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Simple Summary: We performed genetic analysis of 53 cancer predisposing genes in Belgian and
Czech pancreatic cancer patients. In known pancreatic cancer predisposing genes, a high mutation
detection ratio was observed in patients with multiple primary tumors and/or a family history of
pancreatic or breast, ovarian or colon cancer or melanoma. BRCA1, BRCA2, and ATM were most
frequently affected. Pathogenic variants in cancer predisposition genes for which the association
with pancreatic cancer has not been firmly established, were less frequent, except for CHEK2. This
observation warrants further analyses in other populations. To accurately determine risk associations
our study highlights the importance of using a geographically-matched control population.

Abstract: (1) Background: The proportion and spectrum of germline pathogenic variants (PV)
associated with an increased risk for pancreatic ductal adenocarcinoma (PDAC) varies among
populations. (2) Methods: We analyzed 72 Belgian and 226 Czech PDAC patients by multigene panel
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testing. The prevalence of pathogenic variants (PV) in relation to personal/family cancer history
were evaluated. PDAC risks were calculated using both gnomAD-NFE and population-matched
controls. (3) Results: In 35/298 (11.7%) patients a PV in an established PDAC-predisposition gene
was found. BRCA1/2 PV conferred a high risk in both populations, ATM and Lynch genes only in
the Belgian subgroup. PV in other known PDAC-predisposition genes were rarer. Interestingly, a
high frequency of CHEK2 PV was observed in both patient populations. PV in PDAC-predisposition
genes were more frequent in patients with (i) multiple primary cancers (12/38; 32%), (ii) relatives
with PDAC (15/56; 27%), (iii) relatives with breast/ovarian/colorectal cancer or melanoma (15/86;
17%) but more rare in sporadic PDAC (5/149; 3.4%). PV in homologous recombination genes were
associated with improved overall survival (HR = 0.51; 95% CI 0.34–0.77). (4) Conclusions: Our
analysis emphasizes the value of multigene panel testing in PDAC patients, especially in individuals
with a positive family cancer history, and underlines the importance of population-matched controls
for risk assessment.

Keywords: pancreatic ductal adenocarcinoma; overall survival; multigene panel testing; family
history; germline

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) remains a deadly malignancy with a 5-
year survival rate of only 9% [1]. Its initial non-specific symptoms makes early diagnosis
challenging and less than 20% of PDAC patients have potentially resectable tumors at
the time of diagnosis [2]. Although most PDAC cases appear to be sporadic, a familial
background has been documented in up to 10% of the patients [2,3]. In addition, in-
creased PDAC prevalence associates with hereditary cancer syndromes caused by germline
pathogenic/likely-pathogenic variants (PV) in BRCA2, ATM, BRCA1, PALB2, MLH1, MSH2,
MSH6, PMS2, CDKN2A, TP53, or STK11 [3,4]. Germline PV in the four first genes have
the highest prevalence in PDAC patients; however, their frequency shows substantial
geographic variabilities [5].

Individuals with PV in PDAC-predisposing genes could benefit from intensified pre-
ventive surveillance allowing early PDAC detection, when curative surgery may still be
feasible [6]. Interestingly, germline PV in cancer susceptibility genes have also been re-
ported in apparently sporadic PDAC cases [7,8]. Several recent reports noticed an improved
PDAC prognosis in patients with germline PV in genes encoding proteins involved in DNA
damage response (DDR) and, notably, those involved in homologous recombination (HR)
to repair DNA double-strand breaks (DDSB) [9–11]. In addition, the presence of germline
PV in these genes enables tailored treatment by poly(ADP-ribose)polymerase inhibitors
(PARPi) [12,13]. The identification of PV allows for predictive testing in affected families to
identify relatives at risk.

Multigene panel testing is the preferred method for the identification of germline
PV in genetically heterogeneous disorders since it enables fast, reliable, and cost-effective
analysis of single nucleotide variants (SNV), short insertions/deletions (indels), and may
allow detection of copy number variants (CNV) in predisposition genes, after strong
validation [14].

The purpose of this study was to determine and compare the prevalence of germline
PV in cancer predisposing genes in identically evaluated sets of Belgian high-risk PDAC
patients and Czech unselected PDAC patients. We also aimed to determine the subgroup
of PDAC patients who may benefit from multigene panel testing.

