Skip to main content
. 2021 Aug 10;121(17):10666–10741. doi: 10.1021/acs.chemrev.0c01266

Table 9. Summary of Selected Process Configurations Studies for Post-combustion Capture in Chronological Order from 1993 to 2021.

process adsorbent yCO2 (%) Phigh/Plow (kPa) purity (%) recovery (%) minimum specific energyh (MJ/kg) sourcel reference
4-step VSA AC, CMS 17 120/10 99.99 68.4 i sim Kikkinides et al.405
7-step PSA 13X 16, 26 110/6.7 99 70 i sim Chue et al.406
dual reflux PSA 13X 15 101.3/8.1 95 95 i exp Diagne et al.403
2 bed PTSA/PSA 13X 15 NA/5–15 99 90 2.02 mixj exp Ishibashi et al.407
VSA 13X 10 115/6.7 50–70 30–90 0.9–1.1 sim Park et al.408
2 bed, 2 stage PVSA 13X 10.5 1st NA/6.7, 2nd NA/13 99 80 2.3–2.8 exp Cho et al.510
4-step PVSA 13X 15 652/10–70 88.9 96.9 1.5 sim Ko et al.348
TSA 5A 10 423 K >94 75–85 6.12–6.46 thk lab Merel et al.409
VSA 13X 12 100/3 95 >70 0.54 sim Xiao et al.387
6-step PVSA (3 beds) 13X 12 130/5 82 60–80 0.34–0.69 exp Zhang et al.410
9-step PVSA (3 beds) 13X 12.1 130/5 90–95 60–70 0.51–0.86 exp Zhang et al.410
3-step PVSA 13X 12a 118/4 72.4 60 i exp Li et al.411
PVSA 13X 12.6 120/5–6 90–95 60–70 0.52–0.86 lab Zhang and Webley,388
5-bed, 5-step PVSA hydrotalcite 15b 139.7/11.6 96.7 71.1 i sim Reynolds et al.399
6-step PVSA 13X, F200 alumina 13c 140/3 89.6 74.9 0.72 exp Zhang et al.412
9-step PVSA 13X 13c 140/3 98.9 78.7 0.57 exp Zhang et al.412
9-step PVSA 13X 13d 140/3 98.9 82.7 0.65 exp Zhang et al.412
9-step PVSA 13X 15c 140/3 86.1 60 1.07 sim Zhang et al.412
9-step PVSA 13X 15d 140/3 90 62 0.89 sim Zhang et al.412
2-bed, 4-step 13X 15 276/21.4 90.74 85.94 2.3 sim Agarwal et al.54
4-step VPSA AC 15 202.6/10 93.7 78.2 i exp Shen et al.413
2-stage PVSA 5A 15 150/10 96.1 91.1 0.65 sim Liu et al.371
TSA 5A 10 433 K 95 81 3.23 thk sim Clausse et al.414
VSA 13X 13 100/2 93.8 91.5 0.43 sim Delgado et al.415
2-stage VPSA AC 15 350/10 95.3 73.6 0.73 sim Shen et al.400
2-stage VPSA AC 15 350/5 96.4 80.4 0.83 sim Shen et al.400
2-stage VPSA AC 40–60 202/10 94.1 85.1 i exp Shen et al.400
VTSA 13X 15 101/363K, 3 kPa 98.5 94.4 i exp Wang et al.416
2-stage PVSA 13X APG 15 150/10 96.5 93.4 0.53 sim Wang et al.417
2-stage PVSA 13X APG 15 150/6 96.6 97.9 0.59 sim Wang et al.417
VSA 5A 15 101.3/5.5 71–81 79–91 2.64–3.12 exp Liu et al.418
2-stage VSA 1st 13X APG 2nd AC beads 16 1st 123/7.5, 123/20 95.2 91.3 0.76 sim Wang et al.401
4-step VSA 13X 15 101/2 90 90 0.53 sim Haghpanah et al.117
VSA 13X 15 101/3 90–97 90 0.55 sim Haghpanah et al.117
VSA 13X, AC, MOF-74, chemisorbent 15 120/5–10 45–95 35–95 0.95–1.2 sim Maring and Webley118
1-stage and 2-stage VSA CMS 15 101/3 90 90 0.99 sim Haghpanah et al.262
4-step PVSA 13X 15 150/2.2 95.9 86.4 1.7 exp Krishnamurthy et al.119
4-step PVSA with LPP 13X 15 150/2.2 94.8 89.7 1.71 exp Krishnamurthy et al.119
2-bed, 4-step VSA with LPP 13X, silica gel 15e 101/3 95 90 0.63 sim Krishnamurthy et al.333
