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Abstract

The use of transdermal alcohol monitors has burgeoned in recent years, now encompassing 

hundreds of thousands of individuals globally. A new generation of sensors promises to expand 

the range of applications for transdermal technology exponentially, and advances in machine 

learning modeling approaches offer new methods for translating the data produced by transdermal 

devices. This article provides 1) a review of transdermal sensor research conducted to date, 

including an analysis of methodological features of past studies potentially key in driving reported 

sensor performance; 2) updates on methodological developments likely to be transformative for 

the field of transdermal sensing, including the development of new-generation sensors featuring 

smartphone integration and rapid sampling capabilities as well as developments in machine 

learning analytics suited to data produced by these novel sensors and; 3) an analysis of the 

expanded range of applications for this new generation of sensor, together with corresponding 

requirements for sensor accuracy and temporal specificity. We also note questions as yet 

unanswered and key directions for future research.
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Introduction

A reliable alcohol biosensor could constitute a critical step towards helping individuals 

make informed decisions about their drinking and, ultimately, towards curbing problematic 

alcohol use (1,2). Transdermal sensors offer a uniquely non-invasive and low-cost method 

for assessing drinking, and thus the prospect of transdermal measurement of alcohol 

consumption has been met with tremendous enthusiasm (3,4). Enthusiasm increased as 

research emerged indicating that transdermal ankle bracelets could be used to effectively 

monitor alcohol abstinence within criminal justice (5) and specialized treatment contexts (6), 

with the use of these abstinence monitors quickly burgeoning to encompass over 800,000 
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individuals globally (7). Over time, however, it has become apparent that the relationship 

between transdermal alcohol concentration (TAC) and blood alcohol concentration (BAC) is 

highly complex. Thus, the task of translating transdermal sensor data into more fine grained 

estimates of alcohol consumption represents a considerable challenge (8).

Recent years have seen remarkable developments in both transdermal sensor technology 

as well as computational modeling methods, offering the potential to address some of 

these challenges while also expanding the range of applications for transdermal devices 

(9,10). Recognition of these momentous developments for transdermal technology is evident 

within a rapidly expanding scientific literature, with five reviews of transdermal alcohol 

sensors published within the past two years alone (10–14; see also 15 for a published pre

registration). Yet the extant literature tells us little about the future of transdermal alcohol 

sensing, a question that looms particularly large in the face of a global pandemic that has 

stymied much face-to-face research, driving many addiction scientists to extend beyond the 

laboratory and embrace tools for measuring alcohol consumption in real-world contexts. The 

current review aims to provide: 1) a review of transdermal sensor research conducted to date, 

including an analysis of methodological features of past studies potentially key in driving 

reported sensor performance; 2) information surrounding methodological developments 

likely to be transformative for the field of transdermal sensing; and 3) an analysis of the 

expanded range of applications for this new generation of sensor.

The Promise of Transdermal Assessment

Addiction scientists have explored a variety of different methods to assess alcohol use. For 

example, self-reports can be useful for understanding broad patterns of drinking. However, 

they have the potential to be biased by several factors including alcohol-related memory/

cognitive impairment (16,17), variability in drink strengths/sizes (variable “pours”; 17,18), 

as well as demand characteristics of the assessment context (20). Breathalyzers have the 

capability to produce accurate estimates of intoxication but provide only a single estimate 

of intoxication at one point in time. Every test requires action by the user, and repeated 

tests require a wait period (21). Finally, in more recent years, microneedle arrays have 

come under development, devices that offer the advantage of direct measurement of alcohol 

content within interstitial fluid (22). However, these devices typically require application by 

a trained professional, involve regular disposal/re-application, and can cause skin irritation 

in some (23).

Above we list some of the most commonly employed existing methods of assessing alcohol 

consumption, along with one method based in developing technology. All of these methods 

are likely to gain and/or retain an important place in our toolkit of techniques for assessing 

drinking. At the same time, transdermal sensors have the potential to complement these 

tools, offering distinct advantages above and beyond extant and emerging measures. Based 

in research indicating that approximately 1% of ingested alcohol is diffused through the 

skin, transdermal sensors assess alcohol consumption by quantifying the content of alcohol 

contained in sweat and insensible perspiration (24,25). Thus, similar to the manner in 

which a breathalyzer estimates BAC by measuring the quantity of alcohol in expired air, 

transdermal sensors might estimate BAC by examining alcohol in water vapor emitted from 

Fairbairn and Bosch Page 2

Addiction. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the skin’s surface (24). Unlike a breathalyzer, however, transdermal alcohol sensors have the 

potential to measure alcohol consumption discretely and continuously, without requiring any 

motivated action on the part of the user. Further, unlike self-reports, transdermal assessment 

is based in objective measurement and, unlike methods assessing BAC in interstitial fluid, it 

is wholly noninvasive, low-cost, and likely to be attractive to a wide population of drinkers. 

