Skip to main content
. Author manuscript; available in PMC: 2022 Oct 1.
Published in final edited form as: Neurosci Biobehav Rev. 2021 Jul 26;129:282–295. doi: 10.1016/j.neubiorev.2021.07.025

Table 2.

Fit statistics for LCGA models

Unconditional models
Number of classes AIC BIC Entropy LMR BLRT
Value p. value Value p. value
FLP 1 2125.456 2151.921 -- -- -- -- --
FLP 2 2082.808 2124.396 0.513 48.549 0.4747 50.648 <.001
FLP 3 2062.225 2118.936 0.593 27.398 0.115 28.583 <.001
FLP 4 2060.148 2131.982 0.685 9.659 0.0413 10.077 0.0984
DCHD 1 2438.852 2471.246 -- -- -- -- --
DCHD 2 2354.852 2401.237 0.535 87.16 0.0022 91.262 <.001
DCHD 3 2324.121 2383.759 0.661 36.99 0.3526 38.731 <.001
DCHD 4 2313.218 2386.109 0.598 18.054 0.1515 18.903 <.001
Conditional models
Number of classes AIC BIC Entropy LMR BLRT
Value p. value Value p. value
FLP 2 2073.162 2122.312 0.437 62.493 0.0818 64.294 <.001
FLP 3 2053.306 2125.140 .614 30.963 0.3349 31.856 <.001
FLP 4* 2049.907 2144.425 .664 14.968 0.1495 15.399 0.3636
DCHD 2 2349.042 2402.053 0.558 97.995 0.0099 101.069 <.001
DCHD 3 2317.012 2389.902 0.668 42.691 0.2548 44.03 <.001
DCHD 4* 2308.839 2401.607 0.612 19.56 0.3345 -- --

Note.

*

indicates that model parameters needed to be fixed in order to ensure convergence