4-step VSA with LPP 13X, rho-ZMOF 15 101/3 95 90 0.56–0.7 sim Nalaparaju et al.116
2-bed, 6-step VSA 13X, AC, MOF-74 15 101/2 95 90 0.76–0.83 sim Nikolaidis et al.419
4-bed, 9-step cycle 13X 15 105/3,5 70.5–92.4 62.9–91.3 0.22–0.3 exp Ntiamoah et al.377
Skarstorm cycle 13X, HKUST, 5A, MOF-74 15f 1st 101/10 2nd 126/10 90 90 0.99–1.3 sim Leperi et al.420
4-step VSA with LPP 74 real and hypothetical materials 15 101/2 95 90 0.43–0.53 sim Khurana and Farooq88
4-step VSA with LPP UTSA-16, 13X 15 101/0.02–0.1 95 90 0.43–0.86 sim Khurana and Farooq354
4-step VSA with LPP UTSA-16, 13X 15 101/2–10 95 90 0.56–1.85 sim Khurana and Farooq354
4-step VSA 13X, UTSA-16, AC, MOF-74 15 101/2–3 95 90 0.41–0.63 sim Rajagopalan et al.16
4-step VSA UTSA-16, 13X, hypothetical material 15 101/2 95 90 0.38–0.59 sim Khurana and Farooq421
6-step VSA UTSA-16, 13X, hypothetical material 15 101/10 95 90 0.41–0.66 sim Khurana and Farooq421
4-step VSA 13X 15 100/1–2 95 90 0.57–0.85 sim Farmahini et al.89
4-step TSA 13X + alumina 12g 440 K 95 90 4.86 thk sim Hefti and Mazzotti422
4-step VSA 13X, hypothetical materials 15 100/2 95 90 0.4–1.38 sim Rajagopalan and Rajendran423
4-step VSA 13X, diamine appended MOFs 15 100/3–10 95 90 0.51–0.63 sim Pai et al.340
4-step VSA with LPP 13X, UTSA-16 and hypothetical materials 15 101/3 95 90 0.8–0.9 sim Burns et al.124
4-step VSA with LPP 13X, UTA-16, AC, hypothetical material 15 101/1–10 95 50–90 0.36–0.86 sim Maruyama et al.48
4-step VSA with LPP 13X, silicalite, HKUST, Ni MOF-74 15 101/1–2 95 90 0.5–0.9 sim Farmahini et al.122
MBTSA 13X, Ni MOF-74 5 101, 480 K, 405 K 95.8, 98.9 98.2, 92.6 1.42, 1.89 thk sim Mondino et al..372
modified Skarstrom, 5-step, and FVSA 13X, 15 MOFs 15 100–1000/10–50 90 90 0.55–2.5 sim Yancy-Caballero et al.126
4-step VSA with LPP 13X, UTSA-16, IISERP-MOF2 20 100/1 95 90 0.55–0.72 sim Subraveti et al.92
4-step VSA with LPP 36 materials 0.05–0.7 100/1 95 90 0.42 sim Pai et al.127
6-step VSA supported amine sorbent 15c 101/10 95 90 1 sim Krishnamurthy et al.424
6-step VSA supported amine sorbents with PEI, benzyl, amine, and amino silane 15c 101/10 95 90 1 sim Krishnamurthy et al.425
4-step VSA with FP or LPP 13X, UTSA-16, IISERP-MOF2 5, 15, 25, 35 100–500/1–100 95 90 0.1–1.1 sim Pai et al.426
a

In the presence of 3.4% H2O.

b

In the presences of 10% H2O.

c

In the presence of 5% H2O.

d

In the presence of 7% H2O.

e

In the presence of 3% H2O.

f

In the presence of 5.5% H2O.

g

In the presence of 1.5%, 3.1%, and 4.5% H2O.

h

All energy values are electric, that is, the energy consumed by the vacuum pumps and the compressors.

i

Not available.

j

mix = electric + thermal, the electric energy consumed by vacuum pumps in the 2nd stage PSA process and heat needed to recover the CO2 from the 1st stage PTSA process of Ishibashi et al.407

k

th = thermal, the heat supplied to desorb the CO2 in TSA/PSA process.

l

Sim and Exp refer to simulation and experimental studies, respectively.