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Abstract

How does the human brain prioritize different visual representations in working memory (WM)? 

Here, we define the oscillatory mechanisms supporting selection of “where” and “when” features 

from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals 

with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG 

was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial 

orientation. A retro-cue presented mid-delay prompted which of the two shapes had been in either 

the top/bottom spatial position or first/second temporal position. We found that cross-frequency 

coupling between parieto-occipital alpha (α; 8–12 Hz) oscillations and topographically distributed 

gamma (γ; 30–50 Hz) activity tracked selection of the distinct cued feature in controls. This 
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signature of feature selection was disrupted in patients with pFC lesions, despite intact α–γ 
coupling independent of feature selection. These findings reveal a pFC-dependent parieto-occipital 

α–γ mechanism for the rapid selection of visual WM representations.

INTRODUCTION

We are constantly bombarded with incoming information, necessitating focus on 

information relevant to current goals. Working memory (WM) provides the neurocognitive 

infrastructure to maintain and select information relevant to current goals (Miller, Lundqvist, 

& Bastos, 2018; Nyberg & Eriksson, 2016; Eriksson, Vogel, Lansner, Bergström, & Nyberg, 

2015; Cowan, 2014). Selecting relevant information from WM stores is supported by 

attentional mechanisms that prioritize certain mnemonic representations while filtering out 

the rest (Poch, Capilla, Hinojosa, & Campo, 2017; Bledowski, Rahm, & Rowe, 2009; 

Oberauer & Bialkova, 2009; Awh, Vogel, & Oh, 2006; Courtney, 2004; Kastner & Pinsk, 

2004; Curtis & D’Esposito, 2003; Oberauer, 2002; Awh & Jonides, 2001). Although it is 

understood that attention is involved in WM, how the human brain rapidly selects which 

information is relevant to rapidly changing goals remains a focus of debate.

Dr. Donald T. Stuss was pivotal in establishing the critical role of the pFC in attention. 

Based on decades of observations that discrete lesions to pFC diminish attentional 

performance and corresponding neural responses, Stuss et al. solidified the role of pFC in 

attention (Stuss & Knight, 2013; Stuss, 2006, 2011). Accordingly, pFC is posited to support 

WM through attentional mechanisms that select relevant information from mnemonic 

representations stored in posterior sensory regions (Parto Dezfouli, Zarei, Constantinidis, 

& Daliri, 2021; Sreenivasan, Curtis, & D’Esposito, 2014; Szczepanski & Knight, 2014). 

By comparing EEG in patients with unilateral pFC lesions to age- and education-matched 

controls, our group demonstrated that low-frequency (2–7 Hz) neural oscillations support 

pFC control over posterior visual regions during visual WM (Johnson et al., 2017). This 

finding is in accord with nonhuman primate studies showing direct projections from lateral 

frontal regions, including frontal eye fields, to visual cortex (Merrikhi, Clark, & Noudoost, 

2018; Merrikhi et al., 2017), linking structure to function through neural oscillations in pFC.

However, according to the “gating by inhibition” hypothesis, oscillations in the alpha band 

(α; 8–12 Hz) support selective attention by inhibiting task-irrelevant information in posterior 

visual regions (Van Diepen, Foxe, & Mazaheri, 2019; Wianda & Ross, 2019; van Ede, 2018; 

Bengson, Mangun, & Mazaheri, 2012; Bonnefond & Jensen, 2012; Freunberger, Werkle

Bergner, Griesmayr, Lindenberger, & Klimesch, 2011; Jensen & Mazaheri, 2010; Jokisch 

& Jensen, 2007; Jensen, Gelfand, Kounios, & Lisman, 2002). Whereas α suppression 

induces neuronal excitability and activates visual inputs, phasic α enhancement deactivates 

task-irrelevant inputs (Jensen & Mazaheri, 2010). These attention-related modulations of 

α activity are thought to support WM both by engaging cortical regions that may be 

necessary for task performance (e.g., visual regions during visual WM) and by filtering 

out task-irrelevant, distracting inputs (from visual WM representations; de Vries, Slagter, 

& Olivers, 2020; Jensen & Mazaheri, 2010; Sauseng et al., 2009). Indeed, modulations of 

α activity have been shown to guide attention to different features of stimuli in WM using 
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visual (Schneider, Mertes, & Wascher, 2016) as well as auditory retro-cue tasks (Backer, 

Binns, & Alain, 2015; Lim, Wöstmann, & Obleser, 2015).

