analyses reveal that the regions which belong to dry climate 
are most susceptible for infection on everyday basis. At the 

Fig. 8  Observed vs. Predicted count of daily new recovered COVID-19 cases in some specific states in India
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same time, we also find that the daily relative-recovery in 
dry regions is quite unfavorable. Accordingly, there remains 
huge scope to more effectively control the pandemic sce-
nario in India by not only imposing stronger isolation meas-
ures but also improving the health-care facilities in the dry/
arid regions (e.g. Maharashtra, Rajasthan, Delhi, Gujarat 
etc.). Though the promising recovery pattern in tropical/
equatorial regions indicates that an intense isolation/quar-
antine measure can enough help controlling the COVID-
19 pandemic in the Indian states like West Bengal, Orissa, 
Tamil Nadu, Chhattisgarh, etc., the upcoming winter season 

(during December, January, February) can become vulner-
able, since winter is dry in these states. To combat COVID-
19 outbreak in India, additional care must also be given 
towards strengthening the health-care infrastructures in the 
states having temperate climate, such as Assam, Bihar etc., 
since the relative-recovery in temperate climate is found to 
be quite low compared to the infection.

To be noted, our proposed impact analysis based on 
Semantic-GI is more meaningful than that achieved with 
respect to ANOVA test. This is so, because the consideration 
of semantic knowledge effectively handles the uncertainty 

Table 7  Comparative study 
of performance regarding 
confirmed case count prediction

The bold values indicate the best prediction performances attained by any model, for a given state/province

State Code MAE of the models RMSE of the models

LR NLR SETG Proposed LR NLR SETG Proposed

AS 1935.49 2983.94 440.8 326.32 2121.11 3282.61 570.9 522.29
BR 1773.8 2772.72 603.78 569.64 1870.92 2922.27 665.69 630.88
CT 738.05 903.13 568.78 401.88 893.23 1162.11 667.28 497.48
DD 1315.01 1113.54 1288.03 1280.08 1879.93 1399.39 1862.16 1800.84
GJ 464.32 921.1 429.31 289.05 550.02 1027.05 485.64 336.73
KA 4003.84 7513.58 1755.75 1628.61 5105.5 9073.32 2311.23 2029.25
KL 4311.25 3196.26 1717.29 1347.9 4694.13 3678.28 2077.71 1728.74
MP 807.47 1333.6 454.8 251.62 983.83 1562.59 726.15 595.01
MH 10462.63 17578.48 2382.59 1693.54 12089.25 20020.84 2745.28 2234.12
MN 82.05 58.05 98.83 69.97 101.15 71.78 113.32 91.5
OR 1512.37 2782.41 896.68 593.08 1746.95 3263.77 936.71 652.03
RJ 265.99 516.86 1077.98 980.06  319.19 663.79 1176.32 1072.63
TN 4291.93 6791.28 2026.75 1957.42 4800.4 7433.35 2136.09 2063.38
UP 3479.5 6217.64 387.49 436.22 3839.44 6721.56 507.25 552.22
WB 211.54 1633.57 547.88 338.47 329.62 1769.06 762.67 600.8

Table 8  Comparative study 
of performance regarding 
recovered case count prediction

The bold values indicate the best prediction performances attained by any model, for a given state/province

State Code MAE of the models RMSE of the models

LR NLR SETG Proposed LR NLR SETG Proposed

AS 1012.45 1934.22 603.1 582.24 1238.17 2219.91 791.35 777.55
BR 1599.22 2730.12 743.59 743.41 1694.27 2879.52 839.75 837.1
CT 1555.54 1151.43 748.36 666.94 1901.66 1577.51 1052.13 975.87
DD 1316.05 1044.28 1102.08 1035.32 1768.04 1560.41 1577.37 1490.44
GJ 411.4 771.3 465.47 391.87 504.67 888.87 520.13 495.34
KA 2290.76 4599.57 2894.49 3202.58 3173.07 5989.39 3422.7 3790.83
KL 4361.27 3448.6 1785.37 1521.97 4704.23 3803.99 1959.68 2057.84
MP 751.67 974.18 385.68 251.31 965.65 1147.33 683.96 612.9
MH 6491.79 9877.93 3615.85 2762.47 7887.57 12082.24 4426 3824.2
MN 94.44 78.11 104.12 101.61 169.29 147.42 172.06 168.37
OR 1170.91 1865.89 939.2 738.9 1330.54 2263.87 987.66 785.23
RJ 441 374.96 1018.03 1070 524.02 518.2 1118.78 1173.75
TN 3555.96 6338.53 2375.31 2428.69 4049.04 6957.31 2582.13 2628.19
UP 2259.24 4216.58 472.14 506.21 2588.59 4916.67 633.66 658.96
WB 238.73 1458.76 325.47 150.51 269.53 1494.36 362.45 196.82
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in the data which emerges due to unawareness about the 
other influencing factors that may also affect the COVID-19 
spread within each state or province. The consideration of 

data from multiple states having semantically related cli-
mate, can indirectly neutralize the impact of these unknown 
or hidden factors to certain extent. Thus, the Semantic-GI 
test helps us achieving more robust outcome of impact 
analysis.

