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Abstract

Advanced glycation end products (AGEs) accumulate with age in human lens capsules. AGEs in 

lens capsules potentiate the transforming growth factor beta-2-mediated mesenchymal transition 

of lens epithelial cells, which suggests that they play a role in posterior capsule opacification 

after cataract surgery. We measured AGEs by liquid chromatography-mass spectrometry in 

capsulorhexis specimens obtained during cataract surgery from nondiabetic and diabetic patients 

with and without established retinopathy. Our data showed that the levels of most AGEs (12 

out of 13 measured) were unaltered in diabetic patients and diabetic patients with retinopathy 

compared to nondiabetic patients. There was one exception: glucosepane, which was significantly 

higher in diabetic patients, both with (6.85 pmol/μmol OH-proline) and without retinopathy (8.32 

pmol/μmol OH-proline), than in nondiabetic patients (4.01 pmol/μmol OH-proline). Our study 

provides an explanation for the similar incidence of posterior capsule opacification between 

nondiabetic and diabetic cataract patients observed in several studies.

1. Introduction

The human lens capsule is a basement membrane secreted by a monolayer of lens epithelial 

cells. It surrounds the lens and allows selective molecules to pass through to the lens 

6For correspondence: ram.nagaraj@cuanschutz.edu.
5present address: Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital LMU, Munich, 
Germany

Commercial relationship
None.

Declaration of competing interest
The authors declare that they have no conflicts of interest

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Exp Eye Res. Author manuscript; available in PMC 2022 September 01.

Published in final edited form as:
Exp Eye Res. 2021 September ; 210: 108704. doi:10.1016/j.exer.2021.108704.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Danysh and Duncan, 2009; Danysh et al., 2010). It thickens with age; in the adult lens, the 

average thickness is ~12 μm at the anterior pole and ~5 μm at the posterior pole (Barraquer 

et al., 2006). The lens capsule is a reservoir of growth factors that are needed for lens 

epithelial cells to proliferate and differentiate into fiber cells (Danysh and Duncan, 2009; 

Tholozan et al., 2007; VanSlyke et al., 2018).

Lens posterior capsule opacification (PCO) occurs in many patients after cataract surgery 

and implantation of an intraocular lens (IOL). The residual lens epithelial cells on the 

anterior capsule after cataract surgery proliferate, migrate and undergo changes to a 

myofibroblast phenotype through epithelial to mesenchymal transition (EMT) and secrete 

excessive extracellular matrix proteins, which causes PCO through fibrosis (Wormstone and 

Eldred, 2016; Wormstone et al., 2020). PCO often leads to diminished vision. The incidence 

of PCO increases with time after cataract surgery, ranging between 4.7–18.6% at 3 years 

and 7.1–22.6% at 5 years in patients with a single piece IOL implanted (Ursell et al., 2020). 

Nd:YAG capsulotomy can be performed to clear the fibrous tissue and restore vision. The 

biochemical mechanisms underlying PCO are not fully understood.

The lens capsule has been studied as a contributor to PCO. Transforming growth factor 

beta-2 (TGFβ2)-mediated signaling has been implicated (Boswell et al., 2017; Meacock et 

al., 2000). Integrins, especially αV, have been shown to be important for LECs to undergo 

EMT, possibly through activation of latent TGFβ2 in the capsule (Mamuya et al., 2014). 

Additionally, recent studies also implicate the immune response following cataract surgery 

as a possible cause (Jiang et al., 2018; Logan et al., 2017).