In the same EEG study where we demonstrated that low-frequency (2–7 Hz) neural 

oscillations support pFC control over posterior visual regions during visual WM (Johnson et 

al., 2017), we also demonstrated posterior α power suppression during the maintenance and 

processing of visual WM representations. These results link α suppression to recruitment 

of task-relevant visual regions, and, importantly, this α power suppression mechanism was 

independent of pFC damage. It is unknown whether posterior α mechanisms might similarly 

support “gating by inhibition” independent of pFC, or whether manipulating attention to 

different visual representations in WM might reveal a dissociable inhibitory α mechanism 

that depends on pFC.

Cross-frequency coupling, where the phase of α oscillations modulates the amplitude of 

activity in the gamma band (γ; 30–50 Hz), provides a putative mechanism for inhibition 

in WM (de Vries et al., 2020; Bonnefond & Jensen, 2015; Roux & Uhlhaas, 2014). 

We hypothesized that trial-by-trial shifts in the coupling of γ activity to parieto-occipital 

α oscillations (i.e., α–γ phase-amplitude coupling [PAC]) would index the selection of 

relevant features from visual WM stores. Phasic α enhancement in visual cortex would thus 

prioritize stimulus-specific γ representations by inhibiting task-irrelevant distractors (Jensen, 

Gips, Bergmann, & Bonnefond, 2014; Haegens, Nácher, Luna, Romo, & Jensen, 2011), 

supporting WM.

To test this hypothesis, we analyzed EEG data from a study conducted in a large cohort 

of patients with unilateral pFC lesions that required the selection of spatial and temporal 

features (i.e., top, bottom, first, second) from visual WM stores (Johnson et al., 2017). 

We chose to use this neurological data set given the documented observation of pFC

independent α power suppression during the maintenance and processing of visual WM 

representations, as described above. Here, we tested whether patterns of α–γ PAC would 

likewise index feature selection independent of pFC, or rather depend on pFC. To quantify 

feature selection, we compared selection of the top versus bottom spatial feature and first 

versus second temporal feature within the control group. To further delineate topographical 

patterns of α–γ PAC during feature selection, we applied graph theory. Systematic variation 

in patterns of α–γ PAC would indicate feature selection, supporting our hypothesis. We 

then investigated the role of pFC in an interaction approach by comparing feature selection 

between the control and pFC lesion groups.

METHODS

Participants

Participants were 14 patients with discrete pFC lesions (five men; mean ± SD [range]: 46 

± 16 [20–71] years of age, 15 ± 3 years of education) and 20 healthy controls (11 men; 

44 ± 19 [19–70] years of age, 16 ± 3 years of education). Lesions were unilateral (n = 

7 left + 7 right hemisphere) with maximal lesion overlap in dorsolateral pFC (Figure 1). 

All lesions were chronic (7.63 ± 5.98 [0.75–18] years elapsed) and due a single stroke 

(n = 5) or surgical resection of a low-grade tumor (n = 9). All participants had a normal/
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corrected-to-normal vision; all patients were evaluated by a neurologist and had no other 

neurological or psychiatric diagnoses. Patient IQ was normal or higher. For additional details 

about individual lesion etiology, see Johnson et al. (2017). All participants gave written 

informed consent in accordance with the Declaration of Helsinki.

Behavioral Task

Feature selection was examined in a single-trial visuospatial WM task paradigm that has 

been reported previously (Figure 2A; Parto Dezfouli, Davoudi, Knight, Daliri, & Johnson, 

2021; Johnson et al., 2017, 2018, 2019). Following a 2-sec fixation, an 800-msec starting 

screen indicated that the upcoming stimuli would be tested on either spatiotemporal relations 

or stimulus identities. At encoding, two colored shapes were presented sequentially (200 

msec each) in a top/bottom spatial orientation, separated by a 200-msec interstimulus 

interval. Shapes were presented to either the left or right visual hemifield. A retro-cue was 

presented mid-delay after a randomly jittered 900/1150-msec maintenance interval, followed 

by a postcue processing interval of the same length. On spatiotemporal relation trials, the 

retro-cue was one of four words—TOP, BOTTOM, FIRST, or SECOND—and participants 

subsequently responded by indicating which of two stimuli matched the cued position. 

These stimuli, presented on the subsequent response screen, were the same two shapes 

that had been presented at encoding, and WM was assessed in a two-alternative forced 

choice test. On identity control trials, the retro-cue SAME prompted participants to attend 

to the identities of both encoding stimuli, regardless of their spatiotemporal relationship. 

Participants completed 120–240 trials (80–160 spatiotemporal relation trials) of the task.

