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Rapidly switching between similar antibiotics may help to slow down the

evolution of resistance.
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n order to survive, many living organisms

need to be able to adapt to their ever-

changing environment. These past experien-
ces shape the behavior of creatures big and
small — from mutations in single genes to neuro-
logical changes that underlie memory formation
in primates.

There is substantial evidence that environ-
mental history affects how bacteria respond to
antibiotics (Barbosa et al., 2019; Card et al.,
2019; Nichol et al., 2019; Santos-Lopez et al.,
2019; Yen and Papin, 2017). This has led
researchers to suggest that switching between
drugs over time could help slow down antibiotic
resistance, as this will force the bacteria into a
scenario where their existing solutions (resis-
tance to the current drug) cannot protect them
from tomorrow’s problem (a new drug). How-
ever, this method has led to mixed results
(Abel zur Wiesch et al., 2014; Imamovic et al.,
2018), and optimizing this approach is challeng-
ing, in part because it is unclear which features
of the antibiotic sequence are the most impor-
tant and guarantee the best results.

Now, in elife, Hinrich Schulenburg (University
of Kiel and Max Planck Institute for Evolutionary
Biology) and colleagues - including Aditi Batra
and Roderich Roemhild as joint first authors —
report the results of experiments on the multi-
drug resistant bacteria Pseudomonas aeruginosa
(Batra et al., 2021). The team (who are based in
Austria and Germany) exposed the bacteria to
various sequences of three antibiotics that
belong to commonly used classes of drugs: one
class targets the ribosome, one targets DNA
gyrase, and one targets the cell wall. In some
cases, three drugs from different classes were
used (that is, a heterogeneous sequence), and in
some cases all three drugs belonged to the
same class (a homogenous sequence). Batra
et al. also varied the temporal properties of
each sequence by switching between the drugs
rapidly, slowly, or in a random order. The growth
rate, phenotypic resistance levels and popula-
tion genetics of the evolved populations were
then analyzed to determine which sequences of
drugs were the most effective at eliminating the
bacteria (Figure 1A).

In addition to these experimental parameters,
the impact of different antibiotic sequences
could also depend on how the population bio-
logically responds to consecutive drug expo-
sures (Figure 1B). For example, the genetic
changes bacteria evolve in response to one anti-
biotic can lead to collateral effects that increase
the population’s resistance or sensitivity to
another drug. Because collateral
occurs more frequently between drugs of the
same class, heterogeneous sequences of antibi-
otics are thought to be more effective at

resistance
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eliminating bacteria (Imamovic and Sommer,
2013; Lazar et al., 2013; Maltas and Wood,
2019, Pal et al., 2015; Lazar et al., 2014).
Treatment with unrelated drugs has also been
shown to favor negative hysteresis, which is
when short-term physiological changes induced
by one antibiotic enhance susceptibility towards
another. Indeed, a recent study found that rapid
switching between antibiotics from different
classes promoted extinction of bacterial popula-
tions, even when the drugs were used at sub-
inhibitory levels (Roembhild et al., 2018).
However, Batra et al. found that homogenous
sequences of beta-lactams (a class of antibiotics
that target the cell wall) were surprisingly more
effective at clearing bacteria. The experiments
also revealed that extinction tended to occur
early in the treatment and was less effective

when drugs were switched more slowly. A par-
ticular heterogeneous set of drugs also tended
to not eliminate bacteria, indicating that hetero-
geneity, alone, does not guarantee success.

So, what are the important characteristics of
a 'good’ antibiotic sequence? To answer this
question, Batra et al. used a common class of
statistical models to probe for signatures of suc-
cessful sequences. They found that extinction
was strongly favored by two biological proper-
ties — low rates of spontaneous resistance and
low levels of collateral resistance — and was also
enhanced when switching between drugs was
fast or random. This suggests that although the-
findings of Batra et al. contradict the proposed
benefits of using unrelated drugs, they still vali-
date a portion of the underlying logic: using
antibiotics with strong collateral effects and
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Figure 1. Experimental and biological features of effective drug sequences. (A) Batra et al. applied different
sequences of antibiotics to 756 populations of P. aeruginosa (top panel). The bacteria were treated with either a
single drug (monotherapy; row 1), or three antibiotics which were switched rapidly (row 2), slowly (row 3) or in a
random order (row 4): the three drugs were either from the same class (homogeneous) or from different classes
(heterogeneous). This experiment revealed that fast (blue line) and random (green line) switching between three
homogeneous beta-lactam drugs reduced bacteria growth and resulted in higher levels of extinction (bottom
graph). (B) The effects of the different sequences are also impacted by biological features. (Top panel) When
sensitive bacteria (shown in purple) are treated with the first drug, some cells will evolve genetic changes that
make them resistant to the antibiotic treatment (shown in green). These evolutionary changes can lead to
collateral effects that make the bacteria less (top arrow), equally (middle arrow) or more (bottom arrow) resistant to
the second drug. (Bottom panel) Treatment with the first drug may also lead to negative hysteresis, when short-
term physiological changes enhance the bacteria’s response to the second drug (right), leading to more cell death
in the population compared to bacteria not pre-treated with the first drug (left).

Image credit: Anh Huynh.
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hysteresis enhances the impact of sequence
therapy. It just turns out, however, that drugs
with these characteristics are not always from
different classes.

This study offers insight into how past antibi-
otic exposure shapes the response of bacterial
populations to new challenges. In doing so, it
provides a roadmap for future studies investigat-
ing how even the simplest organisms harbor sig-
natures of past challenges and potential
evolutionary solutions.
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