2. Materials and Methods
2.1. Patients and Samples

Overall, 226 consecutive Czech PDAC patients (Table 1) diagnosed at the Dept. of
Oncology, General University Hospital in Prague between 2015 and 2018 were enrolled. All
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patients gave informed consent for their participation, approved by the Ethics Committee
of the General University Hospital in Prague. All patients were Caucasians of Czech origin.
The Czech population-matched (PM) controls were described previously and represent 777
non-cancer volunteers aged >60 years that were analyzed identically as the Czech PDAC
patients [15].

Table 1. Clinical characteristics of analyzed PDAC patients.

Characteristics All Patients
(n = 298)

Belgian Patients
(n = 72)

Czech Patients
(n = 226) p-Value *

Gender
Female (%) 150 (50.3) 41 (56.9) 109 (48.2)

0.22 aMale (%) 148 (49.7) 31 (43.1) 117 (51.8)
Age at PDAC diagnosis; Mean age
(SE) 61.9 (0.6) 58.0 (1.4) 63.11 (0.6) 0.002 b

<50 (%) 40 (13.4) 19 (26.4) 21 (9.3)
50–59 (%) 77 (25.8) 17 (23.6) 60 (26.6)
60–69 (%) 120 (40.3) 26 (36.1) 94 (41.6)
≥70 (%) 61 (20.5) 10 (13.9) 51 (22.6)
Multiple primary tumors in personal history
Absent (%) 260 (87.2) 51 (70.8) 209 (92.5)

<0.0001 aPresent (%) 38 (12.8) 21 (29.2) 17 (7.5)
Multiple primary tumors in personal history
Breast (%) 19 (6.4) 11 (15.3) 8 (3.5) 0.001 a
Ovarian/endometrial (%) 6 (1.7) 2 (2.8) 4 (1.8) 0.63 a
Colon (%) 7 (2.3) 7 (9.7) 0 <0.0001 a
Melanoma (%) 3 (1.0) 3 (4.2) 0 0.01 a
Other (%) 12 (4.0) 4 (5.6) 8 (3.5) 0.73 a
Family cancer history ‡ (first/second-degree relatives)
Negative (%) 149 (51.2) 9 (13.6) 140 (62.2)

<0.0001 aPositive (%) 142 (48.8) 57 (86.4) 85 (37.8)
Unknown 7 6 1
Syndromic ‡ tumors in family cancer history
Pancreatic (%) 56 (19.2) 34 (51.5) 22 (9.8) <0.0001 a
Breast (%) 59 (20.3) 27 (40.9) 32 (14.2) <0.0001 a
Ovarian/endometrial (%) 13 (4.5) 4 (6.1) 9 (4.0) 0.50 a
Colon (%) 52 (17.9) 16 (24.2) 36 (15.9) 0.14 a
Melanoma (%) 7 (2.4) 3 (4.5) 4 (1.8) 0.19 a

a Fisher exact test, b Welch t-test, NA—not available, * Belgian vs. Czech subgroups. ‡ Fulfilling criteria for hereditary breast and ovarian
cancer syndrome (HBOC), familial adenomatous polyposis (FAP) or familial atypical multiple mole melanoma (FAMMM). The considered
tumors included PDAC, colorectal, breast, ovarian cancer, and melanoma.

Additionally, 72 Belgian PDAC patients (Table 1) were retrospectively selected from
the patient database of the Center for Medical Genetics at Ghent University Hospital
(CMGG; n = 62) and other genetic centers in Belgium and the Netherlands (n = 10). Eligible
individuals included PDAC patients fulfilling testing criteria for analysis of hereditary
cancer syndromes. Patients were counseled between 2000 and 2019 by clinical geneticists
of the center and had signed an informed consent agreeing to store their DNA and perform
extra analyses in the context of their disease. This study was approved by the ethical
committee of Ghent University Hospital. All patients have been selected from strata based
on personal or family history (first- and second-degree relatives) of PDAC in combination
with breast/ovarian/colon cancer and/or melanoma. Belgian PM controls represent
anonymized whole exome sequencing data from 2485 unselected individuals sequenced
in CMGG for various non-cancer conditions (intellectual disability, blindness, muscular
dystrophies, cardiomyopathies).
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2.2. NGS and Bioinformatics

Both centers applied their proprietary NGS panel overlapping in 53 target genes
(Table S1). Pathogenic variants in these genes were identified subsequently using the
unified prioritization described below.