We tested feature selection by comparing the selection of TOP and BOTTOM spatial and 

FIRST and SECOND temporal features during the postcue processing interval. Because 

identity control trials did not require orienting attention to different features, we restricted 

analyses to spatiotemporal relation trials. Because the visual field of presentation was not 

relevant to the WM task and did not affect behavior (Johnson et al., 2017), to increase 

statistical power, we pooled the four spatiotemporal trial types across left and right 

presentations.

To ensure that selection of different features was equally difficult (Poncet, Baudouin, 

Dzhelyova, Rossion, & Leleu, 2019), we compared behavioral response times (RTs; all 

correct trials with RT ≤ 2 sec) and accuracy (percent correct) between TOP and BOTTOM 

spatial and FIRST and SECOND temporal trials using Wilcoxon rank sum tests. pFC lesion 

effects were confirmed by comparing overall spatial (i.e., pooled TOP and BOTTOM trials) 

and temporal (FIRST and SECOND) accuracy between the control and patient groups using 

Wilcoxon rank sum tests. Because several pFC lesion patients had slowed motor responses 

following stroke, we did not compare RT between groups.

Data Acquisition and Preprocessing

EEG data were recorded using a 64+8 channel BioSemi ActiveTwo amplifier with Ag-AgCl 

pin-type active electrodes mounted on an elastic cap according to the International 10–20 

System, sampled at 1024 Hz. Continuous eye gaze positions were recorded using an Eyelink 

1000 (SR Research) or iView X optical tracker (SMI). A custom wooden chin rest was used 
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to restrict participants’ head movements to minimize contamination of the EEG signal in 

anterior channels.

Raw EEG data were referenced to the mean of both earlobes, down-sampled to 256 Hz, 

and filtered between 1 and 70 Hz using finite impulse response filters. Electromyography 

artifacts were removed automatically, and line noise was removed using discrete Fourier 

transform. Continuous data were segmented into trials, noisy channels were rejected, and 

independent components analysis was used to remove artifacts (e.g., electrooculogram 

artifacts, heartbeat, auricular components, and residual cranial muscle activity) from 

remaining channels (Hipp & Siegel, 2013). Any rejected channels were then reconstructed 

by interpolation of the mean of the nearest neighboring channels, and trials with residual 

noise were removed manually based on visual inspection. The final data set included an 

average of 101 ± 23 trials per participant. We randomly removed trials to equate the number 

of trials of each spatiotemporal feature per participant, resulting in an average of 23 ± 7 

trials analyzed per feature.

The surface Laplacian spatial filter was applied to artifact-free data to minimize volume 

conduction and increase the robustness of signal source (Cohen, 2015; Perrin, Pernier, 

Bertrand, & Echallier, 1989). Then, channels were swapped across the midline in the data 

of right-hemisphere lesion patients (n = 7 of 14) to normalize lesions to the left hemisphere. 

This procedure removes individual differences between left- and right-hemisphere lesioned 

patients and increases statistical power in the lesion group. The same swapping procedure 

was applied to 10 of 20 randomly chosen control data sets so any inter-hemispheric variation 

was removed from both groups (Johnson et al., 2017).

Finally, previous analysis of this data set indicated that pFC lesions impacted pFC activity 

at baseline (Parto Dezfouli, Davoudi, et al., 2021; Johnson et al., 2017). To equate signal 

amplitude between individuals, we z-score-normalized every participant’s spatial-filtered 

data in the time domain before analysis (Vaidya, Pujara, Petrides, Murray, & Fellows, 2019; 

Cole & Voytek, 2017; Gerber, Sadeh, Ward, Knight, & Deouell, 2016). We then analyzed the 

Laplacian-transformed, z-score-normalized EEG data over the 900-msec postcue processing 

interval of all correct spatiotemporal relation trials.

Power Spectral Density

We used a Hamming window based on a 900-msec periodogram to perform spectral 

decomposition at each frequency from 2 to 50 Hz. Power was computed per trial at all 

64 Laplacian-transformed channels and then averaged across trials per participant. We then 

took the means in five canonical frequency bands: delta (δ; 2–4 Hz), theta (θ; 4–7 Hz), 

alpha (α; 8–12 Hz), beta (β; 13–30 Hz), and gamma (γ; 30–50 Hz). Feature selection was 

quantified per participant in each frequency band as the absolute values of TOP–BOTTOM 

and FIRST–SECOND trial differences.

