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Abstract

Motivation: In pharmacogenomic studies, the biological context of cell lines influences the predictive ability of drug-
response models and the discovery of biomarkers. Thus, similar cell lines are often studied together based on prior
knowledge of biological annotations. However, this selection approach is not scalable with the number of annota-
tions, and the relationship between gene–drug association patterns and biological context may not be obvious.

Results: We present a procedure to compare cell lines based on their gene–drug association patterns. Starting with a
grouping of cell lines from biological annotation, we model gene–drug association patterns for each group as a bipartite
graph between genes and drugs. This is accomplished by applying sparse canonical correlation analysis (SCCA) to ex-
tract the gene–drug associations, and using the canonical vectors to construct the edge weights. Then, we introduce a
nuclear norm-based dissimilarity measure to compare the bipartite graphs. Accompanying our procedure is a permuta-
tion test to evaluate the significance of similarity of cell line groups in terms of gene–drug associations. In the pharma-
cogenomic datasets CTRP2, GDSC2 and CCLE, hierarchical clustering of carcinoma groups based on this dissimilarity
measure uniquely reveals clustering patterns driven by carcinoma subtype rather than primary site. Next, we show that
the top associated drugs or genes from SCCA can be used to characterize the clustering patterns of haematopoietic and
lymphoid malignancies. Finally, we confirm by simulation that when drug responses are linearly dependent on expres-
sion, our approach is the only one that can effectively infer the true hierarchy compared to existing approaches.

Availability and implementation: Bipartite graph-based hierarchical clustering is implemented in R and can be
obtained from CRAN: https://CRAN.R-project.org/package¼hierBipartite. The source code is available at https://
github.com/CalvinTChi/hierBipartite. The datasets were derived from sources in the public domain, which are the
Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle), the Cancer Therapeutics Response Portal
(https://portals.broadinstitute.org/ctrp.v2.1/?page=#ctd2BodyHome), and the Genomics of Drug Sensitivity in Cancer
(https://www.cancerrxgene.org/). These datasets can be downloaded using the PharmacoGx R package (https://bio-
conductor.org/packages/release/bioc/html/PharmacoGx.html).

Contact: calvin.chi@berkeley.edu or hyh0110@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Building predictive models of drug response from genomic profiles
has been one of the long-standing goals in precision medicine (Adam
et al., 2020). High throughput technologies has enabled researchers

to perform genomic profiling and measure candidate drug sensitiv-
ities in vitro, resulting in pharmacogenomic datasets such as
the NCI-60 drug sensitivity database (Shoemaker, 2006),

the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019)
dataset, the Cancer Therapeutics Response Portal (CTRP2) dataset

(Seashore-Ludlow et al., 2015) and the Genomics of Drug Sensitivity
in Cancer (GDSC2) dataset (Iorio et al., 2016). A standard pharma-
cogenomic dataset contains drug sensitivity measurements accompa-
nied by genomic data modalities such as gene expression, copy
number variation and DNA methylation, all measured in human
tumor cell lines. These cell lines usually represent a diversity of
malignancies, and are annotated with their biological contexts such
as primary site (site of origin), histology, histology subtype.

A major challenge to predicting drug response from genomic
data is conditioning on the right biological context, such as the
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choice of histology subtypes. Gene expression patterns and their
associations with drug response are highly context-dependent
(Barretina et al., 2012; Ghandi et al., 2019; Ross et al., 2000), and
tissue and histology contexts have been shown to be predictive of
drug sensitivity (Mannheimer et al., 2019; Yao et al., 2018).
Barretina et al. demonstrated that drug response models built with
only melanoma cell lines outperformed that built with all cell lines
(Barretina et al., 2012). Biological context also influences gene–
drug associations, from which discoveries of biomarkers and drug
mechanisms of action are made (Rees et al., 2016). However,
restricting models to a specific context may be overly conservative
because closely related cell lines could potentially be pooled to-
gether, such as those from breast and ovarian cancers (Network
et al., 2011). On the other hand, grouping diseases based on prior
knowledge alone is not scalable with the number of annotations,
and the relationship between gene–drug association patterns and
biological context may not always obvious. Thus, a new dissimilar-
ity measure based on gene–drug association patterns can allow in-
vestigation of the relationship between cell line groups based on
biological context.

A few works have developed cell line context-aware models that
pool information from similar cell lines to predict drug response.
Zhang et al. (2015) modeled response for a drug, cell line pair as the
sum of responses from other cell lines to the drug and the sum of
responses to other drugs from the cell line. Contributions to the re-
sponse are weighted by similarity to the cell line of interest and simi-
larity to the drug of interest. Since the focus of this approach is on
modeling drug response, it does not explicitly provide insight on
similarity between cell lines in terms of gene–drug association pat-
terns. Chen et al. developed a contextual heterogeneity enabled re-
gression (CHER) method that learns a set of weights from all cell
lines and a set of weights from context-specific cell lines (Chen
et al., 2015). However, this approach still requires some degree of
prior knowledge on which biological contexts are similar enough to
include in the CHER.

On the other hand, a few methods have been developed for clus-
tering cell lines based on multiple data modalities (e.g. expression
and drug sensitivity) from pharmacogenomic datasets. Among these
methods are cluster of cluster assignments (COCA), integrative clus-
tering (iCluster) and two-way latent structure model (TWL)
(Hoadley et al., 2014; Mo et al., 2013; Shen et al., 2009; Swanson
et al., 2019). COCA clusters cell lines in two stages—first clustering
each data modality separately, then clustering the combined cluster
assignments. Both iCluster and TWL are Bayesian latent variable
models. In iCluster, a joint latent variable is learned from all data
modalities, assuming a common clustering across data sources.
Unlike iCluster, TWL finds a clustering for each data modality while
allowing cluster information to be shared. However, none of these
approaches explicitly model gene–drug associations as a basis for
clustering cell lines.