In light of these advantages, it is no wonder that transdermal sensors have sparked enduring 

interest among addiction scientists (3,4,10).

The Challenge of Transdermal Assessment

Whereas breathalyzer readings can be translated into BAC estimates via a straightforward 

conversion factor (21), the relationship between transdermal readings and BAC is 

considerably more complex. The TAC-BAC relationship can be impacted by a variety of 

factors, including individual-difference factors that covary with physical properties of the 

skin (e.g., gender, race, age, BMI; 24,25), as well as contextual factors that affect levels 

of sweating (e.g., skin temperature, motion; 26). Thus, the relationship between TAC and 

BAC might differ across both individuals and also contexts (8,29). In addition, the process of 

transdermal diffusion of alcohol involves some degree of lag time, such that alcohol can be 

detected in the blood stream before it can be detected at the skin’s surface. Empirical studies 

seeking to quantify the exact degree of this lag time have produced highly variable findings, 

ranging from 30 minutes (30) to 5 hours (27).

While the complexities of the TAC-BAC association have been apparent, also apparent 

have been limitations of research methods applied to model this relationship (9,11,31). 

Importantly, the majority of studies seeking to capture the TAC-BAC relationship have 

relied on data from a single device—the AMS SCRAM™ ankle monitor (31,32). Design 

features of the SCRAM device, which integrates a pump to actively generate airflow across 

the transdermal sensor, increase its size to a bulky 6oz (see Figure 1) and reduce its TAC 

sampling interval to a relatively sparse 30 minutes (11). Further, the relationship between 

TAC and BAC can vary depending on where on the body TAC is assessed (e.g., wrist 

vs. ankle, 33), and the ankle positioning of SCRAM could potentially impact its temporal 

sensitivity to changes in BAC (31). Indeed, transdermal devices worn around the ankle 

consistently produce about double the TAC-BAC lag time as devices worn on the wrist, 

hand, or arm (27,31,see also 32).

Beyond limitations of the devices themselves, this literature is also characterized by 

limitations in methods applied to examine data from these devices. The range of 

statistical techniques employed to characterize the relationship between TAC and BAC 

is relatively narrow, relying on conventional statistical methods (e.g., regression) and/or 

applied mathematics (e.g., first principles models) (32). Our most powerful models for 

characterizing highly complex associations tend to be “data hungry” (34). With a mean 

sample size of less than 20 participants (largest objective validation study N=48) and a total 

of only five studies conducted in field settings, extant trials have been inadequately powered 

to model the TAC-BAC association across individuals and contexts (32). Such observations 

on the existing literature have led researchers to suggest that the inconsistent performance 
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of transdermal BAC monitors in prior research may not reflect a failure of concept for 

transdermal assessment, but rather limitations of methods applied in this area (9–11,31).

A New Era for Transdermal Assessment

The past several decades have given rise to remarkable technological and analytic 

developments. Although substantial progress has taken place across a variety of domains

—including big data analytics, miniaturization, and wireless communication—some of 

the more extraordinary of these developments have emerged within the field of portable 

computing technology (11,34,35). The use of smartphones now extends to billions of 

individuals globally (35). An estimated 81% of the US population now owns a smartphone, 

up from just 35% in 2011, with the computing capabilities of the average device constantly 

expanding (35). We thus find ourselves in a strange new reality in which a sizable 

proportion of the world’s population has at their fingertips a powerful microcomputer with 

far ranging capabilities. Combined with advances in data analytic methods, the technological 

development and burgeoning usage of smartphones has the potential to represent a game

changer for transdermal sensor technology—substantially reducing device size, reducing 

device cost, and also permitting the application of more computationally demanding models 

for real-time TAC data processing.

