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Abstract: Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral
oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with
non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection
and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number
of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with
NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography
(LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which
were classified into 9 categories, were obtained through manual segmentation and radiomics feature
extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived
from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier
exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and
KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model
including the least number of the most semantic radiomics signatures could robustly predict EGFR and
KRAS mutations in patients with NSCLC.

Keywords: non-small-cell lung carcinoma; EGFR mutation; KRAS mutation; genetic algorithm;
eXtreme Gradient Boosting; feature selection; radiogenomics; machine learning; low-dose
computed tomography

1. Introduction

Lung cancer is one of the most fatal cancers; it has the second highest prevalence
globally, resulting in 18% of cancer cases and 11.4% of deaths globally [1]. Non-small-cell
lung cancer (NSCLC) accounts for >85% of reported lung cancers, with adenocarcinoma
being the most common pathological type of NSCLC [2]. In 2020, the 5-year overall survival
rate of patients with lung cancer was <15%, and 228,820 new cases of lung cancer and
135,720 deaths from lung cancer were estimated to occur [3].

Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene ho-
molog (KRAS) are the two most frequently observed mutations in patients with NSCLC [4].
Patients with EGFR mutations exhibit higher sensitivity to gefitinib and erlotinib, whereas
those with KRAS mutations are prone to drug resistance [4–9]. Thus, the early detection of
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EGFR and KRAS mutations can facilitate the selection of treatment modalities for specific
mutation types and enable efficient short- and long-term management, thus improving
the prognosis and prolonging the survival duration of patients with NSCLC [4]. Because
the number of patients harboring both mutations is considerably limited, the confirmation
of one mutation can lead to the exclusion of the other mutation [5]. Although traditional
diagnostic methods used to identify mutated sequences in tumor cells have contributed
to the advancement of targeted therapies, they are highly invasive and time intensive [9].
Therefore, new noninvasive screening methods should be urgently developed to overcome
the drawbacks of invasive traditional approaches [10–14].

With the development of state-of-the-art artificial intelligence techniques, a detailed
radiographic quantitative analysis of tumor characteristics can be performed using ubiqui-
tous medical images instead of a qualitative assessment [15]. The aforementioned process
is referred to as “radiomics”, which involves the extraction of tumoral features and the
evaluation of the association between noninvasive multimodality imaging and patho-
physiology [15,16]. Noninvasive models demonstrated a higher predictive power than
did routine clinical diagnostic methods [15,17–22] and could predict EGFR and KRAS
mutations before treatment. In 2017, Gevaert et al. [20] used the decision tree algorithm to
categorize the mutations of interest but failed to recognize the KRAS mutation using the
algorithm. Furthermore, Shiri et al. [22] established a stochastic gradient descent model
with semantic radiographic features and reported that the model exhibited satisfactory
performance in identifying patients with NSCLC harboring the EGFR or KRAS muta-
tion. However, the authors’ framework was complex because the model required various
radiomics features to achieve high accuracy.

In the present study, we hypothesized that a machine learning-based feature selection
and prediction model using the least semantic radiomics features from low-dose computed
tomography (CT) findings can predict EGFR and KRAS mutations in patients with NSCLC.
We used the public dataset from The Cancer Imaging Archive (TCIA) [23] published by
Bakr et al. [24]. The proposed machine learning model is potentially useful for the early
prediction of driver gene mutations in patients with NSCLC and thus facilitates early
therapeutic intervention and improves overall outcomes.