In this article, we present a dissimilarity measure to provide in-
sight on which biological contexts are similar in terms of gene–drug
association patterns. In the rest of the article, we assume diseases are
the biological context of interest, as is typically the case. Using this
dissimilarity measure, unsupervised learning can be applied for pur-
poses such as visualization of disease similarities or deciding which
diseases to include in a drug response model. For cell lines of a given
disease, we start by modeling the gene–drug association patterns as
a weighted undirected bipartite graph. In this bipartite graph, one
disjoint set of vertices represents genes and the other represents
drugs, with weighted edges in-between describing their association
patterns. Edge weights are derived from sparse canonical correlation
analysis (SCCA), which solves for a linear combination of genes and
drugs such that the Pearson correlation between the combination of
genes and drugs is maximized (Lee et al., 2011). Finally, we intro-
duce a nuclear norm-based dissimilarity measure to compare edge
weights (or equivalently bipartite graphs) from different cell line
groups. Given a set of diseases, the outcome is a dissimilarity matrix.
In addition, we provide a subsampling procedure to improve robust-
ness in modeling the gene–drug associations, and a permutation test

for determining the statistical significance of similarity in gene–drug
associations from different groups of cell lines.

We evaluate this dissimilarity measure on the CTRP2, GDSC2
and CCLE pharmacogenomic datasets, choosing to study the associ-
ation patterns between expression and drug sensitivity, because ex-

pression is strongly predictive of drug sensitivity (Aben et al., 2016;
Parca et al., 2019). With hierarchical clustering as our unsupervised

learning algorithm of choice, we show that our dissimilarity measure
leads to clusters revealing biological insight distinct from those
based on existing clustering approaches that also integrate expres-

sion and drug sensitivity data. Next, we show how SCCA coeffi-
cients can be used to characterize clustering patterns in terms of

gene–drug association patterns. Finally, we demonstrate that when
drug sensitivity is linearly dependent on expression by simulation,
that clustering based on our dissimilarity measure is the only ap-

proach that effectively infers the true hierarchy, compared to exist-
ing approaches.

2 Overview of proposed approach

We describe the data structures involved and set up mathematical

notation for the rest of the article. Assume we are interested in iden-
tifying the associations between p genes and d drugs, based on gene

expression matrix X 2 R
n�p and drug sensitivity matrix Y 2 R

n�d of
n cell lines. The annotated biological context (e.g. histology subtype)
induces a partitioning of the cell lines into G groups. Let the expres-

sion and drug sensitivity submatrices of the ng cell lines in group g
be denoted by X½g� 2 R

ng�p and Y ½g� 2 R
ng�d respectively, and as-

sume each of these columns have been standardized with respect to
the ng cell lines. Thus, X ¼ fX½1�; . . . ;X½G�g and Y ¼ fY ½1�; . . . ;Y ½G�g
is another way to denote the entire dataset based on G groups of cell

lines.
For any pair of submatrices ðX½g�;Y ½g�Þ from group g, SCCA sol-

ves for canonical vectors a 2 R
p and b 2 R

d to specify sparse linear
combinations of columns from X½g� and columns from Y ½g� to maxi-

mize Pearson correlation CorrðX½g�a;Y ½g�bÞ. The linear combinations
X½g�a;Y ½g�b are sometimes referred to as canonical variates. For the
bipartite graph describing the associations between columns of X½g�

and columns of Y ½g�, its edge weight matrix is constructed as the
cross product B ¼ a� b. Entry Bij 2 R describes both the direction
and magnitude of association between gene i and drug j. This model-

ing of association patterns between two sets of features as a bipartite
graph is illustrated in Figure 1A.

We then introduce a nuclear norm-based dissimilarity measure
Dð�; �Þ to compare a given pair of edge weight matrices (or equiva-

lently the bipartite graphs they represent). From this we can con-
struct a dissimilarity matrix for the G groups of cell lines, and apply
an unsupervised learning algorithm such as hierarchical clustering.

This is depicted in Figure 1B.

3 Materials and methods

3.1 Review of sparse canonical correlation analysis
Building upon the example from Rees et al. of using Pearson correl-
ation to identify drug response-associated biomarkers (Rees et al.,
2016), we use SCCA to identify associated genomic features and
drug responses. SCCA is a penalized extension of canonical correl-
ation analysis (CCA) developed by Hotelling (Harold, 1936). Since

CCA is not scale invariant, assume each feature in X, Y is centered
and scaled to variance one. In high throughput genomics data, p and

sometimes d are typically much larger than n and the subset of rele-
vant biomarkers is often small. Hence, we impose sparsity on a, b by
adopting the following diagonal penalized CCA criterion developed

by Witten et al. (2009), which treats sample covariance matrices
SXX 2 R

p�p and SYY 2 R
d�d as diagonal and relaxes equality con-

straints for convexity
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maxa2Rp ;b2Rd a>X>Yb

jjajj2 � 1; jjbjj2 � 1

p1ðaÞ � c1; p2ðbÞ � c2;

(1)

where p1 and p2 are convex penalty functions, and c1 and c2 are
hyperparameters that control the degree of regularization. In our ap-
plication, the ‘1 penalty is chosen as p1ð�Þ ¼ p2ð�Þ ¼ jj � jj1 to induce
sparse regularization (Tibshirani, 1996), and c1 and c2 are selected as
values maximizing the objective function in Equation 1 based on k-
fold cross validation. In our empirical applications, both c1 and c2 are
searched over values in f1, 2, 3g respectively, and k¼5 for cross val-
idation. Zero entries in a, b suggest that the corresponding genes and
drugs are not associated with each other. Conversely, when the magni-
tudes of entries ai, bj for gene i and drug j respectively are large, then
gene i and drug j are interpreted as strongly associated with each
other. We adopt the modified NIPALS algorithm originally proposed
by Lee et al. (2011) and re-implemented by Wang et al. (2015) to solve
the above optimization, which is reported to have superior empirical
performance than the algorithm proposed by Witten et al. (2009).

3.2 Dissimilarity measure
We introduce a nuclear norm-based dissimilarity measure to com-
pare bipartite edge weights between a given pair of cell line groups.
From canonical vectors a 2 R

p; b 2 R
d solved by SCCA for a group,

we form its bipartite edge weight matrix B 2 R
p�d as the outer prod-

uct B ¼ a� b. Entry Bij ¼ aibj reflects the direction and magnitude
of association between gene i and drug j, with negative values (e.g.
ai > 0 and bj < 0) indicating negative association, and positive asso-
ciation otherwise. The dissimilarity measure between a given pair of
bipartite edge weight matrices B½u� and B½v� from groups u and v re-
spectively is based on the nuclear norm, and is defined aS

DðB½u�;B½v�Þ ¼
P

i riðB½u� � B½v�Þ
P

i riðB½u�Þ þ
P

i riðB½v�Þ
: (2)

The denominator term normalizes the dissimilarity measure to
range in ½0;1�, and riðAÞ denotes the ith singular value of matrix A.
This dissimilarity measure is based on the nuclear norm because it
comprised singular value summation terms jjAjj� ¼

Pr
i¼1 riðAÞ,

which is defined as the nuclear norm of matrix A with rank r.
Mathematically, the nuclear norm is the convex envelope of the
rank function Rank(A), meaning jjAjj� satisfies RankðAÞ 	 1

M jjAjj�
for all A 2 fA j jjAjj � Mg (Fazel et al., 2001).