Advanced glycation end products (AGEs), which can potentiate TGFβ2-mediated signaling 

and accelerate EMT of LECs (Nam and Nagaraj, 2018; Raghavan et al., 2016), are formed 

as a result of a chemical reaction between carbonyl compounds and protein amino groups 

(mainly those of lysine and arginine residues). Since capsule proteins have negligible 

turnover, they accumulate AGEs with age. Many AGEs have been detected in human lens 

proteins (Nagaraj et al., 2012; Smuda et al., 2015). In addition, lens capsule proteins have 

been shown to accumulate AGEs with aging (Raghavan et al., 2016), and AGEs are elevated 

in capsules of cataractous as compared to noncataractous lenses (Raghavan et al., 2016). Our 

previous study also demonstrated that TGFβ2-mediated EMT of LECs is directly related to 

the levels of AGEs in the lens capsule (Raghavan et al., 2016). In addition, we demonstrated 

that capsule AGEs interact with a receptor for AGEs, RAGE, in LECs during enhancement 

of EMT (Raghavan and Nagaraj, 2016). Our recent study (Nam et al., 2021) shows that 

RAGE in LECs is required for TGFβ2-mediated EMT. Together, these data suggest that lens 

capsule AGEs play a role in PCO.

Hyperglycemia in diabetes promotes AGE formation in tissues (Vlassara and Uribarri, 

2014). Many studies have shown that AGEs accumulate at a higher rate in tissue proteins 

in diabetes, and in skin collagen, AGEs are directly related to long-term glycemic control 

(Beisswenger et al., 1993; Lyons et al., 1991). Some studies, but not all (Ahmed et al., 

2003), have shown higher levels of AGEs in diabetic lenses (Hashim and Zarina, 2011; 

Zarina et al., 2000), which could be a reason for accelerated age-related cataracts in diabetic 

patients. It is not known whether capsule proteins accumulate higher levels of AGEs in 
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diabetic patients. Since capsule AGEs are likely to play a role in PCO, it was of significance 

to determine the effect of diabetes on capsule AGE levels.

Several studies have shown a similar or lower incidence of PCO in diabetic patients than 

in nondiabetic patients (Knorz et al., 1991; Praveen et al., 2014; Zaczek and Zetterstrom, 

1999), but some studies have shown a higher incidence rate in diabetic patients (Hayashi 

et al., 2002; Ionides et al., 1994; Wu et al., 2018). Thus, the effect of diabetes on PCO is 

not completely resolved. In this study, we sought to determine whether capsule AGE levels 

are elevated in two separate groups, diabetic patients and diabetic patients with established 

retinopathy, relative to a patient group of nondiabetic patients undergoing cataract surgery.

2. Methods

All reagents used were of at least analytical grade. Liquid chromatography-mass 

spectrometry (LC-MS/MS) solvents were of mass spectrometry grade.

2.1. Sample collection and storage

Capsulorhexis specimens were obtained at the time of cataract surgery at the University of 

Colorado Health Sue-Anschutz Rodgers Eye Center, Aurora, CO. Upon collection, samples 

were stored at −80°C until processing. On the day of cataract surgery, blood samples 

were collected from consented patients for HbA1C measurement. The study was approved 

by the Institutional Review Board of the University of Colorado School of Medicine and 

was performed in compliance with the Helsinki Declaration (ClinicalTrials.gov Identifier: 

NCT02662010).

2.2. Sample processing

Capsule specimens were blinded and assigned a numeric identifier. They were subjected 

to enzymatic hydrolysis after being denuded of any residual lens fiber mass by rocking in 

0.85% NaCl for 3 days at room temperature. Specimens were suspended in 150 μL PBS 

(PBS-only samples were used as blanks). Samples were incubated while mixing at 300 rpm 

at 37°C. Enzymes were added in the following order: at 0 and 24 h, 10 μL 0.7 mg/mL 

collagenase (Worthington, Lakewood, NJ, Cat# 5275); at 48 and 72 h, 10 μL 3 mg/ml 

protease Type XIV (Sigma-Aldrich, St. Louis, MO, Cat# P-5147); at 96 h, 4 μL leucine 

aminopeptidase suspension (Sigma-Aldrich, Cat# L5006); and at 120 h, 12 μL 0.5 mg/ml 

carboxypeptidase Y (Sigma-Aldrich, Cat# C3888). In all incubations, flushing with argon 

was conducted after the addition of each enzyme, and the entire digestion procedure was 

carried out in the presence of a few crystals of thymol (Sigma-Aldrich, Cat# T-0501). The 

digested material was passed through a 3-kDa molecular weight cutoff centrifugal filter 

(VWR International, Tualatin, OR). The filtrate was analyzed by liquid LC-MS/MS for 

acid-labile AGEs. Fifty microliters of the digest from each sample was acid hydrolyzed 

with 6 N HCl by incubating at 110°C for 24 h under argon in a sealed glass ampule. 