2. Results
2.1. Patients’ Characteristics

We retrospectively identified a cohort of 211 patients with NSCLC; of these, 161 with
confirmed EGFR and KRAS mutations who met the inclusion criteria [24] were included.
Of the 161 patients, 143 (average age: 69.2 ± 8.84 years; 107 men and 36 women) and
18 (average age: 66.9 ± 13.85 years, 4 men and 14 women) were included in the train-
ing and validation sets, respectively. According to the exclusion criteria, we excluded
50 patients from the original dataset [24]. Compared with the training set, the validation set
consisted of considerably younger patients and a lower proportion of men. No difference in
smoking or recurrence status was noted between the training and validation sets. Most of
the patients included in the training set had an adenocarcinoma-type tumor (n = 111), and
only 3 patients had an unspecified histological type. All patients in the validation cohort
had adenocarcinoma (n = 18). The number of patients with EGFR and KRAS mutations
significantly differed between the two cohorts. However, the percentage of patients with
cancer recurrence or progression did not significantly differ between the cohorts. No
information regarding surgical or posttreatment outcomes was recorded. Table 1 lists the
characteristics of patients included in our study.
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Table 1. Characteristics of patients in our cohorts.

Training (n = 143) Validation (n = 18) p Value

Age (mean ± SD, years) 69.2 ± 8.84 66.9 ± 13.85 0.334

Sex 0.123
Male 107 4

Female 36 14

Smoking status 0.069
Current 30
Former 91 9

Nonsmoker 22 9

Histological type 0.5
Adenocarcinoma 111 18

NSCLC NOS 1 3 0
Squamous cell carcinoma 29 0

EGFR mutation 0.074
Mutant 23 6

Wild-type 93 12

KRAS mutation 0.074
Mutant 27 3

Wild-type 87 15

Recurrence 0.123
Yes 40 3
No 103 15

1 No other specific type.

2.2. Radiomics Signature Building

We performed feature selection analysis among different feature categories to investi-
gate and identify crucial feature signatures for our models. The genetic algorithm (GA) [25]
exhibited the highest accuracy in predicting both EGFR and KRAS mutations (Figure 1).
The number of feature signatures was maintained as low as possible while achieving satisfac-
tory performance.

Int. J. Mol. Sci. 2021, 22, 9254 3 of 14 
 

 

Table 1. Characteristics of patients in our cohorts. 

 Training (n = 143) Validation (n = 18) p Value 

Age (mean ± SD, years) 69.2 ± 8.84  66.9 ± 13.85 0.334 

Sex   0.123 

Male 107 4  

Female 36 14  

Smoking status   0.069 

Current 30   

Former 91 9  

Nonsmoker 22 9  

Histological type   0.5 

Adenocarcinoma 111 18  

NSCLC NOS 1 3 0  

Squamous cell carcinoma 29 0  

EGFR mutation   0.074 

Mutant 23 6  

Wild-type 93 12  

KRAS mutation   0.074 

Mutant 27 3  

Wild-type 87 15  

Recurrence   0.123 

Yes 40 3  

No 103 15  
1 No other specific type. 

2.2. Radiomics Signature Building 

We performed feature selection analysis among different feature categories to investi-

gate and identify crucial feature signatures for our models. The genetic algorithm (GA) [25] 

exhibited the highest accuracy in predicting both EGFR and KRAS mutations (Figure 1). 

The number of feature signatures was maintained as low as possible while achieving sat-

isfactory performance. 

 

Figure 1. Predictive performance of different feature selection techniques in the NSCLC radioge-

nomics model. The genetic algorithm (GA) demonstrated the most favorable performance. (A) 

EGFR mutation prediction (area under the curve (AUC) = 0.89), (B) KRAS mutation prediction 

(AUC = 0.812). 

2.3. Supervised Learning Classification 

After identifying optimal features using the GA, we examined the performance of 

different classification algorithms, namely, logistic regression (LR), k-nearest neighbors 

Figure 1. Predictive performance of different feature selection techniques in the NSCLC radio-
genomics model. The genetic algorithm (GA) demonstrated the most favorable performance.
(A) EGFR mutation prediction (area under the curve (AUC) = 0.89), (B) KRAS mutation predic-
tion (AUC = 0.812).