Leveraging these advances and spurred on by interest within the addiction research 

community, a new generation of transdermal alcohol sensor has recently emerged 

(10,11,31,36). Featuring smartphone integration and sleek designs, similar to a Fitbit, these 

devices are intended to appeal to large populations of voluntary users (see Figure 1). Several 

new-generation devices exist at varying stages of development, including BACtrack Skyn™, 

Smart Start BARE™, and Milo ION™.1 The mechanism for transdermal detection of alcohol 

varies across these newer devices—Skyn employs fuel cell based technology, whereas ION 

relies on enzymatic sensing (37). A key feature that unites these devices, however, is their 

unprecedented capability for rapid TAC sampling. More specifically, advances in wireless 

data transmission/storage and also transdermal sensor technology mean that new-generation 

sensors can sample TAC at approximately 90 times the rate of SCRAM devices, producing 

measurements as frequently as every 20 seconds (11). Information from relatively dense 

TAC time series might be used to address the challenge posed by contextual influences on 

the TAC-BAC relationship—a sudden spike in TAC might signal something different from 

a gradual rise (e.g., increase in sweating vs. increase in drinking). Further, and importantly, 

one of the more widespread applications of time series analysis is that of future forecasting, 

as time series offer information concerning not only where values currently are but also 

where they are going (38,39). Thus, information from the relatively dense TAC time series 

provided by new-generation sensors might be used to help collapse across the lag time 

between TAC and BAC and forecast estimates of alcohol consumption in near real-time (39).

In addition to developments in transdermal devices themselves, recent years have also 

seen progress in analytic methods for translating data produced by these devices (40–

1As of the time of this writing, Skyn and ION are available for research purposes, whereas BARE is still under development. Progress 
in this area is currently moving quickly, and the next several years are likely to see new devices entering the marketplace.

Fairbairn and Bosch Page 4

Addiction. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43). In particular, the years since 2010 have seen substantial advances in a family of 

computational approaches known as machine learning, leading some to christen this decade 

the “AI Spring” (44,45). Machine learning methods, which have long been applied to yield 

predictions based on raw data in time series format, differ from conventional statistical 

approaches in that they are first and foremost data-driven (46,47). Rather than restricting 

the relationship among variables within a model to a pre-determined set of structures (e.g., 

linear, quadratic, diffusion-equation based), as is the case with most conventional statistical 

approaches, machine learning models instead “learn” the shape of these relationships 

directly from the data itself. These models can thus cleave closely to data, reflecting 

nuanced relationships between variables in all their complexity—if analytic models might 

be considered as conforming to data like various articles of clothing conform to the human 

body, then linear regression would hang like a starched dress suit whereas machine learning 

models might hug like a leotard (see Figure 2). Machine learning approaches excel in 

contexts where the “true” relationship between predictor and outcome is complex/multi

dimensional, and where sufficient quantities of data exist to correctly distinguish between 

generalizable and spurious relationships. In technical terms, most machine learning methods 

have low bias (predetermined assumptions, such as expert knowledge dictating the form 

of the learned relationships) but have correspondingly higher variance (specificity to the 

particular dataset used for model fitting) (48). Thus, data must not only be sufficient in 

quantity for complex model fitting but must also be closely representative of the conditions 

under which the model will be deployed. When models are applied to new contexts, such 

as laboratory-created models deployed in real-world settings, rigorous evaluation is therefore 

essential to determine whether the models will work in the new context.

The past decade in particular has seen advances in machine learning methods that may 

be especially well suited to facilitating TAC-BAC translation. These include convolutional 

neural networks with the capability to recognize short time series patterns of virtually any 

shape (40,43), methods for automated data processing with capabilities for providing fast 

extraction of hundreds of predictors from time series data (42), as well as methods for 

controlling machine learning model complexity to avoid overfitting models to data (i.e., 

“regularization”; 38). Innovations in a family of methods called transfer learning may also 

help when models need to be adapted for new contexts (49). Advances in machine learning, 

and neural networks especially, tend to produce inscrutable models, however. These models 

trade increased accuracy for decreased interpretability, which may limit their application in 

settings where explaining why a prediction was made is essential—for example, in legal 

settings where a defendant might question the evidence against them, or in places where 

people have a legal right to explanation of model predictions (50).

