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Abstract

The goal of this review is to provide a novel perspective on the nature and importance of the 

relationship between the circadian and pain systems. We provide: 1) An overview of the circadian 

and pain systems, 2) a review of direct and correlative evidence that demonstrates diurnal and 

circadian rhythms within the pain system; 3) a perspective highlighting the need to consider 

the role of a proposed feedback loop of circadian rhythm disruption and maladaptive pain; 4) a 

perspective on the nature of the relationship between circadian rhythms and pain. In summary, we 

propose that there is no single locus responsible for producing the circadian rhythms of the pain 

system. Instead, circadian rhythms of pain are a complex result of the distributed rhythms present 

throughout the pain system, especially those of the descending pain modulatory system, and the 

rhythms of the systems with which it interacts, including the opioid, endocrine, and immune 

systems.
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1. Introduction

The vast majority of organisms on earth have evolved with internal manifestations of the 

external daily light-dark cycles. These circadian (circa = about; dies = day) rhythms are self­

sustained, endogenous oscillations generated by circadian clocks that persist with a period 

of around 24-hours under constant conditions (Golombek and Rosenstein, 2010). Exposure 

to the daily external light-dark cycle synchronizes (entrains) these rhythms to the 24-hour 

cycle of the external world via signaling to a so-called ‘master clock’. Among mammals, 

this master clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus 

(Stephan and Zucker, 1972). Together, the SCN and the circadian clocks throughout the 

body comprise what is known as the circadian system.
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Circadian clocks are self-sustaining and self-regulated through what is known as the 

transcription-translation feedback loop (TTFL). The TTFL comprises a family of core 

canonical ‘clock’ genes, including Clock, Bmal1, Per, and Cry, among several others. In 

brief, circadian rhythms are generated within the nucleus of cells by the autoregulatory 

TTFL of the core circadian genes. At the beginning of the circadian day, BMAL1 and 

CLOCK interact in the cytosol to form a heterodimer that then is translocated into the 

nucleus. This heterodimer binds to E-box promoter sequences of the Cry and Per genes to 

activate their transcription. The gene products of Per and Cry accumulate in the cytoplasm, 

dimerize, and then form a complex that is translocated back into the nucleus to repress their 

own transcription by interacting with CLOCK and BMAL1. Notably, a complete cycle of 

this feedback loop takes ~24 hours to occur. There are additional feedback loops interlocked 

with the core CLOCK-BMAL1/PER-CRY loop. Further intricate details of the TTFL are 

beyond the scope of this review, but they have been extensively characterized elsewhere 

(Partch et al., 2014). The daily oscillation in expression of these proteins is responsible 

for the generation of circadian rhythms at molecular, cellular, physiological, and behavioral 

levels.

In mammals, the TTFL of the circadian clock is present in nearly every cell (Yoo et al., 

2004; Ruben et al., 2018; Nagoshi et al., 2004). Individual circadian clocks within the body 

can run with different period lengths, so without a coordinating signal, the circadian rhythms 

of various tissues and cells become misaligned. Alignment of internal rhythms generally 

occurs via signaling from the hypothalamic SCN.

The SCN acts as a conductor to align internal circadian rhythms with the external daily 

light-dark cycle by interpreting photic signaling from the retina and communicating that 

information with the rest of the brain and body. In mammals, photosensitive retinal cells, 

specifically, intrinsically photosensitive retinal ganglion cells containing the photopigment 

melanopsin, communicate time-of-day cues to the SCN via photic signaling information. 

Photic information is relayed along the retinohypothalamic tract to the SCN to inform 

time-of-day by modifying cellular activity and the expression of specific clock proteins 

within neurons and glia. For example, light pulses alter expression of Per1/Per2 within the 

rat SCN, but only during the night (Miyake et al., 2000). After receiving and interpreting 

retinal photic information, the SCN aligns internal rhythms with the external solar day via 

neuronal projections and humoral signaling (Pevet and Challet, 2011).

Many behavioral, physiological, and biochemical processes display circadian rhythms. 

Sleep-wake cycles, locomotor activity rhythms, body temperature fluctuations, as well 

as immune and endocrine function are examples of rhythmic processes regulated by the 

circadian system (Walker et al., 2020; Scheiermann et al., 2013; Gamble et al., 2014). 

Most importantly for the context of this review, pain is also regulated by the circadian 

system, although our current understanding of the interaction between the pain and circadian 

systems remains unspecified. Below, we have outlined our current understanding of the 

relationship between these two systems in order to inform potential hypotheses surrounding 

the nature of their function. We also highlight the importance of proper circadian rhythm 

health and the consequences of circadian rhythm disruption on pain.
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2. The Pain System - An Overview

The pain system encodes and relays noxious sensory information from the periphery into 

the central nervous system to produce protective behavioral outcomes. Noxious information 

is relayed by peripheral nociceptors to the spinal cord, brainstem, midbrain, and forebrain 

where withdrawal or wound-protection behaviors are elicited to prevent or minimize injury 

(Baliki and Apkarian, 2015). Nociceptive information delivered to brain is processed into the 

sensory-discriminative and affective aspects of pain by a network of supraspinal structures 

that comprise what is commonly referred to as the pain matrix (Kulkarni et al., 2005; 

Garcia-Larrea and Peyron, 2013; Iannetti and Mouraux, 2010; Legrain et al., 2011; Auvray 

et al., 2010).

It is likely that none of the nuclei or structures considered to be part of the pain 

matrix exclusively process pain (Baliki and Apkarian, 2015). Instead, this matrix can be 

described as a ‘distributed nociceptive system’ because sensory-discriminative and affective 

components of pain can still be processed in the absence of one or more components of the 

system (Coghill, 2020). For the purpose of this review, we operationally classify supraspinal 

regions commonly implicated in the central processing of pain as part of the pain system 

while understanding that these regions do not exclusively process pain and may be equally 

involved in the processing of innocuous and noxious stimuli alike (Iannetti and Mouraux, 

2010).