To justify Equation 2, if B½u� and B½v� are similar, then any mean-
ingful matrix structure in B½u� and B½v� becomes deficient in
B½u� � B½v�, and the matrix difference resembles a noise matrix. If we
assume noise matrices tend to have small norm (e.g. Frobenius
norm), then jjB½u� � B½v�jj� will tend to be small as well because
jjAjj� �

ffiffi
r
p jjAjjF holds for any matrix A 2 R

m�n of rank r (see
Supplementary Methods for proof).

3.3 Hierarchical clustering
With the dissimilarity measure in Equation 2, one can construct a
dissimilarity matrix D 2 R

G�G for G cell line groups, from which
unsupervised analysis can be directly applied with an unsupervised
algorithm of choice. In this article, we choose hierarchical clustering
with Ward’s minimum variance criterion as the link function to de-
termine the hierarchical structure among the groups. The permuta-
tion test can be used to evaluate whether two clusters at a non-leaf
node of the dendrogram should be pooled together due to having
similar gene–drug association patterns (details in Section 3.4).

The process starts with computing bipartite edge weight matrices
B½1�; . . . ;B½G� for each group using SCCA. To improve robustness,
we provide an optional subsampling procedure to produce a bipart-
ite edge weight matrix that is instead the element-wise average of
edge weight matrices, each computed using a random subsample of
cell lines. This procedure produces more robust matrices
B½1�; . . . ;B½G�, although at greater computational cost. The subsam-
pling procedure is summarized by Algorithm 1.

After matrices B½1�; . . . ;B½G� have been computed, the dissimilar-
ity measure in Equation 2 is applied to all HðG2Þ pairs of matrices
to generate dissimilarity matrix D 2 R

G�G, upon which hierarchical
clustering can be applied. This entire process is summarized by
Algorithm 2.

Fig. 1. Overview of proposed approach illustrated with toy example of cell line

groups H1;H2;H3;H4, each with genes G1;G2;G3 and drugs D1, D2. (A) For ex-

ample cell line group H3, its gene–drug association patterns are modeled as a bipart-

ite graph of gene vertices and drug vertices, with edges weighted by association

strength. The edge weight between gene i and drug j is defined as aibj, where ai, bj

are elements of SCCA canonical vectors a 2 R
3 and b 2 R

2. The bipartite graph can

equivalently be represented by its edge weight matrix. This modeling of gene–drug

association patterns is repeated for H1;H2;H4. (B) Using the nuclear norm-based

dissimilarity measure between bipartite graphs, a matrix of dissimilarities is com-

puted for all the cell line groups, and hierarchical clustering can be applied as an ex-

ample unsupervised analysis

Algorithm 1 Robust bipartite edge weight matrix

1. procedure ROBUST_MATRIX(ðX½g�;Y ½g�Þ, m, f)

2. Initialize B ¼ 0 2 R
p�d

3. for i ¼ 1 to m do

4. Subsample f fraction of cell lines to produce X̂
½g�
; Ŷ
½g�

5. a; b ¼ SCCAðX̂ ½g�; Ŷ ½g�Þ
6. B :¼ Bþ ða� bÞ
7. Output 1

m B

Algorithm 2 Unsupervised analysis

1. procedure

HIERARCHICAL_CLUSTERING(ðX½1�;Y ½1�Þ; . . . ; ðX½G�;Y ½G�Þ)
2. for i ¼ 1 to G do

3. Compute B½i� from ðX½i�;Y ½i�Þ using SCCAð�; �Þ
4. Construct dissimilarity matrix D 2 R

G�G

5. Output hierarchical clustering result
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3.4 Permutation test
At a given non-leaf node of the dendrogram, should cell lines
from the two branches be pooled together for a drug response
model? While prior biological knowledge can be informative, we
provide a permutation test to help guide this decision. Between any
two groups of cell lines u and v, the null and alternate hypotheses
are

H0 : No shared gene� drug relationship between u and v: (3)

H1 : There are shared gene� drug relationships between u and v: (4)

To generate a null distribution of dissimilarities, we permute the
ordering of cell lines (rows) in X½u� while keeping the cell line order
in Y ½u� fixed, thus breaking the gene–drug association patterns in
group u. The same procedure is applied to group v. Since all bio-
logical gene–drug association patterns in both groups are broken,
the association patterns common to groups u and v are broken as
well. Repetition of the described procedure generates a null distribu-
tion of dissimilarities. This whole process is summarized in
Algorithm 3.

The P-value is defined as the proportion of null dissimilarities
less than or equal to the observed dissimilarity

P-value ¼

Pm

i¼1

1ðdi � dobsÞ

m
; (5)

where dobs is the observed dissimilarity and di is the null dissimilar-
ity from permutation i, out of m permutations. We should expect a
low P-value when there are shared gene–drug association patterns
between groups u and v because most null dissimilarities should
be greater than the observed dissimilarity. In our implementation,
we perform this test at each successive node in the dendrogram in
a bottom-up fashion, until a P-value greater than a pre-defined
threshold (e.g. P-value > 0.10) is encountered. We perform early
stopping of P-value generation because once we have a pooling of
cell lines from groups sharing little gene–drug associations, any fur-
ther merging with other groups will no longer be meaningful as
well. Note the permutation tests are performed after the dendro-
gram is generated.

3.5 Pharmacogenomic datasets
We test our approach in expression and drug sensitivity data from
the CCLE, GDSC2 and CTRP2 pharmacogenomic datasets (Ghandi
et al., 2019; Iorio et al., 2016; Seashore-Ludlow et al., 2015). CCLE
and GDSC2 provide expression data for 55 000 transcripts and
24 000 genes respectively. We use CTRP2 only for its drug sensi-
tivity dataset, whose cell lines are matched with those from
CCLE. The datasets GDSC2 and CTRP2 are responsible for the
majority of drug sensitivity data in this study. Drug sensitivity is

expressed as the area over dose–response curve and expression is
measured in log 2TPM, where TPM stands for transcripts per million,
a normalized unit of transcript expression. Drugs with severe missing-
ness were removed, followed by cell lines with severe missingness
(details in Supplementary Methods). After processing the drug sensi-
tivity datasets, each dataset has less than 1% values missing, and no
drugs have more than 10% missing values across cell lines. The
remaining missing values were median-imputed per drug.