2.3. Supervised Learning Classification

After identifying optimal features using the GA, we examined the performance of
different classification algorithms, namely, logistic regression (LR), k-nearest neighbors
(kNN), random forest (RF), and eXtreme Gradient Boosting (XGBoost). On the basis of their
performance, we subsequently determined the most appropriate algorithm for building
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the final classification model. In addition, we performed grid-search cross-validation
to identify the most optimal parameters for all the aforementioned machine learning
algorithms. XGBoost was superior to the other conventional machine learning algorithms
in detecting both EGFR and KRAS mutations. As shown in Table 2, our XGBoost model
exhibited a sensitivity of 43.5% and 55.6%, specificity of 94.6% and 89.3%, and accuracy of
84.5% and 77.2% in detecting EGFR and KRAS mutations, respectively.

Table 2. Assessment of different feature selection-based machine learning models for predicting
EGFR and KRAS mutations.

Original SMOTE

Sens Spec Acc Sens Spec Acc

EGFR LR 4.3 100 81 43.5 78.5 71.6
kNN 34.8 92.5 81 60.9 67.7 66.4
RF 21.7 97.8 82.8 52.2 84.9 78.4

XGBoost 43.5 94.6 84.5 65.2 88.2 83.6

KRAS LR 11.1 98.9 78.1 48.1 73.6 67.5
kNN 18.5 98.9 79.8 55.6 67.8 64.9
RF 33.3 96.6 81.6 51.9 75.9 70.2

XGBoost 55.6 89.3 77.2 55.6 95.4 86
LR: logistic regression, kNN: k-nearest neighbors, RF: random forest, XGBoost: eXtreme Gradient Boosting.

Although the results were satisfactory, an imbalance was observed between sensitivity
and specificity. Therefore, we applied the synthetic minority oversampling technique [26]
to solve this imbalance problem. As shown in Table 2, we achieved a more balanced
result with a sensitivity of 65.2% and 55.6% and a specificity of 88.2% and 95.4% for
detecting EGFR and KRAS mutations, respectively. The XGBoost classifier demonstrated
the most favorable performance, indicating that it was the optimal algorithm for solving
this radiomics-related binomial classification problem.

2.4. Validation of Models

We combined the XGBoost classifier algorithm with each optimal feature selector. In
addition, we applied our optimal models to validation data to evaluate their performance
for unseen data. In this step, our model showed a sensitivity of 66.7% and 33.3%, specificity
of 83.3% and 93.3%, and accuracy of 77.8% and 83.3% in detecting EGFR and KRAS
mutations, respectively. The sensitivity for the KRAS mutation was lower because of
limited data availability (we had only three KRAS mutant samples in the validation cohort,
and our model could correctly predict one of them). By contrast, our model could correctly
predict various KRAS wild-type samples with an accuracy of 93.3%. This result indicated
the efficiency of our model when used for examining different datasets.

2.5. Explanation of Feature Selection Using SHAP

Shapley additive explanation (SHAP) analysis [27] was performed to explain the
output of our machine learning model and radiomics feature set. As shown in Figure 2, all
crucial features were obtained from the wavelet transform. The wavelet-based transform
could more effectively improve the radiomics-based prediction model compared with the
original radiomics feature. “Energy” was determined to be the most crucial feature; this
finding is in accordance with those of previous studies.
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EGFR mutation status, (B) KRAS mutation status.

Among the seven most favorable features identified in the first model, the wavelet
LLL–first-order–energy feature contributed the most to the detection of EGFR status. The
first-order statistics refer to the distribution of voxel intensities within the image region
defined by the mask through commonly used and basic metrics. Energy is a quantity of
voxel values within the regions of interest (ROIs), and a higher energy denotes a larger
sum of squares of these values [28].