Cross-Frequency Coupling

PAC was computed using the oscillation-triggered coupling (OTC) method (Dvorak & 

Fenton, 2014). This method employs a data-driven, event-based, and parameter-free 

algorithm to quantify PAC in four steps:
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i. Spectral decomposition: Trials were padded by 4500 msec and pooled into a 

single time series, and the continuous wavelet transform was used to extract 

amplitude information at each frequency from 2 to 50 Hz. Time–frequency 

representations were obtained by convolving the Morlet wavelets (mw) with the 

EEG signal of a trial x(t) as follows:

mw t, f0 = σt π −1/2exp 2iπf0t (1)

where t and f refer to time and frequency points, σt is the standard deviation 

in the time–domain, and σt π −1/2 is a normalization factor to turn the wavelet 

energy to value 1.

ii. Trigger detection: Time–frequency representations were z-score normalized 

across all time points, and triggers were defined as z > 2 (i.e., p < .05) at 

each frequency. Triggers detected in the first or last 50 msec of each trial were 

considered noise from edges and excluded from analysis.

iii. OTC comodulogram: The EEG signal was fit within a window ± 200 msec 

around each trigger as follows:

x = ∑
n = 1

N
x(n − Tw…n + TW ) (2)

where n denotes the trigger time points, N denotes the number of trigger events, 

and TW denotes the time window. The sum operator is used instead of the 

average to indicate the total number of trigger events. An OTC comodulogram 

is then generated from the mean across all triggers with time on the x-axis and 

amplitude frequencies on the y-axis. The frequency that shows an oscillatory 

pattern is the amplitude frequency coupled to the oscillatory pattern in the EEG 

signal, and the peak-to-peak amplitude indicates the modulation strength.

iv. PAC: The fast Fourier transform was applied to the OTC comodulogram to 

generate a PAC comodulogram with phase frequencies on the x-axis and 

amplitude frequencies on the y-axis. PAC was computed between all 64×64 

Laplacian-transformed channel pairs in two sets of analyses (Ahmadi, Davoudi, 

& Daliri, 2019; Davoudi, Ahmadi, & Daliri, 2020; Johnson et al., 2018; Jones, 

Johnson, & Berryhill, 2020; van Wingerden, van der Meij, Kalenscher, Maris, & 

Pennartz, 2014).

First, we identified channel pairs exhibiting significant PAC across pooled spatial (TOP and 

BOTTOM) and temporal (FIRST and SECOND) trials. We used a permutation approach to 

define the channel pairs exhibiting PAC. For each channel-pair trigger event, we randomly 

shuffled the phase time series across time points (100 iterations) and recalculated PAC. 

This procedure breaks the temporal relationship between phase and amplitude time series 

without altering the amplitude time series or other aspects of the original data, thereby 

estimating PAC that would be expected solely by chance. If regularities exist in the data that 

are not related to the temporal relationship between phase and amplitude (e.g., individual 
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differences the voltage of the amplitude signal or length of the time series), then they will 

be present in the permuted data. Significance was determined by comparing the observed 

PAC values against the permutation distributions (Aru et al., 2015; van Wijk, Jha, Penny, & 

Litvak, 2015; Dvorak & Fenton, 2014).

We used Wilcoxon rank sum tests with a false discovery rate (FDR) multiple-comparison 

correction of q < 0.05 to examine pFC effects, independent of feature selection, by 

comparing PAC between the control and pFC lesion groups. As an additional control, we 

compared PAC between groups during the continued maintenance of stimulus identities (i.e., 

pooled SAME trials). We did not observe significant pFC lesion effects on identity control 

trials and focus on PAC during spatiotemporal feature selection to test hypotheses.

Second, we computed PAC separately across each of the four spatiotemporal features 

(pooled TOP trials, pooled BOTTOM trials, etc.) to analyze feature selection. Feature 

selection was quantified per participant as the dB-corrected absolute values of TOP–

BOTTOM and FIRST–SECOND trial differences as follows:

10 × log FFTC1 − FFTC2 (3)

where c1 and c2 represent the OTC comodulograms generated at Step iii.

Graph Theory

We used graph theory to map the topographical distributions of phase and amplitude 

networks underlying PAC. According to graph theory, neural networks are collections of 

nodes (here, Laplacian-transformed channels) and internode connections or edges (PAC), 

summarized as adjacency matrices (Karwowski, Vasheghani Farahani, & Lighthall, 2019; 

Sporns, 2018). To define PAC adjacency matrices, we assessed the PAC data for network 

degrees (i.e., the weight of cross-frequency connections between each channel and all other 

channels) using a threshold of 70% relative to each participant’s maximum (Jalili, 2017; 

Knyazev, Volf, & Belousova, 2015).

Statistical Analysis of Feature Selection

Statistical analyses of EEG data were performed using Wilcoxon rank sum tests with an 

FDR multiple-comparison correction of q < 0.05 (Benjamini & Hochberg, 1995). Feature 

selection was examined in controls and pFC lesion patients by comparing per-participant 

modulation values (i.e., TOP–BOTTOM and FIRST–SECOND absolute values) against 

zero. pFC effects were tested by comparing per-participant modulation values between the 

control and pFC lesion groups.