2.1 Functional Anatomy of the Pain System

Noxious stimuli are encoded and relayed central by peripheral pseudounipolar nociceptor 

neurons of two primary classes: A∂ fibers and C fibers. A∂ neurons are medium-sized 

myelinated fibers that rapidly transmit localized pain information, whereas C neurons 

are small unmyelinated fibers that transmit slow, low-resolution pain information. Upon 

exposure to a noxious stimulus, thermosensitive ion channels, mechanotransduction 

channels, or chemoreceptors on peripheral nociceptor terminals will transduce the noxious 

stimuli into depolarization events that activate local voltage-gated ion channels (Basbaum et 

al., 2009). For example, exposure to noxious heat above 43° C activates TRPV1 and other 

heat-sensitive ion channels, producing inward depolarizing currents at peripheral nociceptor 

terminals. Upon sufficient channel activation, action potentials will be generated and then 

propagated through the dorsal root ganglia (DRG) and into the dorsal horn of the spinal 

cord.

Nociceptor input into the dorsal horn of the spinal cord is processed and relayed rostrally 

to the brain. Action potentials from primary nociceptors produce excitatory post synaptic 

potentials on secondary nociceptive specific neurons and wide dynamic range neurons 

located within the gray matter of the dorsal horn via glutamate and co-transmitter release 

(such as substance P). These excitatory potentials are gated by feedforward inhibition 

produced by Aβ-fibers that excite inhibitory local glycinergic and GABAergic interneurons 

that synapse with secondary nociceptive specific and wide dynamic range neurons (Lu et al., 

2013; Todd, 2010; Guo and Hu, 2014). Upon depolarization, nociceptive specific and wide 

dynamic range neurons relay nociceptive information across the anterior white commissure 

and into the brain along five main ascending tracts: the spinothalamic, the spinoreticular, the 
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spinomesencephalic (or parabrachial tract), the cervicothalamic, and the spinohypothalamic 

tracts.

Supraspinal structures process nociceptive information in a distributed manner to produce 

the sensory-discriminative and affective components of pain. Sensory-discriminative 

components of pain (e.g., location, temporal quality, and intensity) are mainly produced 

by the primary somatosensory cortex (Bushnell et al., 1999; Rainville et al., 1997). Sensory 

discriminative information is relayed to the primary somatosensory cortex via projections 

from the ventral posterolateral and ventral posteromedial nuclei of the thalamus (Ab Aziz 

and Ahmad, 2006; Hsu et al., 2014). The secondary somatosensory cortex (Maihöfner et 

al., 2006; Timmermann et al., 2001), prefrontal cortex (PFC) (Ong et al., 2019), and insular 

cortex (Ostrowsky et al., 2002; Lu et al., 2016; Starr et al., 2009), also are suggested to play 

a role in sensory-discriminative pain processing.

Affective-motivational components of pain (e.g., subjective unpleasantness, motivation to 

escape painful stimulus) arise from the processing of nociceptive information within the 

PFC (including the anterior cingulate cortex (ACC)) (Ong et al., 2019; Xiao and Zhang, 

2018; Porro et al., 2002; Metz et al., 2009), insula (Ostrowsky et al., 2002; Lu et al., 2016), 

amygdala (Neugebauer, 2015), and hypothalamus (Bernard, 2007). Nociceptive information 

is relayed to these regions from the intralaminar and ventromedial thalamic nuclei (Ab Aziz 

and Ahmad, 2006).

The ascending transmission of nociceptive information is regulated by the descending 

pain modulatory system. The descending pain modulatory system comprises primarily the 

periaqueductal gray (PAG), the locus coeruleus (LC), and the rostral ventromedial medulla 

(RVM) (Ossipov et al., 2014). Together, these three regions can both facilitate and inhibit the 

spinal transmission of nociceptive information. Descending regulation is achieved by direct 

descending projections from the LC and RVM to the dorsal horn of the spinal cord; these 

projections then either function to inhibit or facilitate nociceptive transmission. For example, 

pain “On” or “Off” neurons located in the RVM are thought to respectively facilitate or 

inhibit the transmission of nociceptive information within the spinal cord (Khasabov et al., 

2015). Activity of the LC and RVM is regulated heavily by the PAG (Lau and Vaughan, 

2014), which receives and processes pain signaling information from other supraspinal 

regions.

Other supraspinal regions in the pain system can also project directly to the PAG, LC, RVM, 

and dorsal horn of the spinal cord, forming an extended descending modulatory system. 

These regions include the PFC (Ong et al., 2019), nucleus submedius -> ventrolateral orbital 

cortex -> PAG circuit originating from the thalamus, (Tang et al., 2009), various regions 

of the hypothalamus (Bernard, 2007), and the amygdala (Pertovaara and Almeida, 2006). 

It is also notable that orexin/hypocretin neurons of the lateral hypothalamus appear to play 

a role in mediating analgesia via projections to the descending pain modulatory system, 

spinal cord, and other supraspinal components of the pain system (Colas et al., 2014; 

Ahmadi-Soleimani et al., 2020; Marcus and Elmquist, 2006).
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The pain system adapts in response to painful stimuli. After acute pain stimulation, sites 

of original injury/stimulation can become hypersensitive to normal stimuli (allodynia) and 

noxious stimuli (hyperalgesia) in a process known as peripheral sensitization (Gangadharan 

and Kuner, 2013). Central plastic changes can also occur in the form of central sensitization; 

these changes enhance the reactivity and activity of the central pain system (Latremoliere 

and Woolf, 2009). Acute sensitization is thought to be useful for promoting wound-healing 

and wound-protection behavior. But sensitivity alterations to the pain system are not always 

beneficial, as they can contribute to the development of chronic pain states that may be 

useful for wound-protection and healing behaviors (de C Williams, 2016) yet are typically 

considered to be detrimental to the function and well-being of an individual (Mansour et 

al., 2014). Maladaptive pain states such as neuropathic or chronic pain (pain lasting for 

more than 6-months) can arise via sensitization when ‘useful’ pain information outlasts its 

acute protective function or when damage to the peripheral or central pain system occurs 

(Schaible, 2006).