In terms of the KRAS detection task, the wavelet LLH–gray-level size zone matrix
(GLSZM)–large area emphasis was the most appropriate feature. For more information,
a GLSZM enumerates gray-level areas (i.e., the number of connected voxels sharing the
similar intensity of the gray level in an image), whereas large area emphasis (LAE) measures
the distribution of regions with a large area; a higher LAE value indicates the presence of
greater size zones and more coarse textures [28].

2.6. Comparison with Previous Radiomics-Based EGFR and KRAS Prediction Models

We compared the predictive performance of our model with that of radiomics-based
models used in previous studies for predicting EGFR and KRAS mutations. Pinheiro
et al. [29], Shiri et al. [22], and Zhang et al. [30] used the same dataset as we did; thus, we
compared their results with our findings. A detailed comparison is presented in Table 3
and Section 3.
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Table 3. Comparison between our proposed models and those of previous studies using the same
TCIA data.

Sens Spec Acc AUC

EGFR Pinheiro et al. - - - 0.7458
Shiri et al. - - - 0.78

Zhang et al. 91.7 70.3 80.8 0.87
Ours 65.2 88.2 83.6 0.89

KRAS Pinheiro et al. 11.1 98.9 78.1 0.5035
Shiri et al. 18.5 98.9 79.8 0.83

Ours 55.6 95.4 86 0.812
- means the metrics were not reported in the corresponding papers.

3. Discussion

In our study, we proposed a comprehensive machine learning approach and feature
selection assessment to efficiently detect EGFR and KRAS mutations in patients with
NSCLC; early detection of these mutations can help in the administration of suitable
individualized and targeted treatment options. The public dataset consisting of 211 patients
with NSCLC was derived from a previous study on the TCIA [23,24]. Of these, 143 patients
(116 EGFR and 114 KRAS mutation carriers) and 18 patients (6 EGFR and 3 KRAS mutation
carriers) were included in the training and validation cohorts, respectively.

Our proposed model correctly predicted EGFR and KRAS mutations with an area
under the curve (AUC) of 0.89 and 0.812, respectively. According to the results, it is
observed that there were about 10% of examined patients that had false negatives or
positives. To explain this, our strategy failed in those cases because of the limit of training
data. The model might not have enough data to train sufficiently, and it has failed in
some cases that they did not learn well. In the future, more comprehensive data should be
retrieved to reach a better performance with less false positives and negatives. The AUC
of the KRAS model in the validation set was lower than that in the other model due to
imbalanced data; only 3 of 18 patients had the KRAS mutation. However, the specificity
of this model was remarkably high (95.4%), indicating that our second model could still
perform efficiently on different datasets regardless of their distribution. Moreover, we
achieved these results by including only 7 and 11 features in the EGFR and KRAS model,
respectively.

Pinheiro et al. [29] and Shiri et al. [22] have analyzed and interpreted radiomics fea-
tures extracted from the same public dataset included in the current study [23,24]. Pinheiro
et al. introduced a model built on the XGBoost algorithm and its feature importance rank-
ing function. Utilizing the similar classifier to predict EGFR mutations, the authors selected
a subset of the 37 most semantic radiomics features, yielding an AUC of 0.7458 (vs. 0.89 in
our model); however, the model failed to detect the KRAS mutation with an AUC of 0.5035
(vs. 0.812 in our model). The decreased efficiency of the model in classifying EGFR and
KRAS mutations [29] might be due to differences in feature selection methods. Despite the
use of the same classifier algorithm, the authors employed Pearson’s correlation coefficient
method to exclude the least significant features. The radiomics features are continuous
numerical variables that may contain outliers, resulting in a low or even insignificant
correlation coefficient between features [31].