Linear mixed-effects models examined the specificity of pFC lesion effects on PAC 

modulation of feature selection. In all models, α–γ PAC modulation of feature selection was 

the dependent variable and participants were considered a random effect. Individual mean 

data were computed using the FDR-thresholded masks corresponding to PAC modulation 

differences between groups (see Figure 5B, 5D). To show that effects were not driven by 

pFC lesion effects on PAC independent of feature selection, group (control, lesion) and 

condition (no feature selection, feature selection) were modeled as fixed effects. To show 
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that effects were not driven by pFC lesion effects on power modulation of feature selection 

at the phase or amplitude frequency, group was modeled as the fixed effect and α and γ 
power were modeled as random effects.

Data Availability

The data and custom-built MATLAB codes that support the current findings are deposited 

to the University of California, Berkeley, Collaborative Research in Computational 

Neuroscience (CRCNS) database (https://doi.org/10.6080/K0ZC811B), which is accessible 

with a free CRCNS account (crcns.org). Account registration requires compliance with the 

CRCNS Terms of Use and is approved by a central administrator independent of the data 

authors. Per the Terms of Use, data are made available only for scientific purposes, and any 

publications derived from the data must state that CRCNS is the source of the data and cite 

the original paper.

RESULTS

Behavior

We first compared per-participant mean behavioral RT and accuracy between features to 

ensure they were equal in difficulty. No significant differences were observed in RT between 

TOP and BOTTOM spatial (control p = .80, pFC lesion p = .40) or FIRST and SECOND 

temporal features (control p = .36, pFC lesion p = .86; Figure 2B). Likewise, no significant 

differences were observed in accuracy between spatial (control p = 1, pFC lesion p = .57) or 

temporal features (control p = .33, pFC lesion p = .59; Figure 2C). These null results ensure 

that variations in EEG patterns between features cannot be explained by differences in task 

difficulty in the control or lesion group.

We then confirmed the role of pFC in spatiotemporal WM by comparing per-participant 

mean accuracy (i.e., pooled TOP and BOTTOM trials, FIRST and SECOND trials) between 

the control and pFC lesion groups. Accuracy was impaired in the lesion group for both 

spatial (mean ± SD correct: control 99.5 ± 0.15% vs. pFC lesion 91.6 ± 0.36%, p < 10−5) 

and temporal features (control 98.9 ± 0.35% vs. pFC lesion 83.7 ± 0.66%, p < 10−5; Figure 

2C). Because attention to the retro-cue on each trial was necessary to provide a correct 

response, above-chance accuracy in the lesion group (one-tailed t test, p < 10−11) indicates 

that participants attended to the retro-cue. Indeed, retro-cues are consistently shown to 

promote WM by guiding attention and the observation of ceiling-level accuracy in controls 

is consistent with previous reports (Poncet et al., 2019; Viswanathan, Bharadwaj, & Shinn

Cunningham, 2019; Souza & Oberauer, 2016; Backer & Alain, 2012; Griffin & Nobre, 

2003; Landman, Spekreijse, & Lamme, 2003).

Power Spectral Density

Power spectral analysis confirmed dominant oscillations in the α band prior to analysis of 

α–γ PAC. Peaks in the power spectra were observed in the α band in both the control 

and pFC lesion groups. Scalp distributions of peak power revealed α maximally in parieto

occipital channels (POz–Pz–PO8) in controls (Figure 3A). Although less robust, α peaks 

were present in the same parieto-occipital channels in pFC lesion patients (Figure 3B). 
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These results demonstrate posterior α oscillations during the selection of spatiotemporal 

features from WM stores. Power in the γ band was distributed across the EEG topography in 

both the control and pFC lesion groups (Figure 3C, 3D).

We then compared the selection of different features in the α and γ frequency bands. No 

significant differences between spatial or temporal features were observed within the control 

or pFC lesion groups (all uncorrected ps > .1). Likewise, no significant differences were 

observed in spatial or temporal feature selection between groups (all uncorrected ps > .1). 

These null results suggest that any differences observed in α–γ PAC in the selection of 

different spatial or temporal features, or in feature selection between groups, cannot be 

attributed to α or γ power differences.

Cross-Frequency Coupling Signatures of Feature Selection

Analysis of PAC tested the hypothesis that parieto-occipital α oscillations coordinate 

stimulus-specific γ representations, tracking feature selection across spatiotemporal scales. 