3. Diurnal and Circadian Rhythms of the Pain System

In this section we present direct and correlative evidence of the interaction between the 

circadian and pain systems. We first briefly highlight behavioral studies of circadian rhythms 

of pain and then examine the involvement of specific nodes of the pain system in the 

circadian regulation of pain thresholds.

3.1 Circadian Rhythms of Pain

The pain system exhibits circadian rhythms in function (Segal et al., 2018; Palada et al., 

2020). Clinical and experimental evidence suggest that pain responsiveness varies across 

the day in both sexes of diurnal and nocturnal species, including humans (Bruguerolle 

and Labrecque, 2007; Chassard and Bruguerolle, 2004). Indeed, daily variations in pain 

responsiveness have been observed in rodents housed in constant conditions, suggesting that 

these variations reflect true circadian rhythms (Oliverio et al., 1982; Pickard, 1987). In a 

meta-analysis of circadian rhythms of pain thresholds of healthy humans, pain thresholds 

were observed to be highest at the end of the active phase and during the night (Figure 

1) (Hagenauer et al., 2017). However, pain threshold rhythms in humans vary dramatically 

in response to disease, with peaks and troughs of sensitivity varying inconsistently across 

different disease states (Kim et al., 2015).

If we assumed that pain threshold rhythms were phase-dependent (in common with 

locomotor activity rhythms), then we could reasonably predict that nocturnal species have 

rhythms that are antiphase to diurnal species. However, this is not always the case. Several 

rodent studies have reported highest pain responsiveness during the active phase (Oliverio 

et al., 1982; Martínez-Gómez et al., 1994; Frederickson et al., 1977), whereas others 

report the peak of sensitivity during the inactive phase (Kavaliers and Hirst, 1983). The 

phase of rhythms can even change based on whether rodents are entrained or free-running 

(Pickard, 1987). One study also reported antiphase thresholds in two strains of nocturnal 

mice (Castellano et al., 1985). Thus, further research is needed to understand the relationship 

Bumgarner et al. Page 5

Neurosci Biobehav Rev. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between chronotype and pain threshold rhythms in order to optimally translate preclinical 

pain research, regardless of whether the research is focused on circadian biology.

3.2 Dorsal Root Ganglia

Daily rhythmic activity is observed within the primary nociceptors of the DRG. In mice, 

DRG express clock genes that drive the rhythmic expression of substance P across the day, 

likely via Tac1 transcriptional enhancer E-box sites (Zhang et al., 2012). Substance P is a 

pleiotropic neuropeptide that functions to transmit and modulate pain signaling within the 

pain system (Li et al., 2012). Synaptic release of glutamate and substance P by DRG in 

events of nociception results in depolarization of spinal neurons (Zieglgänsberger, 2019). 

This circadian pattern of substance P expression is correlated with circadian patterns of 

responsiveness to inflammatory pain induced by formalin injections (Zhang et al., 2012). 

DRG also exhibit a circadian oscillation in expression of α2δ-1, a voltage-gated calcium 

channel subunit (Kusunose et al., 2010). The expression of other nociceptive proteins in 

DRG is likely regulated by clock genes, considering the presence of the clock output 

gene Tef or the presence of prokineticin receptors (Lee et al., 2017; Negri et al., 2002). 

Additionally, diurnal variations in TRPV1 expression in the human esophagus have been 

observed (Yang et al., 2015). Though the findings of the previous study were not directly 

linked directly to the DRG, a study using male rats observed a diurnal profile of Trp channel 

expression in the DRG across the day (Kim et al., 2020), indicating that there may be daily 

variations of channel expression at nociceptor terminals.

3.3 Dorsal Horn of the Spinal Cord

The spinal cord displays circadian rhythms in nociceptive function. The circadian clock 

gene TTFL is present in neurons and astrocytes of the dorsal horn of the spinal cord 

(Morioka et al., 2012; Morioka et al., 2016); additional studies confirmed the expression 

of Rev-erbα and Per1 in the dorsal horn, although expression was only examined at single 

timepoints (Onishi et al., 2002; Yamamoto et al., 2001). The dorsal horn of the spinal cord 

displays a circadian pattern in enzymatic activity of the Na+ / K+ ATPase (Eblen-Zajjur 

et al., 2015), which is essential for neuronal function and plays an integral role in pain 

processing (LaCroix-Fralish et al., 2009). Although not yet reported, it is possible that the 

expression of Na+/K+ ATPase is directly or indirectly influenced by clock genes. Another 

study reported that the TTFL present in spinal astrocytes drives the rhythmic expression 

of cyclooxygenase-1 and glutamine synthase, both of which play roles in pain processing 

(Morioka et al., 2016).

Several studies to date have examined the relationship between pain threshold rhythms and 

circadian rhythms in the spinal cord. In a rat model of chronic constriction injury, a diurnal 

oscillation was detected in the NR2B-CREB-CRTC1 signaling pathway within the dorsal 

horn of the spinal cord. Diurnal rhythms of protein and mRNA expression were observed 

in each component of the pathway, including the NR2B NMDA glutamate receptor subunit 

and two of its response elements: CREB, and CRTC1 (Xia et al., 2016). This pathway 

regulates synaptic plasticity and the development of pain hypersensitivity (Xia et al., 2017). 

An adenovirus driven knockdown of CREB and CRTC1 expression increased mechanical 

withdrawal (von Frey filaments) thresholds and led to altered withdrawal threshold rhythms 
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across the day (Xia et al., 2017). Next, rhythmic expression of substance P has been 

observed in the dorsal horn of the spinal cord (Zhang et al., 2012). Lastly, corticosterone­

driven astrocytic ATP release in the spinal cord has been linked to diurnal rhythms of 

allodynia in a mouse model of nerve injury (Koyanagi et al., 2016). In this study, ablation 

of glucocorticoid secretion by adrenalectomy abolished diurnal astrocytic ATP release in 

the dorsal horn of the spinal cord and therefore diurnal allodynia rhythms (Koyanagi et al., 

2016).