For computational efficiency, we follow the example by
Barretina et al. of pre-selecting transcripts whose expression is corre-
lated with drug response (Barretina et al., 2012). Specifically, our
processing steps for expression features are

1. Retain genomic features whose expression variance is within the

5th to 95th percentiles. This removes features that are either too

uninformative, or features that potentially reflect tissue differen-

ces due to high variance.

2. Select the top 5000 transcripts by maximum absolute Pearson

correlation with drug sensitivity. Specifically, if we let xi 2 R
n

denote the ith genomic feature and yj 2 R
n denote the jth drug

response vector, then we retain the top 5000 transcripts by

maxjjCorrðxi; yjÞj.

The final number of drugs and cell lines are listed in Table 1.

3.6 Simulation
We simulate data to study the clustering behavior under the statistic-
al model of a true linear relationship between gene expression and
drug sensitivity. We compare our clustering approach against exist-
ing approaches, as well as study how the clustering results change
with different simulation settings.

The overall setup is to simulate seven pairs of expression and
drug sensitivity datasets with an imposed hierarchical structure,
shown in Figure 2. The hierarchy is defined by the percentage of

Algorithm 3 Permutation test.

1. procedure P-VALUE(ðX½u�;Y ½u�Þ; ðX½v�; Y ½v�Þ, m)

2. Initialize empty array D½�� of length m

3. for i ¼ 1 to m do

4. Permute rows of X½u� to produce ~X
½u�

5. Permute rows of X½v� to produce ~X
½v�

6. a½u�; b½u� ¼ SCCAð~X ½u�;Y½u�Þ
7. a½v�; b½v� ¼ SCCAð~X½v�;Y½v�Þ
8. B½u� ¼ a½u� � b½u�

9. B½v� ¼ a½v� � b½v�

10. D½i� ¼ DðB½u�;B½v�Þ
11. Output D½��

Table 1. Pharmacogenomic dataset sizes, in terms of number of

candidate drugs and number of cell lines, after data processing

Dataset Number of drugs Number of cell lines

GDSC2 179 450

CTRP2 113 527

CCLE 20 493

Fig. 2. Simulated hierarchy with percentage at each non-leaf node indicating per-

centage biomarkers shared between any group from left subtree and any group from

right subtree (height not necessarily proportional to dissimilarity)
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‘biomarkers’ in common between the groups, where we define ‘bio-
markers’ as the subset of all genes whose values contribute to drug
sensitivity values. Similarly, only a subset of drugs are dependent on
expression values in this simulation. For the sake of simplicity, the
set of expression-dependent drugs is the same across all groups.
Thus, each group is distinguished by its set of biomarkers, with its
own expression covariance matrix. We simulate a given group
according to the following statistical model:

1. Generate genomic covariance matrix R 2 R
p�p for p genes, with

only high correlation between the biomarkers. See

Supplementary Methods for details on generating R.

2. Generate each cell line expression as XðiÞ 
 N ð1p;RÞ for

i ¼ 1; . . . ;n, where 1p 2 R
p is a vector of ones. We choose a

mean of one so that the expected sensitivity value of an expres-

sion-dependent drug is non-zero (see step 4).

3. Initialize each drug response as noise Yij 
 Nð0; sÞ for cell line i

and drug j, with a pre-specified standard deviation s.

4. For each expression-dependent drug j, generate response from

cell line i as Yij :¼ Yij þ ðXðiÞÞ>b where each bk 2 R is drawn in-

dependently and uniformly from the set f�3;�2; 2; 3g if the kth

transcript is a biomarker and bk ¼ 0 otherwise.

In Figure 2, each non-leaf node in the tree shows the exact per-
centage of biomarkers in common between groups in the left subtree
and groups in the right subtree. For example, according to Figure 2,
groups 3 and 5 share 30% of their biomarkers, and groups 1 and 7
share 5% of their biomarkers. The coefficients of these shared bio-
markers are the same, barring the slight perturbation described in
the next paragraph.

To increase the simulation scale, we simulate multiple subgroups
from each group’s Gaussian distribution and coefficient vector
b 2 R

p, injecting noise between the subgroups by resampling coeffi-
cients for a random 5% of the biomarkers. Specifically, for a given
group, we first generate and fix the Gaussian covariance matrix R

and coefficient vector b 2 R
p according to steps above. Then for

each subgroup, we generate X 2 R
n�p from Nð1p;RÞ and Y 2 R

n�d

based on b, where b is slightly altered with a random 5% of the bio-
marker coefficients resampled from the set f�3;�2; 2; 3g. Thus,
while every subgroup has the same ‘genes’ as biomarkers, their coef-
ficients relating expression to drug sensitivity are slightly different.
In this simulation, every group comprised five subgroups, each with
n cell lines, p transcripts and d drugs.

We simulate all the groups according to the hierarchical struc-
ture in Figure 2 under multiple simulation settings. The first setting
is a reference setting where the number of genes, drugs and cell lines
in each subgroup are comparable to those in the pharmacogenomic
datasets CTRP2 and GDSC2. In the second setting, we study the ef-
fect of decreasing the number of drugs, but keeping the percentage
of expression-dependent drugs the same. This resembles the differ-
ence in availability of drugs between datasets CTRP2 and GDSC2
versus CCLE, which has the least number of drugs. The third setting
studies the effect of increasing the sample size per subgroup. Finally,

the fourth setting studies the effect of increasing drug sensitivity
noise. These settings are summarized in Table 2.

4 Results

We begin with a motivating application to the pharmacogenomic
datasets CTRP2, GDSC2 and CCLE. Specifically, we test whether
positive control groups created by randomly splitting primary site
groups into two tend to merge together using the nuclear-norm
based dissimilarity measure. The splitting was repeated 100 times to
assess the proportion of times the positive controls merge. Moderate
proportions may suggest primary site alone does not completely ex-
plain variation in gene–drug association patterns. All primary site
groups in this experiment have sample sizes greater than 15 and
Supplementary Table S1 lists the sample sizes per primary site for
each dataset. The largest groups are used to generate the positive
control groups, and they are skin and lung for CTRP2, and lung and
haematopoietic and lymphoid tissue for both GDSC2 and CCLE.