We used a data-driven measure, OTC, to compute PAC between all channel pairs (Johnson 

et al., 2018; van Wijk et al., 2015; FitzGerald, Valentin, Selway, & Richardson, 2013; 

Friese et al., 2013; Gregoriou, Gotts, Zhou, & Desimone, 2009). By treating increases in 

band-limited activity as discrete events, OTC provides an assumption-free measure of PAC 

that is appropriate for short time windows (Dvorak & Fenton, 2014). OTC outputs were 

analyzed using a permutation approach to account for differences in the input data and 

assess PAC significance (Aru et al., 2015; van Wijk et al., 2015; Dvorak & Fenton, 2014).

We first examined PAC during the selection of spatial and temporal features, independent 

of the specific feature (i.e., pooled TOP and BOTTOM trials, FIRST and SECOND trials). 

This analysis aimed to first determine the channel pairs exhibiting significant α–γ PAC and 

then test the role of pFC in α–γ PAC independent of feature selection. PAC was identified 

between posterior α oscillations and topographically distributed γ activity during the 

postcue processing interval in both groups (p < .05 compared to permuted PAC, uncorrected; 

Figure 4). pFC lesions did not significantly diminish α–γ PAC during the processing of 

spatial or temporal information (all uncorrected ps > .08). These null group effects reflect 

the results of statistical testing at each channel pair. Nonsignificant effects were replicated in 

independent tests of pooled spatial and pooled temporal trials, demonstrating that α–γ PAC 

was not markedly disrupted in patients with pFC lesions, independent of feature selection.

We next assessed whether α–γ PAC supported spatiotemporal feature selection in WM and 

whether prioritizing different visual representations might recruit pFC. In controls, spatial 

feature selection was identified in PAC between posterior α oscillations and topographically 

distributed γ activity (FDR-corrected p < .05; Figure 5A), thus linking feature selection 

to α–γ PAC. Although α–γ PAC also supported spatial feature selection in pFC lesion 

patients (FDR-corrected p < .05), α did not exhibit a posterior focus. pFC lesions diminished 

this PAC signature of spatial feature selection between α oscillations in parieto-occipital 

channels (P1–P3–PO3–POz–Pz) and γ activity in central-temporal channels (TP7–CP5–

CP3–P5–P7–C5; FDR-corrected p < .05; Figure 5B, 5C). We identified comparable α–γ 
PAC patterns during temporal feature selection (FDR-corrected p < .05; Figure 5D). pFC 

lesions diminished temporal feature selection between α oscillations in the same parieto
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occipital channels and γ activity in central-temporal channels (T7–TP7–P7–FC5–F7–F3; 

FDR-corrected p < .05; Figure 5E, 5F). Critically, channel pairs exhibiting significant 

modulation of spatial and temporal features in controls exhibited diminished modulation 

with pFC lesions. These findings reveal that posterior α coordination of stimulus-specific γ 
representations supports feature selection, and this α–γ PAC signature depends on pFC.

Linear mixed-effects models confirmed the specificity of pFC lesion effects on α–γ PAC 

modulation of feature selection. Significant interactions between group and feature selection 

demonstrate that group differences in PAC modulation of feature selection were not driven 

by group differences in overall PAC (spatial: F(1, 62) = 35.02, p = 2 × 10−7; temporal: 

F(1, 62) = 31.27, p = 6 × 10−7; Figure 6). Likewise, group differences in PAC modulation 

of feature selection remained significant with power modulation of feature selection at the 

phase and amplitude frequencies modeled as random effects (spatial: F(1, 31) = 36.79, p = 1 

× 10−6; temporal: F(1, 31) = 18.04, p = 2 × 10−4).

Last, we used graph theory to demonstrate that α oscillations coordinating feature selection 

were focused in parieto-occipital channels in controls but not pFC lesion patients. Analysis 

of the top 30% of cross-frequency connections (Jalili, 2017; Knyazev et al., 2015) indicated 

that PAC between parieto-occipital α oscillations and topographically distributed γ activity 

tracked the selection of spatial and temporal features in controls (Figure 7). Whereas γ 
channels supporting feature selection were widely distributed in both groups, α coordination 

of spatial and temporal features was not localized to parieto-occipital channels in pFC lesion 

patients. Between-groups testing confirmed that posterior α coordination of distributed γ 
activity was greater in controls than lesion patients (FDR-corrected p < .05). Thus, pFC 

lesions affect α–γ PAC signatures of feature selection by disrupting parieto-occipital α 
coordination of visual WM representations.