Regarding the utility of these methods for yielding interpretable transdermal indicators of 

drinking, the bulk of validation research is yet to be done. However, data from initial 

research underscores the potential incremental validity of these new tools over extant 

methods. In early work employing single subject experimental designs, BACtrack Skyn, 

Quantac Tally™,2 and Milo ION all demonstrated responsiveness to ingested alcohol 

2Quantac ceased business operations in 2017.
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(11,37). A study involving 30 participants wearing both SCRAM and Skyn in the laboratory 

indicated strong correlations between Skyn and BAC and also substantially reduced lag 

times with Skyn vs. SCRAM (31). A field study (N=10) indicated Skyn detected alcohol 

soon after drinking onset (~30-mins), and a 2-week feasibility study (N=12) indicated 

acceptability of Skyn for longer-term wear (51). Of particular relevance, in a study that 

represents the largest objective transdermal sensor validation study conducted to date 

(N=73), we applied time-series feature extraction paired with tree-based machine learning 

algorithms to Skyn data collected in the laboratory (9). Results revealed that highly 

accurate real-time estimates of BAC could be created from new-generation sensor data 

under controlled conditions (r=.91; mean absolute error=.01% BAC). Finally, although new

generation sensors currently comprise a limited number of devices, early work indicates 

promising findings with novel prototypes, suggesting the range of available devices is 

likely to expand (52–54). To fully gauge the accuracy level of new-generation transdermal 

sensors, assessment under real-world conditions in response to variable alcohol doses will be 

required. Nonetheless, results of these early studies indicate transdermal devices may have 

capabilities beyond what was previously considered feasible based on research with older 

methods.

Applications for New-Generation Transdermal Technology

New-generation sensors offer a uniquely passive, noninvasive, low-cost method for assessing 

alcohol use likely to be attractive to broad populations of drinkers, including for longer term 

wear. Thus, these newer devices open up a new universe of applications for transdermal 

technology. Table 1 lists applications of new-generation sensor technology together with 

requirements for accuracy, temporal specificity, and contextual dependence associated with 

each potential application (see Table 1 for evaluation metric definitions and application 

requirements).

Early validation research has examined new-generation sensor performance with respect to 

the relatively fine-grained metric of BAC, and has further been aimed at creating estimates 

of alcohol consumption in real-time (9). Importantly, however, new-generation sensors 

employing broader, category-focused drinking measures (e.g., abstinence, low risk, or 

high-risk drinking) and demonstrating lower levels of temporal specificity (e.g., retroactive 

day-level time locking) might also have a range of potential applications (see Table 1).3 

For example, in the realm of prevention, a sleek sensor providing a day-level record of 

abstinence and/or high risk drinking events might open up new frontiers for public health 

initiatives by increasing awareness of consumption levels in broader populations of drinkers. 

In the realm of intervention, a comfortable, compact device providing objective information 

on drinking risk level could represent a significant asset to programs such as motivational 

enhancement therapy (55), harm reduction (56), and contingency management (2) which 

incorporate alcohol monitoring into treatment as a critical change process. Finally, in the 

realm of research, such devices could represent an important advance for longitudinal 

3Research with old-generation sensors already demonstrates transdermal devices are capable of providing a highly accurate record 
of alcohol abstinence (5), and early research with new-generation sensors indicates their accuracy level is nearly double that of older 
devices (9). Thus, the notion that new-generation sensors might ultimately provide reasonably accurate estimates of day-level drinking 
risk category might be considered a conservative prediction.
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studies exploring patterns of alcohol use over time, providing objective measures of alcohol 

use risk category over the course of months or even years and thus avoiding biases 

associated with retrospective recall self-report measures (57).

If results from laboratory studies extend to real-world contexts (9), it is possible new

generation sensor data might ultimately be used to identify episodes of alcohol use in 

near real time. Such contemporaneous signals could open up far ranging possibilities for 

application. In particular, sensors providing automated real-time signals of drinking might 

forge new ground in relapse prevention by prompting intervention in real-world drinking 

contexts. Within the context of such treatments (e.g., Just-in-Time Adaptive Interventions; 

47), transdermal sensors might be used to issue alcohol alerts to a family member, sponsor, 

or treatment provider when a drinking episode is detected, thus potentially decreasing 

severity and duration of relapse (58,59). Finally, in the context of a global pandemic that 

has forced many addiction scientists to push beyond the boundaries of the laboratory, 

such temporally precise sensors might have key research applications. Real-time alcohol 

biosensors could enhance basic research exploring immediate correlates and consequences 

of alcohol consumption in real-world contexts (12,60,61), including by triggering surveys 

and other data collection functions when drinking is detected.