Czech: Patients’ samples were analyzed as described previously [16]. Briefly, a custom-
designed panel CZECANCA (CZEch CAncer paNel for Clinical Application; ver_1.2) was
used to capture 226 genes (Table S2). DNA libraries were prepared using KAPA HTP
Library Preparation kit (Roche, Basel, Switzerland) and sequenced on MiSeq/NextSeq500
(Illumina, San Diego, CA 92121, USA). NGS data were processed by NovoAlign and
annotated by ANNOVAR. Copy number variations (CNVs) were analyzed by CNVkit,
medium-size indels by Pindel.

Belgium: Genomic DNA samples were fragmented with the KAPA HyperPlus Library
Preparation Kit (Roche). The regions of interest were captured by designed SeqCAP EZ
probes targeting 66 genes (Table S3) and sequenced on MiSeq/NovaSeq6000 (Illumina,
San Diego, CA 92121, USA). NGS data were processed using an in-house pipeline. The
NGS reads were processed by the bcbio toolkit including data mapping to the reference
genome by BWA, variant calling using VarDict, and variant annotation in Ensembl Variant
Effect Predictor and dbNSFP/dbscSNV databases. Final quality control was performed by
FastQC, samtools and bcftools. Coverage was analyzed using mosdepth.

2.3. Variant Prioritization

The same variant prioritization was applied at both sites to identify PV in coding
and flanking intronic variants (±20 bp) in 53 targeted genes. The prioritization pipeline
excluded variants:

• With low variant allele fraction (VAF < 0.15);
• With a high minor allele frequency (MAF > 0.001) in population databases: Exome Se-

quencing Project (ESP), 1000 Genomes Project and gnomAD, except variants classified
pathogenic/likely pathogenic (P/LP) in ClinVar;

• In UTR, non-splice site intronic, synonymous and non-frameshift insertions/deletions,
unless classified as P/LP in ClinVar;

• Classified as benign/likely benign (B/LB) in ClinVar, if marked by at least two stars
in ClinVar or if classified as B/LB by an expert panel;

• Low risk variants in CHEK2 (c.470C > T; p.I157T), APC (c.3920T > A; p.I1307K), and
heterozygous MUTYH variants.

The remaining variants were classified in accordance with the ACMG recommenda-
tions [17]. Variants with insufficient or conflicting evidence were categorized as variants
of uncertain significance (VUS) as well as truncating variants in the last exon (except
ClinVar P/LP). All PV in patients were inspected in Integrative Genomics Viewer (IGV) or
confirmed by Sanger sequencing and submitted to ClinVar and LOVD.

2.4. Statistical Analysis

The frequencies of PV in PDAC patients were compared to the frequencies of PV
in both region-matched controls and the gnomAD control dataset with the non-Finnish
European (NFE) exome data, from release 2.1.1 (restricted to gnomAD exome data) [18].
Associations of PDAC with germline PV in individual genes were analyzed using the
Fisher’s exact test in different PDAC subgroups. The odds ratios (ORs) and corresponding
95% confidence intervals (CI) were calculated by inverting Fisher’s exact test. Bonferroni
correction was applied to adjust p-values for the number of mutated genes within each
population. All statistical tests were two-sided, and adjusted p-values <0.05 were consid-
ered statistically significant. Association analyses were performed with R (version 3.6.1;
The R Foundation).

The Kaplan-Meier product-limit method was used for survival analyses and differences
were tested using the log-rank and Mantel-Haenszel tests using the GraphPad Prism v8.0.1
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(GraphPad Software) and Statistica v12 (StatSoft) programs. The overall survival (OS) was
defined as the interval between PDAC diagnosis and death from PDAC or the last follow-up.

3. Results
3.1. Spectrum and Frequencies of Germline Alterations in PDAC Patients

In total, we detected 61 germline PV in 20 out of 53 genes analyzed in both popula-
tion cohorts, comprising 72 high-risk Belgian and 226 unselected Czech PDAC patients
(Table 2 and Table S4). Thirty-six PV were found in “established PDAC-predisposition”
genes (BRCA2, ATM, BRCA1, PALB2, MLH1, MSH2, MSH6, PMS2, CDKN2A, TP53, or
STK11 [3,4]) in 35/298 (11.7%) patients. Of these, 30 patients were found to have a PV
in one PDAC-predisposition gene, one patient harbored a PV in both MLH1 and MSH6,
while four patients inherited a PV in a PDAC-predisposing and another gene (Table 2).
BRCA2 (4.0%), ATM (2.7%), and BRCA1 (1.7%) were the most frequently mutated PDAC-
predisposition genes. Additionally, in 23 PDAC patients (7.7%) 25 PV were found in other
cancer predisposition genes for which a clear association with PDAC has not (yet) been
established; one third of them in CHEK2.