The acid-hydrolyzed samples were dried in a speed vac concentrator. To remove residual 

HCl, the dried pellet was suspended in 500 μL water and dried again. The final pellet was 

suspended in 100 μL water, sonicated and then centrifuged to sediment insoluble particles. 

The supernatant was analyzed with LC-MS/MS for acid stable AGEs.
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2.3. LC-MS/MS

Samples were separated on a Waters Acquity UPLC system (Milford, MA) using a Waters 

Acquity UPLC HSS T3 column, 100 X 2.1 mm, 1.8 μm with appropriate VanGuard column 

at a temperature of 40°C, with a solvent flow of 0.6 ml/min. The solvents used were A: 

water and B: acetonitrile/water (80/20, v/v), each containing 0.12% heptafluorobutyric acid. 

The percentages of solvent A were: 0–2.2 min, 98%; 3.3 min, 92%; 7.6 min, 66%; 7.8 min, 

0%; 9.5 min, 0% and 12.2 min, 98%. For mass spectrometric detection on a Sciex 4500 

QTrap, scheduled multiple-reaction monitoring (sMRM) mode was used, utilizing collision­

induced dissociation of the protonated molecules with compound-specific orifice potentials 

and fragment-specific collision energies. The ion source was run under the following 

conditions: temperature, 650°C; ion spray voltage, 2500 V; curtain gas, 35 ml/min; nebulizer 

gas, 65 mL/min; heating gas, 70 mL/min. The declustering potential, collision energy and 

cell exit potential for each of the monitored precursor-to-product ion transitions are shown in 

Table 1. After confirmation of the peak position, peaks were integrated and blank subtracted. 

Analytes were quantified using the standard addition method as previously described 

(Raghavan et al., 2016; Smuda et al., 2015) and corrected for enzyme hydrolysis efficiency. 

The enzyme efficiency percentage in each sample was calculated based on the CML and 

CEL contents in the enzyme digest/CML and CEL contents in acid hydrolysate*100. The 

data were normalized to 1 μmol hydroxy-proline (OH-Pro) in the samples.

2.4. Statistical analyses

Levels for each of the analytes were compared across groups using linear regression, and 

linear contrasts were used to test pairwise comparisons. P-values for comparisons across 

the three groups were adjusted for multiple comparisons using the false discovery rate as 

described by Benjamini and Hochberg (Benjamini et al., 2001). These comparisons were 

also made after adjusting for age and sex. Sensitivity analyses using log-transformed values 

were performed. All analyses were performed using SAS version 9.4 (The SAS Institute, 

Cary, NC).

3. Results

The average ages of the 120 included patients among the three groups are shown in Table 

2. The average age of diabetic patients with DR was 4 years lower than both diabetic and 

nondiabetic patients. The HbA1C levels were significantly higher in diabetic patients than 

in nondiabetic patients. We measured 13 AGEs in this study, among which 2 were derived 

from glycation initiated by glucose, 4 were derived from glyoxal, 6 were derived from 

methylglyoxal and one was derived from ascorbate (Fig. 1). The sMRM chromatograms for 

AGEs are shown in Supplementary Fig. 1. The levels of most AGEs were < 50 pmoles/μmol 