3.4 Periaqueductal Gray

The PAG exhibits circadian rhythms, but little is known about these rhythms in relation 

to circadian variations in pain modulation. The PAG receives direct input from ipRGCs 

(Kriegsfeld et al., 2004; Hattar et al., 2006), receives neuronal projections from the SCN 

(Zhang et al., 2009), and exhibits clock gene rhythms in vitro (Landgraf et al., 2016). 

One group reported daily differences in μ-opioid receptor mRNA expression in the PAG 

of mice with sham nerve ligation surgeries (Takada et al., 2013). In addition to its role in 

analgesia, the ventrolateral PAG acts in tandem with the ascending arousal system to gate 

rapid eye movement (REM) sleep. A population of ‘REM sleep-on’ and ‘REM sleep-off’ 

neurons are present throughout the vlPAG, serving as further evidence for diurnal variations 

in PAG activity (Sapin et al., 2009). Further, the PAG’s daily activity may be altered 

by fluctuations in levels of endogenous opioids (discussed below). Additional research is 

needed to understand how pain is modulated by daily molecular and physiological variations 

in the PAG.

3.5 Rostral Ventromedial Medulla

There is currently limited direct evidence on the role of the RVM in circadian rhythms of 

pain. The TTFL appears to be present in the caudal ventrolateral medulla (Monošíková 

et al., 2007), but has not yet been openly examined in the RVM or other regions of 

the medullary pain system. Additionally, diurnal variation in the activity of tryptophan-5­

hydroxylase activity in the nucleus raphe magnus of the RVM has been reported, suggesting 

that there may be a temporal regulation of neuronal activity in the region (Hery et al., 

1977). Importantly, the previously described pain On/Off neurons in the RVM appear to 

display circadian rhythmicity in activity that is intrinsically related to the sleep-wake cycle. 

In anesthetized animals, On-/Neutral cells fire spontaneously during waking and have little 

activity during sleep, whereas Off-cells fire sporadically during waking but have continuous 

activity during sleep (Leung and Mason, 1999). This observation is coincident with the 

hypothesis that circadian rhythms of pain are regulated at the level of the spinal cord via the 

differential activity of RVM On-/Off-neurons and their control over serotonergic projections 

to the dorsal horn (Foo and Mason, 2003).

3.6 Locus Coeruleus

As a core member of the ascending reticular activating system (which is responsible for 

regulating arousal and the sleep-wake cycle), there is abundant correlative evidence for the 

role of the LC in circadian pain processing. Although one study reported no evidence of the 

clock gene TTFL in the LC (Warnecke et al., 2005), another reported that Per1 is expressed 

in the LC and that expression levels vary across the day, suggesting that the LC does have its 
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own clock gene loops (Mahoney et al., 2013). There is variation in LC tyrosine hydroxylase 

activity across the day (Natali et al., 1980). In rats, LC neurons are more active during the 

active period than the inactive period. But these rhythms are dependent on SCN signaling, 

as dorsal medial hypothalamic lesions abolished this circadian variation in LC neuronal 

activity (Aston-Jones et al., 2001). The LC plays a role in regulating the circadian rhythm 

of the sleep-wake cycle. Because of this, alteration of basal activity in the LC by chronic 

or even acute pain may modulate circadian rhythms (González and Aston-Jones, 2006). 

In relation to the varying activity of LC neurons across the day, NAα2 receptors located 

in the mPFC seem to have an analgesic affect when activated by NA released by the LC 

(Kaushal et al., 2016). However, NAα1 receptors, which have lower affinity for NA, seem to 

generate allodynia and hyperalgesia in chronic pain conditions (Kaushal et al., 2016). This 

may also be relevant for prolonged periods of disrupted circadian rhythms where LC activity 

is heightened.

3.7 Thalamus

Diurnal changes in human thalamic activity (Ku et al., 2018) and rodent corticothalamic 

connectivity have been observed (Cardoso-Cruz et al., 2011). Additionally, the 

paraventricular thalamus expresses clock gene rhythms (Feillet et al., 2008). Nonetheless, 

there is limited evidence for circadian rhythms in thalamic function in relation to pain 

processing.

3.8 Hypothalamus

Few studies have examined the role of the hypothalamus in regulating diurnal variations 

in pain thresholds. However, there is correlative evidence of circadian rhythms in many 

nociceptive nuclei within the hypothalamus. Given that the SCN is located within the 

hypothalamus and projects to the hypothalamic preoptic area, paraventricular nucleus, 

dorsomedial hypothalamic nuclei, ventromedial hypothalamus (Kriegsfeld et al., 2004), it 

is not unexpected that the TTFL has been reported in each of these regions (Girotti et al., 

2009; Kriegsfeld et al., 2003; Kalil et al., 2016; Orozco-Solis et al., 2016; Moriya et al., 

2009). Beta-endorphin and met-enkephalin display rhythmic levels of protein expression in 

the hypothalamus of rat brains (Takahashi et al., 1986), and levels of endogenous opioids 

display diurnal fluctuations in the rat hypothalamus (Asai et al., 2007), suggesting that the 

hypothalamic processing of nociceptive input may vary across the day. The hypothalamus 

has also been implicated to play a role in cluster headaches (Holland and Goadsby, 2007; 

Burish et al., 2019), which exhibit diurnal variations in occurrence (Pringsheim, 2002). The 

diurnal variation in incidence of cluster headaches suggests a causative relationship to the 

rhythmic activity of the SCN and other hypothalamic regions, but this role has yet to be 

directly determined.

3.9 Lateral Hypothalamus (Orexin)

The orexin system has been implicated to play a role in pain regulation (Razavi and 

Hosseinzadeh, 2017), and its involvement in the circadian regulation of the sleep-wake cycle 

suggests a correlative relationship in the circadian regulation of pain. A diurnal variation 

of orexin-A is observed in the cerebrospinal fluid of humans, rats, and diurnal squirrel 

monkeys, although it is worth noting that the pattern of orexin-A levels in human CSF did 
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not follow the predicted levels (Salomon et al., 2003; Fujiki et al., 2001; Zeitzer et al., 

2003). Plasma orexin-A levels do not exhibit a circadian pattern of expression (Mäkelä et 

al., 2018). Importantly, orexin-A is observed to have anti-nociceptive activity (Razavi and 

Hosseinzadeh, 2017). Ablation of the SCN abolishes CSF orexin-A rhythms, suggesting that 

these rhythms are either directly or indirectly regulated by the SCN (Zhang et al., 2004).