Beyond these, a transdermal alcohol biosensor with a range of accuracy levels might 

enhance health and health-related research across various other domains. In the realm of 

motor vehicle safety, a device capable of reliably categorizing drinking into low vs higher 

risk levels in real-time might be used to reduce the risk of drunk driving, issuing vibrations/

alarms or contacting a ride-sharing service when BACs are approaching higher levels. In 

the medical realm, interventions for some of the world’s most common chronic health 

conditions require that patients moderate their alcohol intake (e.g., diabetes, cardiovascular 

disorders; 53,54). A transdermal sensor providing day-level standard drink or drinking risk 

level estimates could help patients maintain healthy levels of drinking while also offering 

critical information to health care providers. Finally, in the realm of research, devices 

capable of providing a day-level record of standard drinks consumed could refine the 

precision of outcome assessments within addiction treatment trials, thus increasing statistical 

power for the identification of effective new addiction interventions (64).

Future Directions for New-Generation Sensors

At the current time, limited research has examined the relationship between new-generation 

transdermal sensor output and objective indicators of alcohol consumption, and the 

research that exists has been conducted mainly within the laboratory (9,11,31,37). The 

task of predicting alcohol consumption from transdermal sensor data under real world 

drinking conditions certainly represents a challenge. Importantly, however, as larger 

transdermal datasets accrue, additional powerful modeling tools become available, including 

models capable of accounting for individual and contextual influences on the TAC-BAC 

relationship. In particular, within the context of larger datasets, machine learning models 

might incorporate large numbers of features (e.g., data from temperature and motion sensors 

embedded within transdermal devices; individual-level factors including race, BMI, and 

gender) and more advanced machine learning model types (e.g., deep learning) become 
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available. Deep learning is invaluable for achieving high accuracy in many modeling tasks 

(34), and may be essential for some applications of transdermal technology (e.g., informing 

driving advisability, some just-in-time interventions). However, many challenges remain for 

deep learning in this domain; current datasets lack the millions of datapoints often needed in 

deep learning, and further work is needed to design domain-specific models that are small 

and fast enough to run on devices like smartphones (as has been done in other domains, 65).

Regarding the transdermal monitors themselves, although suitable for many research 

functions, additional work is needed before these devices are ready for widespread 

application. To date the majority of new-generation sensor validation work has involved 

BACtrack Skyn (9,11,31,37). Earlier Skyn prototypes showed high rates of device failure, 

although reliability has improved substantially with newer prototypes (9,31). Current Skyn 

prototypes feature limited waterproofing, compatibility only with iOS devices, and limited 

battery life. In addition, as is typical early in the development of any novel technology, 

prototype sensors are currently expensive. Given that the underlying technology and 

materials supporting transdermal devices are not costly in-and-of themselves, prices are 

likely to decrease with expanding usage of transdermal sensors.

Finally, although machine learning approaches can have advantages for modeling complex 

associations, other frameworks can also excel in such contexts including first-principles 

mathematical models (27,56,57). First principles models have the advantage of requiring 

less data because they rely on expert knowledge, while machine learning might uncover 

previously-unknown relationships given sufficient data. Future research might directly 

compare these modeling frameworks for TAC-BAC translation.

Conclusion

Recent technological advances have led to the development of a new generation of 

transdermal sensor and novel tools for transdermal data processing. Additional research 

will be required to explore the validity of these new sensors within real-world contexts in 

response to variable alcohol doses in large and diverse populations of drinkers, as well as to 

establish the feasibility and acceptability of these devices for longer term wear. Nonetheless, 

early research indicates these sensors will greatly expand the range of application for 

biosensor technology within addiction science.
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Figure 1. 
Top panel displays two new generation transdermal wrist sensors—Milo (left) and BACtrack 

(right). Bottom panel displays old-generation (AMS SCRAM; left) and new-generation 

(BACtrack Skyn prototype; right) devices to scale, side by side. Bottom panel adapted from 

(10).
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Figure 2. 
The relationship between a single TAC measurement and BAC as estimated using linear 

regression (left) and Extra-Trees machine-learning (right). “Fold”s refer to portions of the 

dataset held out for testing during four-fold cross validation. In the case of a single TAC 

measurement, the machine learning model predicted ~0% eBAC for TAC values close to 

0, and a gradually increasing TAC–eBAC relationship for higher values (with noise due to 

measurement error, individual differences, and other causes).
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