DISCUSSION

We demonstrate that parieto-occipital α coordination of visual WM representations depends 

on pFC. Specifically, cross-frequency coupling between parieto-occipital α oscillations and 

topographically distributed γ activity tracked the selection of spatiotemporal features from 

visual WM stores in controls. Patterns were similar during the selection of spatial and 

temporal features, suggesting a domain-general α–γ PAC signature of feature selection. 

These findings support the “gating by inhibition” hypothesis, which states that phasic 

α enhancement, indexed here by α–γ PAC, inhibits task-irrelevant information in visual 

regions (Van Diepen et al., 2019; Wianda & Ross, 2019; van Ede, 2018; Bengson et al., 

2012; Bonnefond & Jensen, 2012; Freunberger et al., 2011; Jensen & Mazaheri, 2010; 

Jokisch & Jensen, 2007; Jensen et al., 2002). We show for the first time that this α–γ 
PAC signature of feature selection is disrupted with pFC lesions, revealing a pFC-dependent 

posterior α mechanism. In contrast, α–γ PAC was not significantly affected by pFC lesions 

independent of feature selection. Together, these findings suggest that α–γ PAC uniquely 

depends on pFC if the task demands inhibition of irrelevant representations in visual WM 

stores.
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Previous analysis of this neurological data set revealed parieto-occipital α suppression 

during the maintenance and processing of visual WM representations in both controls 

and pFC lesion patients (Johnson et al., 2017). This result linked α suppression to the 

recruitment of task-relevant visual regions (Palva & Palva, 2011; Jensen & Mazaheri, 

2010; Sauseng et al., 2009; Leiberg, Lutzenberger, & Kaiser, 2006), independent of pFC. 

In contrast, phasic α enhancement deactivates task-irrelevant visual inputs and filters out 

distracting information from visual WM representations (de Vries et al., 2020; Wianda 

& Ross, 2019; Freunberger et al., 2011; Jensen & Mazaheri, 2010; Sauseng et al., 2009; 

Jokisch & Jensen, 2007). Cross-frequency coupling between visual α oscillations and 

stimulus-specific γ representations is the purported mechanism for inhibition in visual 

WM (de Vries et al., 2020; Bonnefond & Jensen, 2015; Roux & Uhlhaas, 2014). This 

inhibitory α–γ mechanism is presumed to provide top–down control within the visual 

system (Bonnefond & Jensen, 2015; Jensen et al., 2014). Intriguingly, the current findings 

suggest that this inhibitory α–γ mechanism is only focused in visual regions in the intact 

brain. Whereas α oscillations contributing to feature selection were focused in parieto

occipital channels in controls, these α oscillations were distributed across central-temporal 

channels in pFC lesion patients. These findings evidence pFC-dependent parieto-occipital α 
coordination of stimulus-specific γ representations in the service of WM.

Interactions between pFC and posterior sensory regions are well-documented in studies of 

WM (Merrikhi et al., 2017, 2018; Mendoza-Halliday, Torres, & Martinez-Trujillo, 2014; 

Qi, Elworthy, Lambert, & Constantinidis, 2014; Hussar & Pasternak, 2013; Zaksas & 

Pasternak, 2006; Constantinidis, Franowicz, & Goldman-Rakic, 2001). Structurally, such 

interactions are supported by direct projections from lateral frontal regions, including frontal 

eye fields, to visual cortex (Merrikhi et al., 2017, 2018). Neural oscillations provide a 

plausible mechanism of such cortico–cortical interaction. Indeed, previous analysis of this 

neurological data set revealed a low-frequency (2–7 Hz) oscillatory mechanism supporting 

pFC control over parieto-occipital regions during WM, consistent with models of pFC 

control over visual mnemonic representations (Sreenivasan et al., 2014; Szczepanski & 

Knight, 2014). Further evidence for a direct relationship between low-frequency oscillations 

in pFC and α oscillations in parieto-occipital regions comes from a study of attention-guided 

visual perception (Helfrich, Huang, Wilson, & Knight, 2017). Taken together, these findings 

suggest that pFC exerts control over parieto-occipital α oscillations via low-frequency neural 

oscillations, aiding in the inhibition of task-irrelevant visual representations during WM.
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Figure 1. 
pFC lesions. Reconstruction of the extent of lesion overlap for all 14 patients, normalized to 

the left hemisphere, shows maximal overlap in dorsolateral pFC (top). Color scale, number 

of patients with lesions at the specified site. pFC lesions were in the left hemisphere of 

seven patients and right hemisphere of seven patients (bottom). Adapted from Johnson et al. 