Supplementary Figures S1–S3 show that the positive control
groups merge with varying degrees of stability due to random split-
ting. While some positive controls merge close to 100% of the time,
the CCLE lung groups merge only 60% of the time (Supplementary
Fig. S3). While small sample sizes could be a contributing factor to
instability, other contributing factors include heterogeneity due to
the presence of multiple histology subtypes at a primary site. For ex-
ample, the CCLE lung group comprises nine carcinoma subtypes,
such as adenocarcinoma and squamous cell carcinoma. In Section
4.1, we investigate this further by testing if gene–drug association
patterns appear to be driven more by histology subtype than site of
origin in the context of carcinoma, one of the largest histology
groups. In Section 4.2, we show how SCCA coefficients can be used
to characterize the clustering patterns of haematopoietic and lymph-
oid malignancies using our dissimilarity measure. Finally, in Section
4.3 we study how factors such as sample size and drug sensitivity
noise affect the performance of our method through simulation.

4.1 Bipartite graph-based clustering reveals unique

biological insight
We test whether gene–drug association patterns are driven more by
histology subtype than primary site in the context of carcinoma. In
the former case, this means adenocarcinoma cell lines share similar
gene–drug association patterns despite coming from different pri-
mary sites. We study the most prominent subtypes of squamous cell
carcinoma, adenocarcinoma and ductal carcinoma in CTRP2,
GDSC2 and CCLE. In the experimental setup, we group cell lines by
both carcinoma subtype and primary site (e.g. adenocarcinoma,
lung). Groups with less than five cell lines were removed, and the
final sample size per group in each dataset is listed in Supplementary
Table S2. We applied hierarchical clustering with the Ward link
function based on our dissimilarity measure in Equation 2, including
the subsampling procedure in Algorithm 1 (m ¼ 100; f ¼ 0:90).
Then, permutation testing with 1000 permutations was applied,
with a P¼0.10 early-stopping threshold.

Overall, the clustering results in Figure 3 suggest adenocarcin-
oma groups tend to have similar gene–drug association patterns.
In all datasets, we observe two main clusters—one that is adenocar-
cinoma-dominant and one comprising the remaining groups. In
the adenocarcinoma-dominant clusters from different datasets,
many groups share significantly similar gene–drug association pat-
terns (P-value � 0.05). P-values less than or equal to the early-stop-
ping threshold of P¼0.10 are listed in Supplementary Tables S3–S5.
The placement of ductal carcinoma in the adenocarcinoma-domin-
ant cluster occurs in both CTRP2 and GDSC2. None of the groups
in the non-adenocarcinoma cluster appear to share very similar
gene–drug association patterns (P-value > 0.10). These results show
that histology subtype could determine a cell line’s gene–drug associ-
ation patterns more so than primary site, and could explain why
some control primary site groups do not always merge directly.

To assess the stability of this clustering result due to bootstrap
resampling, we adapted an analysis similar to pvclust (Suzuki and

Table 2. Simulation settings

Setting n p Biomarkers d expr-dependent drugs s

1 20 2000 200 200 60 0.1

2 20 2000 200 20 6 0.1

3 100 2000 200 200 60 0.1

4 20 2000 200 200 60 1

Note: n, number of cell lines per subgroup; p, number of genes; d, number

of drugs; expr-dependent, expression-dependent; s, baseline drug sensitivity

standard deviation. The columns titled ‘biomarkers’ and ‘expr-dependent

drugs’ contain number of biomarkers and number of expression-dependent

drugs, respectively.
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Shimodaira, 2006). Clustering stability is measured with the propor-
tion of times a cluster at each non-leaf node appears across b boot-
strapped dendrograms, where b¼1, 000 in our experiment. A
bootstrapped dendrogram is constructed by applying hierarchical
clustering to the bootstrapped groups, which are generated by boot-
strap resampling cell lines within each group. In contrast to the clus-
tering in Figure 3, no subsampling was applied to generate the
bipartite edge weight matrices for computational efficiency.
Supplementary Figures S4–S6 show that the adenocaricnoma and
non-adenocarcinoma clusters are only moderately stable, with boot-
strap percentages ranging from 40% to 60% for CTRP2 and
GDSC2. The CCLE clusters are not stable, with bootstrap percen-
tages less than or equal to 23%. There are a few potential sources of
instability. Given the small group sizes, the perturbation effect due
to bootstrap resampling is likely enhanced since the probability of
exclusion of a cell line from a bootstrap sample is approximately
ð1� 1=nÞn � 1=e � 0:368. Small sample sizes are likely also a
source of instability for our positive control application. Since
CCLE has substantially less drugs compared to other datasets
(Table 1), this could be a contributing factor to decreased instability
compared to that of GDSC2 or CTRP2. Finally, noise in drug sensi-
tivity measurements is likely another source of instability for all
datasets (Haibe-Kains et al., 2013). In real data applications, apply-
ing the subsampling procedure in Algorithm 1 could help mitigate
sources of instability.

In contrast to the bipartite graph-based clustering result, other
methods that also integrate expression and drug sensitivity to cluster
cell lines tend to yield results driven by primary site. These other
methods include a baseline approach which we will describe shortly,
iCluster and TWL (Hoadley et al., 2014; Mo et al., 2013; Shen
et al., 2009). For fair comparison, hierarchical clustering with the
Ward link function was again chosen as the unsupervised learning
algorithm of choice for all approaches. In the baseline integrative
approach, we simply applied clustering based on Euclidean distance
in the combined expression and drug sensitivity feature space.
Specifically, we concatenated the expression and drug sensitivity
profiles ½X;Y� 2 R

n�ðpþdÞ, computed the centroid for each group,
then standardized each feature before clustering. These centroids
serve as starting singletons for hierarchical clustering. Results sug-
gest the clustering process is driven by site of origin (Supplementary
Figs S7C, S8C, S9C). Many groups from similar sites of origin dir-
ectly merge. For instance, the lung groups of squamous cell carcin-
oma and adenocarcinoma directly merge in CTRP2 and CCLE.
Other suspected similar primary sites that directly merge include
ovary and endometrium, stomach and colorectal and upper aerodi-
gestive and esophagus. To determine the relative contribution of ex-
pression and drug sensitivity to this baseline clustering result, we
clustered the cell line groups using each data modality separately
(Supplementary Figs S7A, B, S8A, B, S9A, B). As expected, since ex-
pression accounts for most of the features, the expression dendro-
grams correspond to baseline dendrograms exactly. From this
analysis, we confirm that expression patterns are strongly deter-
mined by primary site.