Related Works

The recent researches regarding climatological effect on 
COVID-19 outbreak dynamics can be split into two sepa-
rate groups based on the respective research conclusions. 
In the research works by the first group, at least one of the 

Fig. 9  Assessment for specific 
impact of climate variability on 
daily confirmed/recovered case 
count

Table 9  Summary of correlation analyses: climate variability vs. 
development of COVID-19 cases (confirmed and recovered)

COVID-19 ANOVA Test Semantic-GI Test

Cases F value Pr(> F) Semantic-GI Z-score
Confirmed 1.91 0.18 0.067 2.580
Recovered 1.80 0.20 0.052 2.580
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climatic factors, such as humidity, minimum temperature, 
average temperature, etc., has been identified to be signifi-
cantly correlated with COVID-19 pandemic, whereas, the 
second group of researches has not found any such evidence 
in this regard.

Regarding the first group of research, the works of Pani 
et al. [15], Bashir et al. [3], Liu et al. [13], Auler et al. [1], 
Ward et al. [25], and Tosepu et al. [24] are worth mention-
ing. Interestingly, though in a generic sense all these research 
works notice some association between COVID outbreak 
and climatic variables, the specific results are not very iden-
tical. For example, using Spearman and Kendall rank cor-
relation tests, Pani et al. [15] have found the temperature, 
dew point, and humidity to be significantly and positively 
associated with COVID-19 transmission. Contrarily, by 
employing Spearman correlation measure, Ward et al. [25] 
have noticed a significant negative association between rela-
tive humidity and novel coronavirus transmission. Moreover, 
they have found no association with temperature. The works 
of Bashir et al. [3], and Tosepu et al. [24], who identified 
average temperature to be one of the climatic factors influ-
encing COVID-19 spread, are therefore, contradicting with 
the work of Ward et al. [25]. The outcomes of the relevant 
researches done by Liu et al. [13] and Auler et al. [1] are also 
quite inconsistent. In the former work, primarily using non-
linear regression model, the authors noted that low humidity, 
low temperature, and mild diurnal temperature range were 
possibly favorable for COVID-19 transmission. Contrarily, 
in the latter case, based on a combination of linear regres-
sion and multivariate statistical analysis, the authors noticed 
that higher mean temperatures and average relative humid-
ity can also favor the transmission. The key limitation in 
these works remain in their purely data-driven approaches 
that ignore the physical understanding of infectious disease 

dynamics. Though our previously introduced SETG model 
[9] takes into account the theoretical principles of epidemic 
development, it has its own limitations in real-world applica-
tion scenario, since it does not take into account the presence 
of multiple climate types within a region.

The second group of researches are primarily based on 
either theoretical models or data-driven models with non-
linear analysis. For example, with the help of pandemic 
simulation using SIRS (Susceptible-Infected-Rec-overed-
Susceptible) model, Baker et al. [2] found that the summer 
weather would not substantially limit pandemic growth. This 
research observation also conforms to the findings of Zhu 
et al. [26] and Briz et al. [4], who employed generalized 
additive model and approximated Bayesian inference tech-
nique to serve the purpose. However, recent research also 
indicates that these results are highly sensitive to uncertainty 
underlying the data.

Existing work vs. Proposed Approach As per the findings, 
our semantically-enhanced theory-guided research primarily 
belongs to the first group. However, in contrast to majority 
of those works, we consider the theoretical guidance as well. 
Moreover, our enhanced semantics-driven theory-guided 
analysis primarily utilizes the overall climate patterns of 
the regions, rather than considering individual climate fac-
tors. Based on our research outcomes, we find that the dry/
arid and semi-arid climate zones are most vulnerable for 
the increasing infection from COVID-19, followed by the 
temperate climate zones. Our observation on arid/semi-arid 
climate and temperate climate are supported by the works of 
Liu et al. [13] and Auler et al. [1], respectively. Additionally, 
the present work also reveals a significantly positive correla-
tion of humidity with the daily relative-recovery from this 
disease, which eventually can help making administrative 

Fig. 10  Semantic weight matrix for the considered states (a), and graphical illustration for semantic neighborhood (b)
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decisions to effectively control COVID-19 transmission on 
regional basis.

Conclusions

Motivated by the semantically-enhanced theory-guided 
framework as introduced in [9], in this paper, we have pro-
posed an improved data-driven model to provide a more 
realistic analysis of how regional climate pattern impacts 
on the COVID-19 outbreak. Novelty of this work is primar-
ily embedded in the following three aspects: (1) introducing 
the concept of “regional semantic average” to account for the 
relatedness of data from the same climate zone expanded 
over multiple spatial regions; (2) enhancing interpretation 
of the causal relationship between climate variability and 
COVID case development, considering semantic related-
ness of the data on regional basis; and (3) upgrading the 
impact analysis with consideration to the expected values 
of relative-recovered cases and per million new infected/
confirmed cases over the various regions. Consideration of 
regional semantic relatedness at the time of learning causal 
relationship between climate variability and COVID-19 out-
break not only helps to deal with the underlying uncertainty 
but also enables us to better assess the climatological impact 
on the development of infected and recovered cases of the 
disease on regional basis. Moreover, the theoretical guidance 
from the epidemiological model helps our model in attain-
ing a generalizable solution. At the end of the study we find 
that both arid/semi-arid and temperate climate are evidently 
susceptible to COVID-19 transmission. We also observe that 
humid climate positively influences the recovery from this 
novel corona virus disease in India.

Ample scopes remain in further upgrading the frame-
work with added knowledge on genetic aspects of the virus, 
and also, in exploring the impact of other factors. It may 
be noted that, though our proposed framework has been 
illustrated with respect to analyzing impact of climate vari-
ability on COVID-19 outbreak, it can also be extended eas-
ily for semantics-driven theory-guided analyses in various 
other domains, including bio-medical science, material sci-
ence, quantum chemistry etc., by incorporating appropriate 
domain knowledge.
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