Orexin neurons display circadian rhythms of firing activity, with peaks of activity observed 

during the active period as indicated by c-fos expression (Marston et al., 2008; Estabrooke 

et al., 2001). The rhythmic activity of the LC is directed in part by orexin neurons of the 

DMH (Gompf and Aston-Jones, 2008), consistent with the flip-flop switch model of arousal 

(Schwartz and Roth, 2008) and the demonstrated circadian rhythmicity of orexin-A levels in 

the pons and the lateral/medial hypothalamus (Taheri et al., 2000). It has also been proposed 

that projections from the DMH, mPOA, and SPVZ to orexin act as indirect projections 

from the SCN to help maintain entrainment (Deurveilher and Semba, 2005). Orexin neurons 

project to various components of the descending pain modulatory system and modulate their 

activity, providing further correlative evidence for the involvement of this region in pain 

rhythms (Ahmadi-Soleimani et al., 2020).

3.10 Cortical and Limbic Structures

Direct evidence for the involvement of cortical and limbic regions in the circadian regulation 

of pain is scarce. However, circadian variations are present in these regions, suggesting that 

they may play a role in the temporal variation of pain thresholds. Rhythmic clock gene 

expression is present in the human ACC, dorsolateral prefrontal cortex, nucleus accumbens, 

and amygdala (Li et al., 2013). The presence of clock gene expression has also been 

observed in rodent cortical and limbic regions, including the ACC, prelimbic and infralimbic 

cortices, ventral orbital cortex, insular cortex, amygdala, and nucleus accumbens (Woodruff 

et al., 2016; Chun et al., 2015; Christiansen et al., 2016; Lamont et al., 2005). The SCN 

do not directly innervate the prefrontal cortex; instead, entrainment of these regions is 

proposed to occur via a relay circuit from the SCN -> paraventricular thalamic nucleus -> 

PFC (Sylvester et al., 2002). One study reported a slight but significant variation in the 

expression of μ-opioid receptor expression across the day in the frontal cortex (Takada et 

al., 2013). There are also diurnal variations in cortical ACh release in rats, with higher 

release during the active phase (Mitsushima et al., 1996). Anterior insular lesions disrupt 

the sleep-wake cycle and disturb locomotor activity cycles, suggesting that the insula plays 

a role in the behavioral regulation of circadian rhythms (Chen et al., 2016a). Rhythmic 

expression of serotonin, its 5HIAA metabolite, and 3-methoxy-4-hydroxyphenylglycol, the 

main metabolites of norepinephrine are present in the amygdala (Moriya et al., 2015). 

Another group reported diurnal rhythms of serotonin and dopamine in the amygdala, though 

specific statistical analyses were not provided (Izumo et al., 2012). Lastly, there are diurnal 

variations in cortical synaptic activity and spine density (Hayashi et al., 2013a). Further 

research explicitly examining circadian rhythms in cortical and limbic pain processing 

seems warranted.
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4. Interacting Systems

In this section, we discuss circadian rhythms of the endogenous opioid, immune, and 

endocrine systems to consider how their interaction with the pain system may influence 

circadian rhythms of pain.

4.1 Endogenous Opioid System

The endogenous opioid system functions to regulate pain, emotional, and stress responses 

(Ferdousi and Finn, 2018). Circadian variations in opioid levels and binding activity 

throughout the day suggest that the opioid system plays a role in the circadian regulation 

of pain, potentially via the modulation of the activity of the pain system. Leu-enkephalin 

and met-enkephalin display circadian fluctuations within various forebrain regions of the rat 

(Asai et al., 2007; Kurumaji et al., 1988). Melatonin can induce dose-dependent increases 

of met-enkephalin, but this effect is not entirely mediated by binding to melatonin receptors 

(Asai et al., 2007). Dynorphin, but not beta-endorphin, levels also fluctuate across the 

day in the rat hypothalamus and pituitary (Reid et al., 1982). Diurnal rhythms of plasma 

met-enkephalin and beta-endorphin have been reported in humans (Mozzanica et al., 1991; 

Mozzanica et al., 1992; Petraglia et al., 1983). Daily variation in whole brain met-enkephalin 

levels in rats was observed when tissue was collected immediately after prolonged exposure 

to a hot plate; higher levels of met-enkephalin during the dark phase were associated with 

increased withdrawal latencies (Wesche and Frederickson, 1981). Hypophysectomy did not 

abolish this daily variation but did blunt the levels of whole brain enkephalin (Wesche and 

Frederickson, 1981).

Pain responses induced by morphine and naloxone injections vary across the day, suggesting 

an endogenous fluctuation in the expression of opioid receptors or in the expression of 

components of their downstream signaling pathway (Frederickson et al., 1977; Kavaliers and 

Hirst, 1983). Recent work examining the analgesic effects of green light exposure during the 

light phase determined that green light induced analgesia is dependent on descending RVM 

signaling and opioid signaling in the spinal cord of male rats (Ibrahim et al., 2017; Martin 

et al., 2021). These data indicate a role of photic signaling and potentially circadian rhythm 

entrainment in the modulation of pain by the endogenous opioid system. Lastly, there is 

diurnal variation in opioid receptor expression in the rodent PAG and frontal cortex that was 

correlated with circadian variations in hot plate withdrawal thresholds (Takada et al., 2013).

Further research will be needed to identify whether the circadian rhythms of the endogenous 

opioid system modulate the pain system, or if the rhythms of the opioid system are an 

output of rhythms within the pain system. Taken together, the evidence above correlates with 

diurnal variations in reported opioid analgesic efficacy and requests for opioid analgesics in 

the clinic (Junker and Wirz, 2010). Additional insights into the interactions between these 

systems can improve patient treatment and chronotherapeutic efforts for pain management.

