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Abstract

Summary: Cox-nnet is a neural-network-based prognosis prediction method, originally applied to genomics data.
Here, we propose the version 2 of Cox-nnet, with significant improvement on efficiency and interpretability, making
it suitable to predict prognosis based on large-scale population data, including those electronic medical records
(EMR) datasets. We also add permutation-based feature importance scores and the direction of feature coefficients.
When applied on a kidney transplantation dataset, Cox-nnet v2.0 reduces the training time of Cox-nnet up to 32-folds
(n =10 000) and achieves better prediction accuracy than Cox-PH (P<0.05). It also achieves similarly superior per-
formance on a publicly available SUPPORT data (n=8000). The high efficiency and accuracy make Cox-nnet v2.0 a
desirable method for survival prediction in large-scale EMR data.

Availability and implementation: Cox-nnet v2.0 is freely available to the public at https://github.com/lanagarmire/

Cox-nnet-v2.0.
Contact: Igarmire@med.umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale population data, including electronic medical records
(EMR) data are sources of informative data that can be used for
patient’s survival prediction. It is also found that machine-learning-
based models outperformed conventional models, such as Cox-
Proportional Hazard (Cox-PH) model (Cox, 1972), Random
Survival Forests model (Ishwaran et al., 2008) and elastic net regres-
sion (Fan et al., 2010) on the prediction of coronary artery disease
mortality using EMR data (Steele et al., 2018). Although it is chal-
lenging to develop prediction models driven by EMR data, the large
sample size and clinical features in these data provide valuable infor-
mation in survival prediction (Goldstein et al., 2017).

We previously proposed Cox-nnet (Ching et al., 2018), a deep-
learning-based neural-network prognosis prediction model, which
achieved comparable or better performance than Cox-PH on high-
throughput omics data. We recently applied Cox-nnet to histopath-
ology imaging data with pre-extracted features and demonstrated its
advantage in combining gene-expression data and image data for
survival prediction (Zhan et al., 2020). However, it remains to be
tested if Cox-nnet is suitable to predict survival in large-scale popu-
lation data, where the sample size is usually magnitudes larger than
genomics data. Toward this, we propose Cox-nnet v2.0, which sig-
nificantly improves computational speed, with enhanced

interpretability. Additionally, Cox-nnet v2.0 also achieves better
prediction accuracy than Cox-PH.

2 Materials and methods

2.1 Cox-nnet method improvement
The original Cox-nnet is a neural-network-based extension to Cox-
PH method, using the log partial likelihood as its loss function. In
Cox-nnet v2.0, we have made the following improvements:

(i) speed-up in calculating log partial likelihood loss function.
The log partial likelihood is calculated by:

PIB) =D, (6~ log)_, _ exp(h), (1)

where 0; is the linear predictor of patient i and C; is defined by
C; = I(patient i is not censored). To avoid nested summation in
Theano, the previous version of Cox-nnet calculates the log partial
likelihood by matrix multiplication:

pl() = {0~ log(R x exp(0))}"C. )

where C and 0 are vectors of C; and 6;, respectively. R is a n by n at
risk set indicator matrix, and each entry R;; is defined by:
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R =1(t; < 1)), (3)

where # is the sample size of the input data, and ¢; and ¢; are the event
time of patient 7 and j, respectively. This implementation is memory in-
tensive and time consuming when dealing with large sample sizes.

In the new version, instead of pairwise comparison, we sorted
the observations by event time. Then by definition of the at-risk set,
R is converted to an upper triangular matrix filled with 1.
Intuitively, R x exp(0) can be calculated using cumulative summa-
tion that no longer requires storing R matrix and nested summation
(double loops).

(ii) Adding permutation-based feature importance scores.
Previously the variable importance score of Cox-nnet is calculated
by pseudo drop-out, which replaced the variable with its mean. The
drawback is that it is hard to interpret categorical variables. Here,
we introduce a more general feature evaluation method using per-
mutation importance score (Breiman, 2001). The main idea is to
measure the model error increase after shuffling the feature’s values,
since the permutation breaks the relationship between the feature
and the outcome. We implement the algorithm proposed in (Fisher
etal., 2019).

(iii) Adding the directionality of the feature coefficient. Similar
to estimating the sign of f for Cox-PH, we develop a framework,
which approximates the direction of feature coefficients in Cox-
nnet. The linear predictor in Cox-nnet is:

0; = G(WX; + b)B, (4)

where G is the activation function, W is the coefficient weight ma-
trix between input and hidden layer and b is the bias term. Suppose
each column X, in X}, is defined by:

X}, = (X — 1) x I(X}, is continuous variable) + 0
x I(X}, is categorical variable) (5)

Similar to the interpretation of f# in Cox-PH, the direction of
each feature coefficient in Cox-nnet is approximated by the sign of

l n l n k%
;Zi:l Ay = ;Zizl (6 = 6%)

:%ZL{G(WK +b)p— G(WXi +b)B}  (6)
where X7 is defined by Xj; = (X}, Xi(—k))' Intuitively, the risk
increases if the sign of 1 3°7 | Afy, is positive.

(iv) Adding additional optimization algorithms and activation
functions for parameter tuning. We add Adam (Kingma and Ba,
2015) optimizer as an alternative optimization strategy, which fur-
ther accelerates the training process. We also use the Scaled
Exponential Linear Unit activation function (Klambauer et al.,
2017) in the Cox-nnet v2.0.

2.2 Evaluation metrics

As in Cox-nnet v1.0, we evaluate the prediction accuracy by C-
IPCW (Uno et al., 2011), which is the C-index weighted by inverse
censoring probability.