In the second approach, we cluster latent variables that are learn-
ed from expression and drug sensitivity profiles using iCluster.
Specifically, iCluster learns a latent variable matrix Z 2 R

n�k, with
a latent variable vector of length k for each of the n cell lines. We
follow the rule of thumb from iCluster and set k as one less than the
number of starting groups. Then, hierarchical clustering was applied
to Euclidean distances between the latent variable group centroids.
For the CTRP2 and CCLE clusters, we still observe the influence of
site of origin (e.g. upper aerodigestive and esophagus; lung groups;
endometrium and ovary) (Supplementary Figs S7D and S9D).
Except for the merge between ovary and endometrium for CCLE
observed in our approach (Fig. 3), these direct merges between simi-
lar primary sites are absent using the nuclear norm-based dissimilar-
ity measure. The clustering results using iCluster latent variables are
shown in Supplementary Figures S7D, S8D, S9D.

In the third approach, we apply TWL to learn a clustering as-
signment for expression and drug sensitivity respectively (Swanson
et al., 2019). Specifically, TWL learns a dissimilarity matrix for each
data modality, from which we apply hierarchical clustering. In our
application, we provide as input the standardized group centroids
for transcript expression and drug sensitivity to the model. Overall,
the clusters appear to neither be driven by histology subtype nor by
site of origin, lacking a clear biological interpretation
(Supplementary Figs S7E, F, S8E, F, S9E, F), except for a few cases.
The first exception is the direct merge between the lung groups for
drug sensitivity in CTRP2 and CCLE (Supplementary Figs S7F and
S9F). The second exception is the direct merge between breast and
ovary for drug sensitivity in CTRP2 and for expression in CCLE
(Supplementary Figs S7F and S9E). Genomic similarities have been
observed between basal-like breast cancers and high-grade serious
ovarian cancers (Network et al., 2011). Again, these direct merges
are absent in the bipartite graph-based clustering results in Figure 3.
We observe little correspondence between the clusters for expression
and the clusters for drug sensitivity under the TWL. Lastly, dendro-
grams based on TWL tend to be characterized by flat heights across
multiple groups, suggesting an inability to resolve finer differences
these groups.

From these experiments, our dissimilarity measure in Equation 2
provides biological insight that is unique compared to the other
three approaches. Empirical results suggest existing approaches tend
to be influenced by tissue-specific expression patterns, given that
many direct merges occur between similar sites of origin. However,
by clustering based on gene–drug association patterns explicitly, our

Fig. 3. Bipartite graph-based clustering of cell line groups annotated with carcinoma

subtype and primary site, for (A) CTRP2, (B) GDSC2 and (C) CCLE. Red branches

highlight clusters with similar gene–drug associations according to the permutation

test with P-value � 0.10. (NSC, non-small cell)
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approach suggests that gene–drug association patterns could be
determined more by histology subtype than by primary site.

4.2 Cluster characterization with SCCA canonical

vectors
In this section, we show how SCCA canonical vectors can character-
ize clustering results in terms of the top associated genes or drugs.
For the canonical vectors a 2 R

p; b 2 R
d solved by SCCA for p genes

and d drugs, the magnitude of each entry is used to rank genes or
drugs. Each entry in a or b is a gene or drug coefficient respectively,
and the magnitude is interpreted as the strength of participation in
the gene–drug associations. The strength of association between
gene i and drug j is measured with jaibjj, the magnitude of a bipartite
graph edge weight. A network visualization of the bipartite graph
for randomly selected genes and drugs for the acute myeloid leuke-
mia (AML) group from CCLE is shown in Supplementary Figure
S10. From this figure, we can see the sparsity of edge weights
induced by the ‘1 penalty from SCCA. We begin our experiment by
clustering the haematopoietic and lymphoid tissue malignancies
from CCLE. Groups with less than 5 cell lines were removed, and
the number of cell lines per group in each dataset is listed in
Supplementary Table S6. We again apply subsampling with m ¼
100; f ¼ 0:90 for robustness, and perform permutation tests with
1000 permutations and P¼0.10 as the early-stopping threshold.

The resulting dendrogram is shown in Figure 4. Since chronic
myeloid leukemia (CML) and AML are both myeloid leukemias,
originating from myeloid cells instead of lymphocytes (De
Kouchkovsky and Abdul-Hay, 2016), the direct merge between
CML and AML aligns with intuition. However, the clusters are not
always driven by disease type. Lymphoma Burkitt is separated from
the other lymphomas and instead forms a cluster with multiple mye-
loma. This separation could be explained by clinical observations
that diffuse large B-cell lymphoma (DLBCL) and lymphoma Burkitt
require different treatment and management (Bellan et al., 2010;
McGowan et al., 2012). The group ‘lymphoma other’ consists of a
collection of other lymphomas (Fig. 4 and Supplementary Table S6),
so is less interpretable. From permutation testing, cell lines from
‘lymphoma other’, T-cell acute lymphoblastic leukemia (ALL) and
lymphoma DLBCL share significantly similar gene–drug associa-
tions with P-value � 0.05 (P-values less than or equal to 0.10
Supplementary Table S7). The lymphomas in ‘lymphoma other’,
ALL and lymphoma DLBCL all involve lymphocytes, with differen-
ces in the type of lymphocyte and the tissue or organ affected
(Abeloff et al., 2008; DeVita Junior et al., 2001; Hoffman et al.,

2013). The AML and CML groups have a similarity P-value of 0.33,
which suggests a weaker sharing of gene–drug association patterns.
However, more cell lines are likely needed to confidently determine
how similar AML and CML are (Supplementary Table S6).