4.2 Endocrine System

Many hormones that interact with the pain system exhibit circadian rhythms, including 

cortisol, gonadal hormones, and melatonin. Cortisol modulates acute pain responsiveness 
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and is thought to play a role in the development of chronic pain (Benson et al., 2019). 

Rhythms of cortisol concentrations are phase-dependent and fluctuate across the day; levels 

rise in the hours before waking and peak just after the onset of activity (Weitzman et al., 

1971; Albers et al., 1985). One report suggests that cortisol rhythms are not necessary 

for diurnal variations in pain thresholds (Heybach and Vernikos-Danellis, 1978). But, as 

described above, one study reported that circadian corticosterone rhythms are necessary 

for the development of diurnal patterns of neuropathic allodynia in mice (Koyanagi et 

al., 2016). The rhythmic release of ATP from astrocytes in the dorsal horn of the spinal 

cord is dependent on corticosterone rhythms, as demonstrated by abolished ATP rhythms 

in adrenalectomized mice; it was suggested that the rhythmic release of ATP induces a 

rhythmic activation of microglia via P2Y12R signaling (Koyanagi et al., 2016). However, 

differences in microglial activation were not observed as determined by Iba-1 staining. 

Perhaps the cortisol-dependent allodynia rhythms observed are instead a result of diurnal 

differences in neuronal synaptic transmission driven by the diurnal activity of astrocytic ATP 

production. Regardless of mechanisms, this study contributes an important understanding to 

the role of glucocorticoids in daily changes in neuropathic pain thresholds.

Gonadal hormones can play both pro- and anti-nociceptive roles and likely contribute to sex 

differences in pain thresholds; as an oversimplification, androgens tend be anti-nociceptive 

whereas estrogens are pro-nociceptive (Craft et al., 2004; Aloisi and Bonifazi, 2006). 

Androgen levels have rhythmic expression (Bremner et al., 1983), and although ovarian 

estrogen and progesterone levels in females are altered throughout estrous cycles, evidence 

suggests that they do exhibit circadian rhythms in secretion during the luteal phase (Spies et 

al., 1974; Kriegsfeld et al., 2002).

Melatonin has a primarily analgesic effect, although the exact mechanism by which is 

produces analgesia is unknown (Wilhelmsen et al., 2011; Chen et al., 2016b). Melatonin 

concentrations fluctuate in a phase-independent manner; its concentrations peak and persist 

in the dark phase and are almost entirely absent in the light phase (Brown, 1994).

4.3 Immune System

The immune system is regulated by circadian rhythms and displays circadian variations 

in function. Briefly, the TTFL is present in immune and glial cells, driving rhythmic 

immune activity and the expression of various inflammatory mediators involved in both 

innate and adaptive immune function (Logan and Sarkar, 2012). For example, microglia 

may be involved in the circadian regulation of pain (Inoue and Tsuda, 2018). Via circadian 

expression of cathepsin S, microglia drive the previously mentioned diurnal variations in 

cortical synaptic activity and spine density (Hayashi et al., 2013a). P2Y12, the purinergic 

receptor that regulates microglia activation and neuropathic pain transmission within the 

spinal cord (Yu et al., 2019) is regulated by circadian rhythms (Hayashi et al., 2013b). 

Numerous other examples of the circadian regulation of immune and glial function and their 

influence on pain have been extensively reviewed (Segal et al., 2018). As the pain system is 

modulated by the activity of the immune system, there are considerable implications for the 

effects of rhythmic immune activity on pain rhythms.
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5. Disrupted Circadian Rhythms and Pain

Within the past two centuries, humans have adopted lifestyles and environmental 

modifications that routinely disrupt our circadian rhythms. As a result of environmental or 

behavioral disturbances, our internal circadian rhythms can become shifted from the external 

world, blunted, or abolished. Examples of environmental or behavioral factors that disrupt 

circadian rhythms are numerous: between 15–25% of the world’s working population 

is involved in shift work (Drake and Wright, 2011), 70% of the population regularly 

experiences shifted sleep-wake cycles on weekend and work days - a phenomenon known 

as social “jet lag” (Roenneberg et al., 2012), and 80% percent of the global population 

is exposed to light pollution at night (Falchi et al., 2016). Other examples of circadian 

disruption include mistimed eating and jet lag resulting from transmeridian travel (Thaiss et 

al., 2014; Gibson et al., 2010; Challet, 2019; Zheng et al., 2020).

5.1 Circadian Rhythm Disruption and Pain

Multiple clinical and foundational science studies report that circadian rhythm disruption 

can directly alter pain thresholds. Disrupted circadian rhythms are linked to inflammation 

and altered endocrine function, both of which have direct implications on pain. In addition 

to directly affecting pain, many other consequences of disrupted circadian rhythms may 

be linked to altered pain, including increased risks for obesity (McHill and Wright, 

2017), cancer (Davis and Mirick, 2006; Reiter et al., 2007; Haus and Smolensky, 2013), 

cardiovascular dysfunction (Chellappa et al., 2019), depression (Tsuneki et al., 2018) and 

altered immune (Logan and Sarkar, 2012) and endocrine function (Russart and Nelson, 

2018).

The effects of circadian rhythm disruption on pain in humans have been examined in 

the context of night shift work and sleep disruption. Night shift work is associated with 

an increased risk for the incidence of lower back pain (Takahashi et al., 2015; Eriksen 

et al., 2004; Zhao et al., 2012). Night-shift work is also correlated with reduced pain 

thresholds. One cross-over study reported that night-shift workers have higher sensitivity to 

electrical and heat pain, but not cold or pressure pain (Matre et al., 2017). In another study, 

night shift workers had lower cold pain thresholds immediately after finishing a 12-hour 

shift in comparison to a normal sleep day before and after the shift (Pieh et al., 2018). 