2.3 Dataset

The first large-scale population data used for the study is the nation-
al kidney transplant registry data obtained from the US Organ
Procurement and Transplantation Network (OPTN) (https://optn.
transplant.hrsa.gov/data/). A total of 80 019 patients, which
includes all patients with ages >18, who received transplant be-
tween January 2005 and January 2013 with deceased donor type
were used in the analysis. A total of 117 clinical variables describing
up-to transplant characteristics are used in the analysis.

The second large-scale population data used for the study is
Study to Understand Prognoses Preferences Outcomes and Risks of
Treatment (SUPPORT), which has the survival time of seriously ill
hospitalized adults. We obtained the preprocessed SUPPORT data
from URL: https://github.com/jaredleekatzman/DeepSurv/tree/mas
ter/experiments/data/support. The dataset contains 9105 patients

and 14 features including age, sex, race, number of comorbidities,
presence of diabetes, presence of dementia, presence of cancer, mean
arterial blood pressure, heart rate, respiration rate, temperature,
white blood cell count, serums’ sodium and serums’ creatinine. The
patients with any missing features are dropped from the dataset.

To test the effect of feature size on the model, a pan-cancer data-
set from 10 TCGA cancers types is used, as done before (Ching
et al., 2018). It includes the following cancer types: Bladder
Urothelial Carcinoma, Breast invasive carcinoma, Head and Neck
squamous cell carcinoma, Kidney renal clear cell carcinoma, Brain
Lower Grade Glioma, Liver hepatocellular carcinoma, Lung adeno-
carcinoma, Lung squamous cell carcinoma, Ovarian serous cystade-
nocarcinoma and Stomach adenocarcinoma. The RNA-Seq
expression and clinical data are downloaded from the Broad
Institute GDAC (Broad Institute TCGA Genome Data Analysis
Center, 2014). This pan-cancer dataset contains 5031 patients and
20 315 gene features in total. Raw count data are normalized using
the DESeq2 R package (Srivastava et al., 2014) and then log-
transformed.

3 Results

The structure of Cox-nnet v2.0 is shown in Figure 1A. The newly
updated functionalities are highlighted.

We randomly split the OPTN kidney transplant registry data
into training (80%) and testing (20%) sets, and used C-IPCW to
evaluate on the hold-out testing set. We repeated this process 10
times to access the overall prediction performance. Cox-nnet v2.0 is
not sensitive to the sample size and dramatically reduces the training
time, compared to Cox-nnet v1.0, where the computing time
increases polynomially with the sample size (Fig. 1B). Cox-nnet v2.0
also achieves significantly better C-IPCW than Cox-PH (Fig. 1C),
without any drop of C-IPCW compared to Cox-nnet v1.0. We per-
formed feature evaluation by calculating the feature importance
scores using the new permutation method, where the values are close
to those by the previous pseudo drop-out method. With the direc-
tionality (+/— signs) of the feature coefficients, our feature evalu-
ation results are more interpretable: a positive (+) sign indicates
increased risk of graft failure, whereas a negative (—) sign means
decreased risk of graft failure. As additional confirmation, the pat-
tern of important scores matches well with that of coefficients
obtained from Cox-PH (Fig. 1D).

In summary, Cox-nnet v2.0 significantly accelerates the training
process of Cox-nnet without loss in the prediction accuracy. In add-
ition, it also enables better interpretation for all features in the
model. Cox-nnet v2.0 is the new version suitable for prognosis pre-
diction in large-scale EMR dataset.

To confirm the gain of efficiency without loss of accuracy, we
tested Cox-nnet v2.0 on an additional SUPPORT data, similar to
the previous kidney transplant data. Cox-nnet v2.0 is not sensitive
to the sample size and dramatically reduces the training time, com-
pared to Cox-nnet v1.0 where the computing time increases polyno-
mially with the sample size (Supplementary Fig. S1A). It also
achieves significantly better C-IPCW than Cox-PH on the whole
dataset (Supplementary Fig. S1B). We also tested the effect of fea-
ture size on the three models. Since the two datasets above have very
modest feature sizes, we used the third TCGA pan-cancer dataset (a
combination of 10 cancer types), whose total feature size is large
(over 20 000). As shown in Supplementary Figure S2A, when the
feature size varies from 4000 to 20 000, Cox-nnet v2.0 is still more
efficient than Cox-nnet v1.0 in all feature sizes. Cox-nnet v2.0 is
both significantly faster at training the model (Supplementary Fig.
S2A) and more accurate in prediction (Supplementary Fig. S2B),
compared to Cox-PH.

In summary, Cox-nnet v2.0 is a much more efficient neural-
network model from Cox-nnet v1.0 without loss of the predictive
performance. Such characteristics make Cox-nnet v2.0 a desirable
method for survival prediction in large-scale population (e.g. EMR)
data.
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Fig. 1. Overview of Cox-nnet v2.0 and its performance improvement. (A) The modules in Cox-nnet. The names of new modules and functions are in bold with highlight back-
ground. The other modules are inherited from Cox-nnet v1.0. (B) Training time comparison among Cox-nnet v2.0 (red), Cox-nnet v1.0 (green) and Cox-PH (purple), varying
from sample size of 1000 to 10 000 in OPTN kidney transplant registry data. (C) Prediction accuracy measured by C-IPCW on the EMR dataset (#=80 019), over 10 repeti-
tions. *: P<0.05 (1-tail #test) (D). Heatmap to compare feature importance scores in different methods. From top to bottom row: pseudo drop-out (Cox-nnet v1.0), permuta-
tion importance score (Cox-nnet v2.0), permutation importance score times direction of feature coefficient (Cox-nnet v2.0) and scaled z-score (Cox-PH)
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