Table 2. Prevalence of pathogenic/likely pathogenic variants (PV) in Belgian/Czech patients and controls.

PDAC Patients Population-Matched Controls

Germline PV All; n = 298 Belgian; n = 72 Czech; n = 226 Belgian; n = 2485 Czech; n = 777

Known PDAC-Predisposition Genes

ATM * 8 (2.68%) 5 (6.94%) 3 (1.32%) 7 (0.28%) 3 (0.39%)
BRCA1 5 (1.67%) 2 (2.78%) 3 (1.32%) 5 (0.20%) 1 (0.13%)

BRCA2 * 12 (4.01%) 3 (4.17%) 9 (3.98%) 15 (0.60%) 5 (0.64%)
CDKN2A 1 (0.33%) 1 (1.39%) 0 0 0
MLH1 * 3 (1.00%) 3 (4.17%) 0 1 (0.04%) 0
MSH2 0 0 0 2 (0.08%) 3 (0.39%)

MSH6 * 1 (0.33%) 1 (1.39%) 0 2 (0.08%) 0
PALB2 2 (0.67%) 0 2 (0.88%) 4 (0.16%) 2 (0.26%)
PMS2 2 (0.67%) 2 (2.78%) 0 4 (0.16%) 0
STK11 0 0 0 1 (0.04%) 0
TP53 2 (0.67%) 1 (1.39%) 1 (0.34%) 1 (0.04%) 0

PDAC gene PV 36 18 18 42 14

Number of individuals with
PDAC PV * 35 * (11.74%) 17 * (23.61%) 18 (7.96%) 42 (1.69%) 14 (1.80%)

Other cancer predisposition genes for which the association with PDAC is not firmly established
BARD1 0 0 0 1 (0.04%) 0

BLM 0 0 0 3 (0.12%) 3 (0.39%)
BRIP1 2 (0.67%) 0 2 (0.88%) 1 (0.04%) 0
CDK4 0 0 0 1 (0.04%) 0

CHEK1 0 0 0 1 (0.04%) 0
CHEK2 * 8 (2.68%) 3 (4.17%) 5 (2.21%) 11 (0.40%) 1 (0.13%)
ERCC4 * 4 (1.34%) 0 4 (1.76%) 6 (0.24%) 5 (0.64%)
FANCA 0 0 0 6 (0.24%) 3 (0.39%)
FANCC 0 0 0 1 (0.04%) 0

FANCD2 0 0 0 3 (0.12%) 1 (0.13%)
FANCE * 2 (0.67%) 1 (1.39%) 1 (0.44%) 2 (0.08%) 0
FANCG * 1 (0.33%) 0 1 (0.44%) 3 (0.12%) 0

FANCI 0 0 0 3 (0.12%) 1 (0.13%)
FANCL 0 0 0 1 (0.04%) 0
FANCM 1 (0.33%) 1 (1.39%) 0 10 (0.40%) 4 (0.51%)
HOXB13 1 (0.33%) 0 1 (0.44%) 7 (0.28%) 0
MRE11 0 0 0 5 (0.20%) 2 (0.26%)

NBN 3 (1.00%) 0 3 (1.32%) 7 (0.28%) 3 (0.39%)
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Table 2. Cont.

PDAC Patients Population-Matched Controls

Germline PV All; n = 298 Belgian; n = 72 Czech; n = 226 Belgian; n = 2485 Czech; n = 777

POLD1 1 (0.33%) 0 1 (0.44%) 1 (0.04%) 0
POLE 1 (0.33%) 1 (1.39%) 0 1 (0.04%) 0
PTEN 0 0 0 1 (0.04%) 0

RAD50 0 0 0 3 (0.12%) 1 (0.13%)
RAD51C 0 0 0 1 (0.04%) 0
RAD51D 0 0 0 2 (0.08%) 0
RAD54L 0 0 0 7 (0.28%) 2 (0.26%)
RECQL 0 0 0 3 (0.12%) 3 (0.39%)
SLX4 * 1 (0.33%) 1 (1.39%) 0 6 (0.24%) 1 (0.13%)
XRCC2 0 0 0 1 (0.04%) 0

Other gene PV 25 7 16 98 30
Number of individuals with PV

in other genes * 23* (7.72%) 7 (9.72%) 16 (7.08%) 98 (3.94%) 30 (3.86%)

All PV 61 25 36 148 45
All PV carriers * 54 * (18.12%) 21 * (29.17%) 33 * (14.60%) 140 (5.63%) 45 (5.79%)