Selective and total sleep deprivation also heightens pain sensitivity, although inconsistently 

in human studies (Onen et al., 2001). Total sleep deprivation reduces heat pain thresholds 

(Kundermann et al., 2004; Kundermann et al., 2008), as well as mechanical pain thresholds 

(Onen et al., 2001).

Basic research has examined the effects of dim light at night exposure, mistimed eating, 

simulated jet lag, and sleep deprivation on pain in rodents. Male Swiss Webster mice 

exposed to dim light at night (~5 lux of light) experienced mechanical allodynia and cold 

hyperalgesia (Bumgarner et al., 2020). Notably, cold hyperalgesia was observed in these 

mice after only four nights of exposure to dim light at night. These behavioral effects were 

correlated with upregulated expression of Il-6 and μ-opioid receptor expression in the RVM 

and PAG, respectively. Another study examined the role of mistimed eating on allodynia in a 

rodent model of neuropathy. It was observed that food consumption restricted to the inactive 

Bumgarner et al. Page 12

Neurosci Biobehav Rev. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phase exacerbated mechanical allodynia in male mice with chronic constriction injury (Xu 

et al., 2018). Another study reported that jet lag can induce mechanical allodynia and heat 

hyperalgesia in female mice (Das et al., 2018). At the conclusion of the experiment, mice 

that experienced 14-weeks of weekly alternating light-dark cycles had lower mechanical 

thresholds and shorter hot plate withdrawal latencies than mice that received 6-weeks of 

shifts and had 8-weeks of typical light-dark cycles afterward. Appropriate control groups 

were missing in additional experiments of this study. Finally, multiple rodent studies have 

indicated that sleep deprivation heightens pain responsiveness (Lautenbacher et al., 2006). 

Together, these studies demonstrate a link between circadian rhythm disruption and altered 

function of the pain system.

5.2 Disrupted Rhythms of Pain

Multiple chronic and maladaptive pain conditions are associated with altered circadian 

rhythms in pain thresholds (Junker and Wirz, 2010). Altered pain rhythms manifest 

inconsistently across various diseases states. The peak of breakthrough pain episodes in 

cancer patients occurs in the late morning/early afternoon (Campagna et al., 2019; Saini 

et al., 2013). This is somewhat consistent with reported early morning peaks of pain in 

patients with fibromyalgia (Bellamy et al., 2004) and rheumatoid arthritis (Bellamy et al., 

1991; Harkness et al., 1982), although one group reported no diurnal variation in rheumatoid 

arthritis pain (Dekkers et al., 2000). Morning peaks in reported pain for these diseases 

contrasts sharply with the reported night peaks of pain associated with diabetic neuropathy 

and postherpic neuralgia (Odrcich et al., 2006), evening peaks of pain in patients with 

varying forms of intractable pain (Folkard et al., 1976), and nocturnal painful spasms 

associated with multiple sclerosis patients who have pyramidal tract dysfunction (Solaro 

et al., 2000). Considering the heterogenous physiological consequences of these various 

disease states, the observed differences in acrophases of pain thresholds across the day could 

be explained by varying disruption of individual components of the pain system or other 

circadian regulatory systems.

Many chronic pain conditions are also associated with disrupted circadian rhythms, 

including endocrine and sleep-wake rhythms. Cervical spinal cord injury in humans 

disrupts daily serum melatonin and cortisol rhythms (Fatima et al., 2016). In more severe 

instances of chronic pain, such as fibromyalgia, sleep-wake rhythms are highly perturbed 

(Korszun, 2000). However, sleep-wake disturbances are also reported in chronic pain 

patients (McCracken and Iverson, 2002; Smith et al., 2000). Altered sleep rhythms and 

decreased sleep quality can in turn have numerous negative consequences on the function of 

the circadian system (Palada et al., 2020).

Lastly, disrupted circadian rhythms have been observed in several rodent models of 

neuropathy. For example, sciatic nerve ligation alters the rhythmic expression of the 

melatonin 1A and 1B receptor in male mice (Odo et al., 2014). Spinal cord injury in rats 

disrupted circadian rhythms of locomotor activity, glucocorticoid secretion, inflammatory 

gene expression, and clock gene expression (Gaudet et al., 2018).
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5.3 Circadian Disruption and Maladaptive Pain: A Feedback Loop?

The evidence reviewed in sections 5.1 and 5.2 lay the groundwork for describing a feedback 

loop that arises between circadian rhythm disruption and chronic pain, particularly the 

chronic pain associated with disease conditions (Figure 2). Chronic pain can alter sleep­

wake cycles and clock gene rhythms, among other rhythms, and circadian rhythm disruption 

can alter pain thresholds as well as the circadian rhythms of other interacting systems. Once 

initiated, this feedback loop likely results in states of chronically lowered pain thresholds 

and could contribute to prolonged periods of chronic pain. A clinically relevant example 

of this loop may be observed in fibromyalgia patients in whom sleep-wake cycles and 

other rhythmic processes are affected by intense chronic pain. This disruption of circadian 

rhythms will in turn likely reduce pain thresholds.

It is unlikely that this loop drives pain thresholds to absolute minima or even close, 

particularly in healthy individuals. Though circadian rhythm disruption may temporarily 

or even chronically reduce pain thresholds, it is also unlikely that minor injuries would be 

sufficient to initiate the loop. Instead, this loop is likely more prominent in chronic pain 

caused by serious injury or maladaptive pain associated with disease states. As further 

research validates the relationship between the circadian and pain systems, it will be 

important to consider this feedback loop in the treatment and management of acute and 

chronic pain. Environmental manipulations that support circadian rhythms may help to 

ameliorate pain symptoms in chronic pain patients and others.

6. Limitations

Several limitations arise from this review. First, much of the evidence regarding the 

regulation of pain behavior by circadian rhythms is correlative rather than causative. This 

is particularly apparent when examining higher-order components of the pain system, 

including cortical and limbic structures. As such, conclusions regarding the involvement 

of numerous supraspinal structures in the circadian regulation of pain behavior are limited. 