The model developed by Shiri et al. [22] demonstrated more favorable performance
in detecting the KRAS mutation. Their reported AUC of 0.83 was slightly higher than
our AUC of 0.812. However, the detection of the EGFR mutation did not yield a similar
outcome; our EGFR model could generate a superior result to the “stochastic gradient
boosting–select from model” ensemble, with AUCs of 0.89 and 0.78 for our study and
previous study, respectively. Their results were not as distinct as those of our model.
Therefore, our model exhibited relatively stable performance in the detection of both
mutation types.
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Zhang et al. [30] conducted a retrospective single-center study of 248 patients with lung
adenocarcinoma (135 men and 113 women, mean age of 62.43 ± 9.19 years) and investigated
the prediction capacity of pretherapy 18F-FDG PET/CT-based radiomics features for EGFR
mutation status in patients with NSCLC. All patients were histologically confirmed to
have the EGFR mutation (i.e., mutant or wild-type) and underwent 18F-FDG PET/CT 1
month prior to treatment. The original dataset was then randomly split into training and
validation sets containing 175 and 73 patients, respectively. The LIFEx package [32] was
used to extract 47 PET radiomics features and 45 CT radiomics features in combination with
the segmentation of ROIs by two radiologists. The 10 most semantic predictive features
were retained using the Mann–Whitney U test and the “least absolute shrinkage and
selection operator” regression analysis (10-fold cross-validation), and the establishment
of the model was based on the LR algorithm to measure the “rad-score” for each patient.
In terms of the predictive efficacy of the EGFR mutation, the model containing only
signature radiomics features or clinical features demonstrated a higher AUC than did
our proposed model (i.e., 0.85 vs. 0.845), whereas the AUC generated from the clinical
model was significantly lower than that of our model (i.e., 0.78 vs. 0.845). Considering
the higher sensitivity (91.7 vs. 69.6) and lower specificity (70.3 vs. 83.9), the rad-score and
clinical complex model demonstrated, to some extent, a lower accuracy (80.8 vs. 81.0)
but a significantly higher AUC (0.87 vs. 0.845). The identification of EGFR mutants is
relevant to clinical practice because it can help determine the therapeutic strategy for
specific individuals carrying mutations associated with improved sensitivity to gefitinib
and erlotinib [4,5,7]. In this study, with the inclusion of only 6 EGFR mutation carriers in
the validation set compared with 12 EGFR wild-type carriers, the sensitivity score was
acceptable. For the subsequent steps, we boosted our model to increase sensitivity and
detect the mutants more efficiently; however, with only seven semantic radiomics features,
the EGFR model could predict imbalanced data, thus demonstrating itself as a valuable
predictive model for further studies.

Although the performance of our models was considerably promising, our study has
various limitations that should be addressed. First, the original dataset [23,24] consisted
of 211 patients; however, only 161 patients were included, and no external validation set
was considered. Although the results were favorable, we must still evaluate the predictive
performance of our two models by including a broader cohort of patients with NSCLC
with known EGFR and KRAS mutation status. Second, we must advance the model’s
capacity for handling imbalanced data, thereby generalizing the prediction outcome to
more datasets. Third, our study could apply the state-of-the-art deep learning algorithm
to implement the classification task. Many studies have successfully developed models
to solve this problem [30,33–36] with satisfactory results. These findings encourage us to
conduct future studies using neural networks to build the baseline model. Finally, the
radiogenomics model can be considered by applying it to more comprehensive genotypes
such as EGFR-TKI sensitivity [37] or exon levels [38]. Thereafter, it can be applied for
clinical settings in the future.

4. Materials and Methods

Figure 3 presents our proposed radiogenomics framework for predicting EGFR and
KRAS mutations in patients with NSCLC.
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4.1. NSCLC Patient Cohort

Datasets used in this study were retrieved from TCIA [23], which is a comprehensive
resource for cancer imaging data. Because we aimed to improve the prediction of EGFR
and KRAS mutations, we used a benchmark dataset that was introduced by [24]. This
dataset comprises the CT images, positron emission tomography (PET)/CT images, and
semantic annotations of tumors for a total of 211 patients. This dataset included two cohorts:
the R01 cohort consisted of 162 patients with NSCLC, and the AMC cohort consisted of
49 additional patients. The first cohort was retrieved from Stanford University School of
Medicine and Palo Alto Veterans Affairs Healthcare System, whereas the second cohort
was retrieved only from Stanford University School of Medicine at different timelines. For
both cohorts, the following clinical data were obtained where available: smoking history
(211), survival (211), recurrence status (210), histology (211), histopathological grading
(162), and pathological TNM staging (161). We used R01 as the training cohort and AMC
as the validation cohort to examine the performance of the model.