OH-Pro. Sensitivity analyses evaluating the comparison across groups after adjusting for 

age and gender or after log transformation yielded similar results; therefore, the unadjusted 

analyses using the original scale for each analyte are presented. Among the 13 AGEs 

measured, the levels of the majority of AGEs, 12 out of the 13, were similar in diabetic 

patients and diabetic patients with DR when compared to those in nondiabetic patients 

after correcting for multiple comparisons (Figs. 2 to 5). One exception was glucosepane, 

with a multiple testing corrected p-value < 0.01. The mean ± standard error levels were 

Rankenberg et al. Page 4

Exp Eye Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8.32 ± 0.76 pmol/μmol OH-Pro in diabetic patients and 6.85 ± 0.89 pmol/μmol OH-Pro in 

diabetic patients + DR, which were significantly higher (p<0.01 and p=0.01, respectively) 

than those in nondiabetic patients (4.01 ± 0.71 pmol/μmol OH-Pro) (Fig. 2). However, there 

was no difference between diabetic patients and diabetic patients + DR (p=0.21). The other 

glucose-derived AGE, pyrraline, showed no differences between groups.

Among the glyoxal-derived AGEs, the levels of CMA were the highest for all patient 

groups: 208.1 ± 20.9 pmol/μmol OH-Pro, 248.8 ± 22.4 pmol/μmol OH-Pro and 211.9 ± 

26.4 pmol/μmol OH-Pro and not significantly different among the nondiabetic, diabetic and 

diabetic patients + DR, respectively (Fig. 3). The levels of other glyoxal-derived AGEs, 

GALA and CML did not exhibit any significant differences across groups. However, 

the observation of CMA levels that were several-fold higher than the levels of CML 

was unexpected. Further studies are required to determine the reasons underlying this 

observation. We note here that ~10–15% of CML measured could have formed as a result of 

acid hydrolysis of proteins, which could have caused an increase in the measured amounts in 

samples.

Likewise, methylglyoxal-derived AGEs, MODIC, MG-H1, MG-H3, CEA and CEL showed 

no differences among the three groups (Fig. 4). Finally, the levels of DT-Ha, a 3­

deoxythresone (ascorbate)-derived AGE (Rakete and Nagaraj, 2016), were not different 

across the three groups (Fig. 5).

4. Discussion

The objectives of this study were 1) to determine whether diabetic lens capsules contained 

higher levels of AGEs than nondiabetic lens capsules and 2) to determine whether AGE 

levels were higher in diabetic patients with established retinopathy than in diabetic patients 

without retinopathy. Based on the findings in other basement membranes, for example, in 

the tubular basement membrane of kidneys (Bendayan, 1998; Copeland et al., 1987) and 

Bruch’s membrane (Handa et al., 1999), we anticipated diabetic capsules, being basement 

membranes, to have higher levels of AGEs. However, 12 of the 13 AGEs measured were 

similar between diabetic patients and nondiabetic patients. This is interesting and, at the 

same time, unexpected. The lack of an increase in capsule AGEs in diabetes suggests the 

possibility that most glycation precursor levels are not elevated in the milieu of the lens 

capsule (aqueous humor) in diabetes. This possibility is supported by the observation that 

the AGE levels in aqueous humor in diabetic patients are similar to those in nondiabetic 

patients (Franke et al., 2003). Despite a significant elevation of AGEs in the aqueous humor 

of diabetic + DR patients compared to diabetic patients without DR (Endo et al., 2001), we 

found no difference in the majority of AGEs between the two groups. The absence of such 

an increase suggests that AGE-bearing proteins in aqueous humor are probably derived from 

plasma, not generated in situ in aqueous humor. Among all AGEs, only glucosepane was 

elevated in diabetic capsules relative to nondiabetic capsules. This AGE is derived solely 

from glucose (Biemel et al., 2002). Elevated glucose levels in the aqueous humor (Gomel et 

al., 2021) and/or in lens (Bron et al., 1993) could have led to this increase, but this needs 

to be investigated in a future study. An interesting observation in this study is ~60–80 times 

lower levels of CML than CMA. This was unexpected, as both AGEs are likely derived 

Rankenberg et al. Page 5

Exp Eye Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from glyoxal. Further work is needed to understand their mechanism of formation in lens 

capsules.