* Multiple germline PV were found in 4 Belgian and 2 Czech PDAC patients with co-occurring PV in PDAC predisposition genes (MLH1-
MSH6), in PDAC predisposition and other genes (ATM-FANCE; ATM-SLX4; BRCA2-CHEK2; BRCA2-ERCC4), or in the other genes
(CHEK2-ERCC4-FANCG). The frequency of PV in all 4 Lynch syndrome genes was significantly increased in Belgian PDAC patients over
Belgian controls (5/72 individuals (6 PV as 1 patient had a PV in both MLH1 and MSH6); 6.94% vs. 9/2485; 0.36%; OR = 20.5; 95%CI
6.7–62.6; p = 2.9 × 10−11).

Gene-specific PDAC risks were calculated for Belgian and Czech patients separately
using the respective population-matched controls and for the entire group using gnomAD
NFE controls. Genes associated with a significant risk are displayed in Figure 1; risks for
all genes with PV are summarized in Table S5.
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Figure 1. Gene specific PDAC risks in Belgian and Czech PDAC patients (compared with population-
matched controls) and all PDAC patients (compared with gnomAD NFE). The plots showing OR and
95%CI describe only genes associated significantly with PDAC Belgian, Czech, or all PDAC patients,
respectively. All genes are presented in detail in Table S5. OR values in bold denoted by an asterisk
(*) remained significant following Bonferroni correction for multiple testing. n.d.—not determined
(zero carriers in population-matched controls).
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Considering the established PDAC-predisposition genes, the population-specific
PDAC risks were significantly increased for Belgian patients with PV in ATM, BRCA1,
BRCA2, MLH1, and PMS2 and for Czech patients with a PV in BRCA1 and BRCA2. A
comparison of all PDAC patients with gnomAD-NFE controls confirmed a PDAC risk
association for all mentioned genes, except PMS2, but additionally revealed an association
with TP53. For the other cancer predisposition genes, a significant association was found
for CHEK2 (with both population-matched and gnomAD controls) and for ERCC4, FANCE,
and NBN (gnomAD controls only).

In view of the overrepresentation of high-risk PDAC patients in the Belgian group
(significant excess of individuals with positive individual/familial cancer history; Table 1),
the higher overall frequency of PV in PDAC-predisposition genes in Belgian over Czech
PDAC patients (23.6% vs. 8.0%, respectively; p = 0.001) was not surprising. In contrast, the
proportion of germline PV in other genes did not differ significantly between the Belgian
and Czech patients (9.7% and 7.1%, respectively; p = 0.45).

3.2. Personal Cancer History

PV in PDAC-predisposition genes were 4-times more frequent in patients with multi-
ple primary tumors (12/38; 31.6%) than in PDAC-only patients (23/260; 8.8%; p < 0.001;
Figure 2A). PV in 10 PDAC patients with multiple primary tumors affected 3 × BRCA1
and 4 × BRCA2 (all had also developed breast and/or ovarian cancer), 1 × PMS2 and
1 × MLH1/MSH6 (both developed colon cancer), and 1 × CDKN2A (diagnosed with
melanoma). In addition, two patients harbored a PV in a PDAC-predisposition and another
gene: ATM/FANCE (PDAC patient with colon cancer) and BRCA2/CHEK2 (early-onset
breast cancer PDAC patient). Furthermore, a pathogenic NBN variant was detected in
a PDAC patient with breast cancer and a POLE PV in a PDAC patient who had also
developed breast and colon cancer.

The proportion of PV carriers in PDAC-predisposition genes did not differ significantly
between Belgian and Czech patients with multiple primaries (6/21, 28.6% and 6/17, 35.3%,
respectively; Figure 2A), although the fraction of PDAC patients with multiple primary
tumors was considerably higher in the Belgian over the Czech group (29.2% vs. 7.5%;
Table 1). About one third (31.6%) of the PV in PDAC-predisposition genes (13/36) was
identified in patients with multiple primaries, even when they accounted for only 12.8%
of the total study population (Figure 2A). Thus, the presence of another primary tumor
alongside the PDAC diagnosis increased the chance for a PV in a PDAC-predisposition gene.
It is of note that all patients with double primary tumors and a PV in PDAC-predisposition
genes, also had a positive family cancer history.