Only patients who met the inclusion criteria were enrolled in the final dataset. The
inclusion criteria for patients were as follows: (i) availability of images with less or no
noise phenomenon, (ii) absence of artificial images, and (iii) availability of accurately
segmented and full-sequence images. Finally, we included 161 patients in our dataset, of
whom 143 and 18 were included in the training and validation sets, respectively. Since two
datasets came from two different cohorts, the validation data can be treated as external
data to evaluate the performance of the model.

4.2. Segmentation of Lung Tumors

We analyzed the CT findings of 161 patients from the dataset [24] who met the
inclusion criteria. The ROIs were manually segmented by a chest radiologist with 8 years of
experience and edited, where necessary, using ePAD [39]. Subsequently, all ROIs manually
segmented by the first radiologist were evaluated by the second radiologist with 10 years of
experience. Some unreasonable segmentations for the boundaries of ROIs were modified,
where appropriate, to ensure segmentation precision.
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4.3. Radiomics Feature Extraction

In this study, lung tumors were manually segmented by two doctors with 8–10 years
of work experience. Subsequently, we used PyRadiomics library [28] to extract the differ-
ent characteristics of radiomics features, namely, (i) intensity, (ii) image derivatives, (iii)
geodesic information, (iv) texture features, and (v) posterior probability maps. In total,
851 features extracted from the library were categorized into 9 classes, namely, original,
wavelet HHH, wavelet HHL, wavelet HLH, wavelet HLL, wavelet LHH, wavelet LHL,
wavelet LLH, and wavelet LLL. Each category consisted of six subcategories, namely, first-
order, gray-level co-occurrence matrix, GLSZM, gray-level run length matrix, neighboring
gray tone difference matrix, and gray-level dependence matrix. The original radiomics cat-
egory consisted of one additional subcategory, namely, shape. The radiomics classes were
described by van Griethuysen et al. [28]. Because we would like to assess the performance
results using radiomics, we did not include any pathological features in the models.

4.4. Feature Selection

We performed different feature selection analyses to identify features that might be
crucial for our model. We used the following feature selection techniques: univariate
selection, recursive feature elimination (RFE), feature importance, filter methods, F-score,
GA, minimum redundancy feature selection, and the KBest algorithm.

The advantages and disadvantages of each technique are described as follows.

4.4.1. Univariate Selection

Univariate feature selection [40] is performed to investigate each separated feature to
determine the magnitude of the association between features and the target variable. With
various options available, this method can efficiently manipulate data.

4.4.2. RFE

RFE [41] involves the removal of the most insignificant features until the model has
the optimal number of features. Moreover, RFE aims to exclude features, thus resulting in
collinearity.

This technique optimizes the number of features remaining in the final model using
cross-validation scores to distinguish data subsets. In addition, RFE can be used to visualize
chosen features through graphs accompanied by their respective scores and to examine the
contribution of the features to the predictive outcome.

4.4.3. Feature Importance

Feature importance [42] assesses the contribution of each feature included in the model
on the basis of their assigned scores obtained from regression analysis or classification. In
this study, feature importance was used to identify features that were the most efficient in
classifying EGFR and KRAS mutations in patients with NSCLC. Thus, feature importance
can provide better insights into the model and more semantic interpretations.