Second, several of the non-human studies described in section 5.1 tested pain behavior 

during the light phase when nocturnal species are typically inactive, potentially hindering 

translational conclusions (Nelson et al., 2021). Lastly, there is a dramatic disparity in the 

sex of the animals in the reviewed literature. The vast majority of non-human studies only 

examined males (Supplemental Table 1). In the meta-analysis used to generate a model 

of human circadian rhythms in pain, only half of the 16 primary studies included females 

(Hagenauer et al., 2017). Because of known sex differences in circadian rhythms and pain 

behavior, this disparity leads to further potential limitations on the conclusions that can be 

drawn from the reviewed literature. Future human and non-human research should strive to 

examine circadian pain behaviors in both sexes.

7. Interpretations

The pain system exhibits circadian rhythms in function at all levels of hierarchical 

organization, but the origins of these rhythms are still not clear. Direct evidence has 

demonstrated that circadian regulation of pain occurs directly within DRG and the spinal 

cord, and abundant direct and correlative evidence have demonstrated that the supraspinal 
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distributed pain system also processes pain differently across the day. Nonetheless, currently 

available evidence does not allow us to explicitly state that the circadian rhythmicity of 

pain thresholds exclusively arises from rhythms within the pain system alone. The variations 

in thresholds may instead be influenced or result from the integral relationships between 

the pain system and the circadian, endogenous opioid, immune, and endocrine systems as 

well as the ascending reticular activating system. Despite these uncertainties, the compiled 

evidence does outline several potential explanations of the origins of circadian rhythms of 

the pain system.

We propose that the circadian rhythms of the pain system may arise from a set of collective 

rhythms within the DRG, spinal cord, and descending pain modulatory system (Figure 1). 

Collectively, these structures may act as circadian ‘gatekeepers’ that diurnally modulate 

the transmission of nociceptive information into supraspinal structures responsible for the 

salient processing of pain. The sleep/wake dependent variation in activity of neurons within 

numerous components of the descending pain modulatory system supports this theory. For 

example, the modulation of serotonergic input to the spinal cord from the RVM is regulated 

by On/Off neurons whose activity fluctuates based on sleep/wake states (Foo and Mason, 

2003). The ‘circadian gatekeeper’ system could also be influenced by other circadian 

rhythms, leaving room to explain inconsistently altered pain rhythms among various disease 

states.

Alternatively, circadian rhythms of the pain system may not be a result of rhythms only 

within the ‘gatekeeper’ system. Instead, we alternatively propose that a distributed network 

of circadian rhythms within the pain system and those with which it interacts. Just as there 

is no single region of the pain system responsible for processing pain, there may be no 

single region responsible for the circadian rhythmicity of pain thresholds. The rhythmicity 

of the pain system likely arises from rhythms within three groups of organization: the DRG 

and spinal cord, cortical and limbic structures, and the descending pain modulatory system. 

These groups each have their own rhythmicity and function, but their collective activity 

and interaction may produce the pain threshold rhythms observed in constant conditions. 

The rhythmic function of the disturbed system is likely also influenced by interactions with 

the ascending reticular activating system, circadian system, endocrine system, and immune 

system. Disease specific disruption of individual, but not all, of these modulatory systems 

may explain the difference in circadian pain threshold variations across the day observed in 

different disease states. The concept of distributed circadian rhythms within pain system will 

be difficult to elucidate, just as the examination of cerebral pain processing.

Importantly, why are there circadian rhythms in pain thresholds across the day? As of 

now, this trait has only been observed in mammals. But, considering the highly conserved 

characteristics of nociceptive signaling, it is not unreasonable to speculate that these 

rhythms exist in other organisms; a discovery of rhythms in other organisms may point 

an evolutionarily/adaptive beneficial function. Admittedly, it may be wrong to assume 

that these rhythms are functionally relevant. To a skeptical eye, the overlap between 

the ascending reticular activating system and pain system could suggest that rhythms in 

pain thresholds might only be a behavioral byproduct that ultimately serves no adaptive 

benefit. Additional research will be needed to address these points. Conversely, variations 
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in pain thresholds may allow for optimal behavioral function throughout the active hours 

by allowing us to ignore small scrapes and wounds that may only distract from survival 

until activity slows down before rest. Or, as suggested by Foo (Foo and Mason, 2003), 

circadian variations in the rostral projection of nociceptive information may be crucial for 

sustained sleep. Regardless of the evolutionary origins of these rhythms, their nature must 

be considered. Further characterization of circadian rhythms of the pain system will allow 

us to adapt pain management and treatment strategies that optimize patient outcome and 

well-being.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The circadian regulation of pain.
Two hypotheses are proposed to explain the potential origins of circadian pain rhythms. 

On the left, the “Circadian Gatekeeper” hypothesis is shown. This hypothesis proposes 

that the descending pain modulatory system, dorsal horn, and DRG regulate ascending 

transmission of nociceptive input in a time-specific manner to produce diurnal alterations 

in pain responsiveness. On the right, the “Distributed Rhythms” hypothesis is depicted. 

Similar to the description of the pain system as a “Distributed System” (Coghill, 2020), 

this hypothesis suggests that circadian rhythms present throughout the entire pain system 

and interacting systems function together to produce an integrated circadian rhythm of 

pain responsiveness. The center graph was adapted from Hagenhauer et al. (Hagenauer et 

al., 2017). The white and black bar above the x-axis represent typical wake/sleep periods, 

respectively.
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Figure 2. Disruption of circadian rhythms and maladaptive pain: A feedback loop.
Maladaptive pain is negatively affected by common and seemingly innocuous forms of 

disrupted circadian rhythms, in addition to more severe forms of disruption. Many of the 

consequences of circadian rhythm disruption can negatively alter pain thresholds and affect 

maladaptive pain. The physiological consequences of maladaptive pain can induce various 

forms of disrupted circadian rhythms, thus generating a deleterious feedback loop. The 

consequences of this feedback loop should be considered in future clinical and preclinical 

research aiming to resolve and treat chronic and maladaptive pain.
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