The fact that the AGE levels are largely similar between diabetic and nondiabetic patients 

supports our hypothesis that capsule AGEs promote the TGFβ2-mediated EMT of lens 

epithelial cells during PCO and that the incidence of PCO should be similar between the two 

groups. This is in fact the case in several studies, but as mentioned above, the PCO incidence 

was higher in diabetic patients in some studies. In this context, it should be noted that the 

occurrence of PCO also depends on the nature of the implanted IOL; round-edged IOLs 

and acrylic hydrophilic IOLs have higher rates of PCO than square-edged IOLs and acrylic 

hydrophobic IOLs (Duman et al., 2015; Hazra et al., 2012). Thus, the discrepancy between 

studies could be attributable to differences in the implanted IOLs or due to other potential 

confounding factors, such as patient age.

In conclusion, our study revealed that AGE levels are similar between diabetic and 

nondiabetic human lens capsules. This provides a biochemical basis for the lack of 

difference in the PCO incidence in the two groups observed in several studies.
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Highlights

• Advanced glycation endproducts (AGEs) in human lens capsules were 

measured by LC-MS/MS

• The levels of majority of AGEs were similar between diabetic and 

nondiabetic lens capsules

• Glucosepane levels were significantly higher in diabetic than in nondiabetic 

lens capsules
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Fig. 1. Structure of AGEs measured in this study.
They are categorized into four classes based on their primary precursor carbonyl 

compounds. The structures shown in red are measured in enzyme-digested material, and 

those in blue are measured in acid-hydrolyzed material.
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Fig. 2. The levels of glucose-derived AGEs.
In nondiabetic (ND), diabetic (DB) and diabetic with retinopathy (DB + DR) capsulorhexis 

specimens. Points represent observed values, and the mean and 95% confidence 

intervals are displayed with dashed lines and whiskers, respectively. *p=0.01, **p<0.01, 

ns=nonsignificant
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Fig. 3. The levels of glyoxal-derived AGEs.
In nondiabetic (ND), diabetic (DB) and diabetic with retinopathy (DB + DR) capsulorhexis 

specimens. Points represent observed values, and the mean and 95% confidence intervals 

are displayed with dashed lines and whiskers, respectively. The multiple testing corrected 

p-value comparing all three groups was >0.5 for all analytes, so the pairwise comparisons 

are not presented.
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Fig. 4. The levels of methylglyoxal-derived AGEs.
In nondiabetic (ND), diabetic (DB) and diabetic with retinopathy (DB + DR) capsulorhexis 

specimens. Points represent observed values, and the mean and 95% confidence intervals 

are displayed with dashed lines and whiskers, respectively. The multiple testing corrected 

p-value comparing all three groups was >0.5 for all analytes, so the pairwise comparisons 

are not presented.
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Fig. 5. The levels of an ascorbate-derived AGE.
In nondiabetic (ND), diabetic (DB) and diabetic with retinopathy (DB + DR) capsulorhexis 

specimens. Points represent observed values, and the mean and 95% confidence intervals 

are displayed with dashed lines and whiskers, respectively. The multiple testing corrected 

p-value comparing all three groups was >0.5 for all analytes, so the pairwise comparisons 

are not presented.
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Table 2.

Patient demographics

Nondiabetic (ND) (n = 48)
Diabetic w/o retinopathy (DB) (n 
= 42)

Diabetic w/retinopathy 
(DB+DR) (n = 30) p-value*

Female 30 (63%) 25 (60%) 9 (30%) 0.01

Age (years), mean ± 
SD

68 ± 6 68 ± 7 64 ± 8 0.02

HbA1C, mean ± SD 5.5 ± 0.3 7.6 ± 1.7 8.1 ± 1.7 <0.01

SD = standard deviation.

*
p-values were calculated with either a chi-squared test or an analysis of variance, as appropriate.
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