4.4.4. Filter Methods

Filter methods [43] refer to a group of various statistical methods primarily used
for data preprocessing. Four main statistical tests are used depending on the types of
input features and the output variable, namely, Pearson’s correlation coefficient, linear
discriminant analysis, analysis of variance, and a chi-squared test. Similar to other feature
selection methods, filter methods select features based on scores that manifest the strength
of the correlation or association of inspected input features with the predictive output.
However, filter methods cannot remove or reduce the multicollinearity phenomenon,
which can deteriorate the comprehensive performance of the model.
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4.4.5. F-Score

F-score is a feature selection method for examining the difference between two datasets
containing continuous numerical values [44]. In the binary classification task, the F-scores
of related features are calculated based on Equation (1). In this study, we calculated the
F-score to obtain optimal features.

F(i) ≡

(

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i
(+) −

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i

)2
+

(

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i
(−) −

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i

)2

1
n+−1 ∑n+

k=1

(
x(+)

k,i −

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i
(+)

)2
+ 1

n−−1 ∑n−
k=1

(
x(−)

k,i −

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i
(−)

)2 (1)

where

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 

Subsequently, k most significant features are selected. 

4.5. Machine Learning 
Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 

i
(+),

Int. J. Mol. Sci. 2021, 22, 9254 10 of 14 
 

 

4.4.5. F-Score 
F-score is a feature selection method for examining the difference between two da-

tasets containing continuous numerical values [44]. In the binary classification task, the F-
scores of related features are calculated based on Equation (1). In this study, we calculated 
the F-score to obtain optimal features. 

𝐹ሺ𝑖ሻ ≡ ൫𝕩ഥሺାሻ − 𝕩ഥ൯ଶ + ൫𝕩ഥሺିሻ − 𝕩ഥ൯ଶ1𝑛ା − 1∑ ൫𝑥,ሺାሻ − 𝕩ഥሺାሻ൯ଶశୀଵ + 1𝑛ି − 1∑ ൫𝑥,ሺିሻ − 𝕩ഥሺିሻ൯ଶషୀଵ  (1)

where 𝕩ഥሺାሻ, 𝕩ഥሺିሻ, 𝕩ഥ, 𝑖 are the mean 𝑖th feature of the whole, positive, and negative da-
tasets, respectively, 𝑥,ሺାሻ is the 𝑖th feature of the 𝑘th positive instance, and 𝑥,ሺିሻ is the 𝑖th 
feature of the 𝑘th negative instance. The numerator distinguishes between positive and 
negative sets, and the denominator interprets the one within each of the two sets. The 
higher the F-score is, the more likely the feature is to be more distinctive, thus making it 
more prominent compared with other features. Although the F-score cannot provide com-
mon information among discriminative features, it is a simple yet effective feature selec-
tion method for dichotomous problems. 

4.4.6. GA 
The GA, which is a stochastic feature selection algorithm based on the principle of 

natural selection, optimizes model performance by identifying the most favorable features 
[25]. The method produces numerous virtual generations, and each generation contains 
many individual features that are best suited to the training model and can yield the high-
est accuracy. 

4.4.7. Minimum Redundancy Feature Selection 
This method investigates the correlation between features and the predictive out-

come and between the features themselves [45]. In the F-statistic test, the level of the cor-
relation between the output and features must be high (relevance), whereas the correla-
tion between features must be low (redundancy). Thereafter, the algorithm filters out a 
subset of features satisfying both the aforementioned criteria. Two objective functions, 
namely, the mutual information difference and mutual information quotient, are used to 
measure the discrimination or the level of relevance and redundancy, respectively [45]. 

