Skip to main content
. 2021 Sep 6;13(17):4494. doi: 10.3390/cancers13174494

Table 1.

Characteristics of the pre-trained CNN architectures adopted in our study.

Network #Layers #Learnable Layers Network Size (MB) Input Image Size #Para (Millions)
AlexNet [24] 25 8 227 227×227 61
Vgg16 [26] 41 16 515 224×224 138
Vgg19 [26] 47 19 535 224×224 144
GoogleNet (Inceptionv1) [27] 144 22 27 224×224 7
Inceptionv3 [28] 315 48 89 299×299 23.9
ResNet18 [30] 71 18 44 224×224 11.7
ResNet50 [30] 177 50 96 224×224 25.6
ResNet101 [30] 347 101 167 224×224 44.6
InceptionResv2 [29] 824 164 209 299×299 55.9
Xception [32] 170 71 85 299×299 22.9
DenseNet201 [31] 708 201 77 224×224 20
MobileNetv2 [33] 154 53 13 224×224 3.5
ShuffleNet [35] 172 50 5.4 224×224 1.4
NasnetMobile [34] 913 * 20 224×224 5.3
NasnetLarge [34] 1243 * 332 331×331 88.9
DarkNet19 [36] 64 19 78 256×256 20.8
DarkNet53 [37] 184 53 155 256×256 41.6
EfficientNetB0 [38] 290 82 20 224×224 5.3
SqueezeNet [40] 68 18 5.2 227×227 1.24