(2017).
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Figure 2. 
Visuospatial WM task and behavior. (A) WM task. At encoding, two shapes were presented 

sequentially (200 msec each, 200-msec interstimulus interval) in a top/bottom spatial 

orientation. After a randomly jittered 900/1150-msec maintenance interval, participants were 

cued to identify which shape had been presented in the TOP/BOTTOM spatial position or 

FIRST/SECOND temporal position during a postcue processing interval of the same length 

(spatiotemporal relation trials; analyzed here). In one third of trials, participants were cued 

to continue maintaining a representation of what the shapes looked like (identity control 

trials; not analyzed). WM was tested in a two-alternative forced choice test (50% chance). 

(B) RT did not differ between spatial or temporal features in either group. (C) Accuracy did 

not differ between spatial or temporal features in either group. Accuracy was attenuated in 

pFC patients relative to controls. *Significant; error bars, SEM.

Davoudi et al. Page 18

J Cogn Neurosci. Author manuscript; available in PMC 2021 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Posterior α oscillations and distributed γ activity during feature selection. (A–B) Mean α 
power across all trials during the postcue processing interval in controls (A) and pFC lesion 

patients (B). Dashed boxes indicate the peak frequency (8–12 Hz) corresponding to the scalp 

distributions. These α peaks were observed in both groups maximally at parieto-occipital 

channels (POz–Pz–PO8). (C–D) Mean γ (30–50 Hz) power across all trials during the 

postcue processing interval in controls (C) and pFC lesion patients (D). Scalp distributions 

indicate topographically distributed γ activity in both groups.
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Figure 4. 
PAC does not depend on pFC independent of feature selection. (A) PAC in a representative 

posterior channel pair (Pz–PO3; left) during the processing of spatial features (i.e., pooled 

TOP and BOTTOM trials). Amplitude information was extracted per channel from 2 to 50 

Hz, and OTC was quantified by averaging the EEG signal around increases in band-limited 

activity (i.e., triggers; middle). Modulation strength was maximal at γ amplitudes. PAC was 

computed by applying the fast Fourier transform to the OTC comodulogram (right). (B) 

Scalp distributions of α–γ PAC during the selection of spatial features in controls and pFC 

lesion patients, independent of the specific feature (i.e., pooled TOP and BOTTOM trials; 

left). Lines indicate channel pairs exhibiting significant PAC. Note PAC between posterior α 
oscillations and topographically distributed γ activity in both groups. Mean α–γ PAC across 
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all significant pairs is shown for illustration (right). Error bars, SEM. (C) Same as (B) for 

temporal features (i.e., pooled FIRST and SECOND trials). Note similar scalp distributions 

of PAC in both groups.
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Figure 5. 
pFC lesions diminish PAC signatures of feature selection. (A) PAC between posterior α 
oscillations (focus marked in yellow) and topographically distributed γ activity modulated 

the selection of spatial features (i.e., TOP vs. BOTTOM) in controls and lesion patients. 

Lines indicate channel pairs of significant modulation. (B) pFC lesions diminished α–γ 
PAC modulation of spatial feature selection. Scalp distribution of α phase (black) and γ 
amplitude (red) channels contributing to significant modulation in controls > pFC lesion 

patients. (C) Mean PAC modulation of spatial feature selection across all channel pairs in 

(B) in controls (left) and pFC lesion patients (right). Note α–γ PAC modulation of spatial 

feature selection in controls (black box). PAC modulation was dimished with pFC lesions. 

(D–F) Same as (A–C) for the selection of temporal features (i.e., FIRST vs. SECOND). 

Note similar patterns and pFC lesion effects for spatial and temporal feature selection.
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Figure 6. 
pFC lesions specifically affect PAC modulation of feature selection. (A) pFC lesions 

diminish PAC modulation of spatial feature selection (i.e., TOP vs. BOTTOM), and these 

results are not driven by an overall difference in PAC between groups (i.e., pooled TOP 

and BOTTOM trials). Error bars, SEM. (B) Same as (A) for temporal feature selection (i.e., 

FIRST vs. SECOND, pooled FIRST and SECOND trials).
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Figure 7. 
pFC lesions disrupt posterior α coordination of feature selection. (A) Scalp distributions of 

the top 30% of α–γ connections during spatial feature selection (i.e., TOP vs. BOTTOM) 

in controls (top), lesion patients (middle), and controls versus lesion patients (bottom). Lines 

indicate channel pairs exhibiting PAC (left), and the size of each circle indicates the relative 

number of cross-frequency connections at each α phase (middle) and γ amplitude (right) 

channel. Note the parieto-occipital focus of α channels in controls but not lesion patients. 

Turquoise, significant control > lesion; red, control < lesion. (B) Same as (A) for temporal 

feature selection (i.e., FIRST vs. SECOND).
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