4.4.8. KBest Algorithm 
The features are selected based on their importance scores for the target variable. 
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Machine learning, which is based on artificial intelligence, involves the use of various 

algorithms that facilitate the extraction of semantic radiomics features from arbitrary med-
ical imaging datasets [46,47]. Recent studies have demonstrated the capability of machine 
learning techniques to predict tumor classification and survival rates and even perform 
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we eval-
uated the predictive potential of four machine learning algorithms for the classification 
task. Among four different classifiers, the kNN and LR algorithms follow the principle of 
distance function learning and the logistic theorem, respectively. Although both RF and 
XGBoost are ensemble learning methods based on the votes of individual decision trees, 
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature 
importance for more favorable outcome interpretation [50]. For each of the aforemen-
tioned algorithms, we performed cross-validation to identify optimal parameters. 
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feature of the kth negative instance. The numerator distinguishes between positive and
negative sets, and the denominator interprets the one within each of the two sets. The
higher the F-score is, the more likely the feature is to be more distinctive, thus making
it more prominent compared with other features. Although the F-score cannot provide
common information among discriminative features, it is a simple yet effective feature
selection method for dichotomous problems.

4.4.6. GA

The GA, which is a stochastic feature selection algorithm based on the principle
of natural selection, optimizes model performance by identifying the most favorable
features [25]. The method produces numerous virtual generations, and each generation
contains many individual features that are best suited to the training model and can yield
the highest accuracy.

4.4.7. Minimum Redundancy Feature Selection

This method investigates the correlation between features and the predictive outcome
and between the features themselves [45]. In the F-statistic test, the level of the correla-
tion between the output and features must be high (relevance), whereas the correlation
between features must be low (redundancy). Thereafter, the algorithm filters out a subset
of features satisfying both the aforementioned criteria. Two objective functions, namely,
the mutual information difference and mutual information quotient, are used to measure
the discrimination or the level of relevance and redundancy, respectively [45].

4.4.8. KBest Algorithm

The features are selected based on their importance scores for the target variable.
Subsequently, k most significant features are selected.

4.5. Machine Learning

Machine learning, which is based on artificial intelligence, involves the use of various
algorithms that facilitate the extraction of semantic radiomics features from arbitrary medi-
cal imaging datasets [46,47]. Recent studies have demonstrated the capability of machine
learning techniques to predict tumor classification and survival rates and even perform
molecular profiling based on imaging biomarkers [46,48,49]. In the current study, we
evaluated the predictive potential of four machine learning algorithms for the classification
task. Among four different classifiers, the kNN and LR algorithms follow the principle of
distance function learning and the logistic theorem, respectively. Although both RF and
XGBoost are ensemble learning methods based on the votes of individual decision trees,
XGBoost can handle imbalanced dichotomous data and visualize the ranking of feature
importance for more favorable outcome interpretation [50]. For each of the aforementioned
algorithms, we performed cross-validation to identify optimal parameters.
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We used machine learning algorithms to classify and robustly predict EGFR and
KRAS mutations in patients with NSCLC to improve their overall prognosis and treatment
response.

4.6. Statistical Analysis

Student’s t test and the Mann–Whitney U test were performed to compare continuous
and categorical variables, respectively, between the training and validation cohorts. All
statistical analyses were conducted using Python. To determine the model that exhibited
the most favorable performance in the binomial classification problem, we validated the
performance of each model by examining its sensitivity, specificity, and accuracy as follows:

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively.

To better visualize and compare the performance of four algorithms and feature selec-
tion methods, the receiver operating characteristic curves were plotted using comparable
AUC values.

5. Conclusions

In this study, we proposed a comprehensive, noninvasive machine learning approach
utilizing the classifier algorithms and feature selection methods to robustly predict EGFR
and KRAS mutations among patients with NSCLC based on medical radiomics features.
We demonstrated that by using a subset of the least number of semantic features, we
could reach a promising performance with AUC of 0.89 and 0.812 for EGFR and KRAS
mutation status prediction, respectively. The established radiomics signature model helps
to accelerate the diagnosis of mutations of interest, thus improving the outcomes of patients
with NSCLC in the future. Furthermore, our radiogenomics framework holds potential in
solving extension problems in NSCLC including other mutations or exon levels, and then
provides more outcomes.
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