From SCCA drug coefficients, we can identify differences in drug
ranking that characterize the clustering patterns in Figure 4. For
each malignancy, we applied SCCA and ranked drugs by their coef-
ficient magnitudes. The resulting rankings are listed in
Supplementary Table S8 and plotted as a heat map in Figure 5. We
see a close correspondence between malignancy dendrogram based
on drug rankings (Fig. 5) and the malignancy dendrogram based on
the nuclear norm-based dissimilarity measure (Fig. 4), with the only
difference being the T-cell ALL branch. From the heatmap itself,
AML and CML appear to have similar drug rankings, with high
rankings for AZD0530, L-685458, TAE684, PF2341066, 17-AAG
and Sorafenib. Most of these compounds are kinase inhibitors
(Barretina et al., 2012). In contrast to the myeloid leukemias, the
groups ‘lymphoma other’ and lymphoma DLBCL tend to have
higher rankings for drugs listed in the middle of the heatmap. The
drug ranking pattern for lymphoma Burkitt differs from that of
‘lymphoma other’ or lymphoma DLBCL, and this characterizes the
separation of lymphoma Burkitt from other lymphomas in Figure 4.
For example, the compounds PD-0325901 and Paclitaxel are highly
ranked for lymphoma Burkitt but lowly ranked for the rest of the
lymphomas. PD-0325901 is a MEK1 and MEK2 kinase inhibitor,
and Paclitaxel is a cytotoxic microtubule-stabilizing agent (Barretina
et al., 2012). Lastly, the top two compounds for multiple myeloma,
TKI258 and 17-AAG, have both been studied in clinical trials as
candidate treatments for multiple myeloma (Kaufmann et al., 2011;
Scheid et al., 2015).

We next interpret the top associated transcripts with respect to
the biological context of the cell lines. Specifically, we investigated
whether more myeloid leukemia-related genes are found among the
top 10 out of 5000 transcripts when cell lines from AML and CML
are pooled together, compared to when all the cell lines from haem-
atopoietic and lymphoid tissue are pooled together. Out of the top
10 transcripts for the myeloid leukemia group, we found four genes
with some relationship with either AML or CML, according to lit-
erature. These genes, which are ZNF770, RNF11, C9orf47 and
PRDM2, are either associated between subtypes of AML or CML,
or differentially expressed in myeloid leukemia compared to healthy
conditions (Table 3) (Jiang et al., 2013; Lakshmikuttyamma et al.,
2009; Noort et al., 2020; Pastural et al., 2007; Sasaki et al., 2002;
Wiggers et al., 2019). In contrast, only one myeloid leukemia-related
gene (C20orf197) was found among the top 10 transcripts in the
general haematopoietic and lymphoid tissue group (Noort et al.,
2020). No literature sources could be found connecting the remain-
ing transcripts of the haematopoietic and lymphoid tissue group
with myeloid leukemia. Instead, we found three genes with more
general immune-related functions, based on descriptions provided
by the National Center for Biotechnology Information (NCBI).

Fig. 5. Heatmap of drug rankings for malignancies of the haematopoietic and

lymphoid tissue. For each malignancy, drug ranking is determined by SCCA coeffi-

cient magnitude. In this heatmap, lower values (red) indicate higher rankings, and

higher values (green) reflect lower rankings

Fig. 4. Bipartite graph-based clustering of haematopoietic and lymphoid tissue

malignancies from CCLE. Red branches highlight groups with similar gene–drug

associations according to the permutation test with P-value � 0.10. ALL, acute

lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; AML, acute mye-

loid leukemia; CML, chronic myeloid leukemia; ‘lymphoma other’ consists of two

cell lines of anaplastic large cell lymphoma, two cell lines of chronic lymphocytic

leukaemia/small lymphocytic lymphoma, two cell lines of mycosis fungoides-Sezary

syndrome, four cell lines of B cell lymphoma unspecified and two cell lines mantle

cell lymphoma
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These genes are CEBPD, SART3 and GPR35 (Table 3). SCCA tran-

script coefficients for both groups are listed in Supplementary Table
S9. Although the comparison between the myeloid leukemia group
and the haematopoietic and lymphoid tissue group is somewhat sub-

jective, this assessment at least shows the top transcripts can be
interpreted as being related to immune function.

4.3 Hierarchy inference in simulated data
From visual inspection of the dendrograms, bipartite graph-based
clustering clearly outperforms the baseline approach, iCluster and

TWL, for reference simulation setting 1 (Fig. 6 and Supplementary
Fig. S11). None of the existing approaches could cluster subgroups

within a group effectively (Supplementary Fig. S11), let alone gener-
ate a hierarchical structure resembling the true structure in Figure 2.
In contrast, our approach clusters subgroups within groups almost

perfectly, with the only exception of placing group 4B in the group 3
cluster (Fig. 6). Other than the placement of group 7, the hierarchic-

al structure resembles the ground truth. Group 7 is an outlier group
by design, only sharing 5% of biomarkers with other groups, so
should be the last one to merge according to the ground truth.

However, the merging of group 7 with groups 5 and 6 likely results
from the choice of the Ward link function, which tends to favor bal-

anced trees (Ward Jr, 1963).

We study clustering behavior under different simulation settings.
In simulation setting 2, we decrease the number of drugs from 200
to 20, while keeping the proportion of expression-dependent drugs
the same at 30%. This corresponds to the drop in number of drugs
in CCLE compared to either CTRP2 or GDSC2. This change
resulted in a poorer recovery of the ground truth compared to set-
ting 1 (Fig. 6 and Supplementary Fig. S12A). The clusters are more
heterogenous, and the hierarchical structure deviated more from the
ground truth. Specifically, groups 1–2 now merge with groups 5–6
before merging with groups 3–4, which have more biomarkers in
common with groups 1–2. This supports the intuition that more
drugs enables better resolution of gene–drug association differences.
In simulation setting 3, we see that increasing the number of cell
lines leads to perfect clustering of subgroups within each group
(Supplementary Fig. S12B). The hierarchical structure is similar to
that in setting 1, with the only minor difference being the merge of
group 4 with groups 1–2 first before merging with group 3. Finally,
in setting 4, we observe the effect of increasing the noise in drug sen-
sitivity values, corresponding to the real data scenario where drug
sensitivity values have been observed to be noisy or inconsistent
(Haibe-Kains et al., 2013) (Supplementary Fig. S12C). We observe a
similar detrimental effect on performance as in setting 2. The clus-
ters for some groups are heterogenous, and the dissimilarity measure
was unable to resolve differences between groups 5 and 6 since their
subgroups are fairly mixed. Together, these simulations support the
intuition that more drugs and cell lines allow better resolution of
gene–drug association differences.

5 Conclusion and discussion

Given the diversity of cell lines in pharmacogenomic datasets, the
choice of cell lines for a drug response model influences prediction
performance and biomarker discovery (Barretina et al., 2012; Ghandi
et al., 2019; Mannheimer et al., 2019; Ross et al., 2000; Yao et al.,
2018). Our main contribution in this article is a dissimilarity measure
that enables unsupervised analysis of cell lines based on gene–drug
associations. In the pharmacogenomic datasets CTRP2, GDSC2 and
CCLE, our approach shows that gene–drug association patterns could
be driven more by histology subtype than by primary site, which is
not observed under existing clustering approaches. Modeling gene–
drug associations with SCCA allows us to characterize clustering pat-
terns in terms of top associated genes and drugs. In this article, we
also present a permutation test to evaluate the significance of gene–

Table 3. Top genes with myeloid leukemia or other immune-related functions

Gene Type Description

ZNF770 Myeloid leukemia This transcription factor’s binding motif is enriched in gene regulatory elements which are associated with

AML relapse (Wiggers et al., 2019).

RNF11 Myeloid leukemia This gene is differentially expressed between chronic phase CML and blast crisis CML (Jiang et al., 2013).

C9orf47 Myeloid leukemia This gene is differentially expressed between NUP98-KDM5Aþ pediatric AML and NUP98-KDM5A- pedi-

atric AML (Noort et al., 2020).

PRDM2 Myeloid leukemia PRDM2 expression is reduced in AML compared to normal bone marrow and is downregulated during

CML progression (Lakshmikuttyamma et al., 2009; Sasaki et al., 2002). The repression of PRDM2 is

involved in insulin-like growth factor-1 signaling activation in CML blast crisis cell lines (Pastural et al.,

2007).

C20orf197 Other immune This gene is differentially expressed between NUP98-KDM5Aþ pediatric AML and NUP98-KDM5A- pedi-

atric AML (Noort et al., 2020).

CEBPD Other immune The encoded protein is important in the regulation of genes involved in immune and inflammatory

responses, and may be involved in the regulation of genes associated with activation and/or differentiation

of macrophages.

SART3 Other immune The protein encoded by this gene is an RNA-binding nuclear protein that is a tumor-rejection antigen. This

antigen possesses tumor epitopes capable of inducing HLA-A24-restricted and tumor-specific cytotoxic T

lymphocytes in cancer patients and may be useful for specific immunotherapy. This gene product is found

to be an important cellular factor for HIV-1 gene expression and viral replication.

GPR35 Other immune This gene is expressed by monocytes and mast cells (Amir et al., 2018).

Note: Genes are ranked by SCCA coefficient magnitude. Unless cited, descriptions are provided by NCBI.

Fig. 6. Bipartite graph-based clustering of simulated data under setting 1.

Hierarchical clustering with Ward link function was used as the clustering algo-

rithm, applied to nuclear norm-based dissimilarity measure for gene–drug associ-

ation patterns
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drug association similarity, which can be used to guide the decision
on pooling cell lines together for further study. Finally, our simulation
study shows that when drug sensitivity values have a true linear de-
pendence on expression values, our approach is the only effective one
at inferring the hierarchy in the data.

Limitations of working with pharmacogenomic datasets include
potential inconsistency in drug sensitivity measurements and small
sample sizes per group (Haibe-Kains et al., 2013). In our carcinoma
analysis, we observe an adenocarcinoma-dominant cluster in CTRP2,
GDSC2 and CCLE respectively, with permutation tests revealing sig-
nificant similarity between many groups in these clusters at P-value
� 0:05 (Fig. 3). However, since we have more adenocarcinoma
groups than either squamous cell carcinoma or ductal carcinoma
groups, we cannot confidently conclude whether the other carcinoma
subtypes cluster primarily by histology subtype or by site of origin.
Limitations in the data, along with missingness in drug sensitivity val-
ues, both contribute to small sample sizes. Although a SCCA imple-
mentation that can accept missing values can mitigate this (Van de
Velden and Takane, 2012), this still cannot address the systematic
missingness across drugs or cell lines we observe in pharmacogenomic
datasets. Small sample sizes likely contribute to increased clustering
instability due to sampling of cell lines. Our simulation study indi-
cates that larger sample sizes tend to improve clustering performance.

Although significant P-values can provide confidence in the simi-
larity of gene–drug associations, P-values that fail to reach cutoff do
not necessarily imply absence of shared gene–drug relationships. For
example, non-linear gene–drug relationships would not be captured
by the SCCA presented in Equation 1. In addition, due to the high
dimensional nature of pharmacogenomic data, the signal-to-noise
ratio could be low when only a few genes are truly related to drug
sensitivity. Finally, small sample sizes could inflate observed P-val-
ues even when the alternate hypothesis is true. For these reasons,
prior biological knowledge could still be important for the decision
on which cell lines to pool together for further study.

Although the development of the bipartite graph-based approach
for clustering cell lines is motivated by interest in gene–drug associa-
tions, our method can be applied to study the relationship between
any two sets of variables. For example, one may be interested in
relating expression with clinical phenotypes instead of drug sensitiv-
ity values. Another application can be found in genomics, such as
the study of the relationship between genotype and DNA methyla-
tion, where genetic variants are known to modulate DNA methyla-
tion levels (Banovich et al., 2014; Bell et al., 2011; Liu et al., 2014).
In some applications, it may be reasonable to impose connectivity
constraints to the bipartite graph, such as when modeling the rela-
tionship between cis-DNA methylation quantitative trait loci and
DNA methylation.

Empirically, SCCA is responsible for most of the runtime, which
is further increased by running the subsampling procedure in
Algorithm 1 and generating P-values according to Algorithm 3.
Since the subsampling and permutation steps are independent, our
implementation provides the option of parallelizing these steps using
the parallel R package for improved runtime. As a reference, CTRP2
carcinoma analysis took 4.13 h to complete on a MacBook Pro with
2.4 GHz Quad-Core Intel Core i5 processor with 8 GB of RAM.
The analysis involved 100 trials of subsampling and 1000 trials for
P-value generation.

Finally, there are multiple other approaches to the CCA problem
besides the one formulated in Equation 1. Solari et al. (2019) recent-
ly proposed a two-step algorithm which first infers sparsity before
solving for canonical vectors, an approach which reduces the search
space to offer greater computational efficiency. Other CCA
approaches serving various purposes include Bayesian CCA (Klami
et al., 2012), deep neural network-based CCA (Andrew et al., 2013)
and kernel CCA (Larson et al., 2014), which could substitute the
SCCAð�; �Þ procedure in Algorithm 1.
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