No significant difference in the age of PDAC onset could be established between
patients with and without PV in PDAC-predisposition genes (with PV: mean 59.9 years;
range 32–82 years; without PV: mean 62.2 years; range 37–84 years; p = 0.20). The same ob-
servation was done for patients with PV in other genes (mean 62.5 years; range 35–80 years)
versus patients without PV (p = 0.92).

3.3. Family Cancer History

To overcome differences in clinical characteristics between Belgian and Czech PDAC
patients, we assigned all patients into four subgroups (Table 3). Subgroup #1 included
patients with a positive PDAC family cancer history. Subgroup #2 included patients with a
family history of tumors (breast/ovary/colorectal cancer/melanoma) indicative for PDAC-
associated hereditary cancer syndromes. Patients with a negative family cancer history or
with non-syndromic tumors in relatives were assigned into additional subgroups according
to the age of their PDAC onset (subgroup #3: ≤60 years; subgroup#4: >60 years). The
family cancer history was not detailed enough for 6 Belgian and 1 Czech PDAC patients,
hence the family cancer history was only taken into account for 291 PDAC-patients with a
detailed familial anamneses.
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Figure 2. Proportions (left) of patients with PV classified according to personal (A) and family
(B) cancer history considering the presence of PDAC, breast cancer (BC), ovarian cancer (OC),
colorectal cancer (CRC) or melanoma in first or second degree relative. The types (right) of multiple
primary tumors (A) and tumors in the first/second degree relatives (B) are illustrated in a Venn
diagram. Individual phenotype characteristics (C) arranged subsequently according to the presence
of PV, family cancer history positivity, presence of multiple primary tumors and the age of PDAC
onset. Overall survival in the Czech PDAC patients (D) ascertained according to the presence of any
germline PV (left) and in PV in HR and non-HR genes, respectively (right). The numbers below the
graphs denote the numbers of individual in displayed time points.
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Table 3. Prevalence of PV in four subgroups ascertaining 291 patients with known family cancer history.

PDAC Patients Group All (n = 291);
n

Patients with PV
Patients without

PV
n (%)

p-Value 2
in PDAC Gene 1;

n (%)

in Other Gene
Only;
n (%)

Familial cancer patients 142 30 (21.1) 8 (5.6%) 104 (73.2)
Belgian 57 17 (29.8) 4 (7.0) 36 (63.2)

0.07Czech 85 13 (15.3) 4 (4.7) 68 (80.0)

Subgroup#1:
≥1 PDAC in first/second
degree relative

56 15 (26.8) 4 (7.1) 37 (66.1)

Belgian 34 9 (26.5) 3 (8.8) 22 (64.7)
0.83Czech 22 6 (27.3) 1 (4.5) 15 (68.2)

Subgroup#2:
≥1 Tumor associated with
increased PDAC risk in
First/second degree
relative

86 15 (17.4) 4 (4.7) 67 (77.9)

Belgian 23 8 (34.8) 1 (4.3) 14 (60.9)
0.04Czech 63 7 (11.1) 3 (4.8) 53 (84.1)

Sporadic PDAC patients 3 149 5 (3.4) 11 (7.4) 133 (89.3)
Belgian 9 0 0 9 (100)

n.d.Czech 140 5 (3.6) 11 (7.9) 124 (88.5)

Subgroup#3:
Sporadic PDAC, early
onset (≤60 years)

53 1 (1.9) 4 (7.5) 48 (90.6)

Belgian 9 0 0 9 (100.0)
n.d.Czech 44 1 (2.3) 4 (9.1) 39 (88.6)

Subgroup#4:
Sporadic PDAC, later
onset (>60years)

96 4 (4.2) 7 (7.3) 85 (89.6)

Belgian 0 0 0 0
n.d.Czech 96 4 (4.2) 7 (7.3) 85 (89.6)

Sum 291 35 19 237
1 The patients with a PV in both a PDAC-predisposing and other gene were considered in the group of PV in PDAC genes. 2 Proportion of
Belgian vs. Czech PV in a group. 3 Including patients with other tumors in family cancer history (not associated with PDAC-predisposition
syndromes). The family cancer history was not detailed enough for 6 Belgian patients and 1 Czech PDAC patient. n.d.—not determined.

In subgroups #1 and #2 (patients with a positive family cancer history) PV in PDAC-
predisposition are much more prevalent than in subgroups #3 and #4 (sporadic) (subgroups
#1 and #2: 30/142, 21.1% vs. subgroups #3 and #4: 5/149, 3.4%; p < 0.001) (Figure 2B and
Table 3).

The proportion of patients heterozygous for PV in established PDAC-susceptibility
genes in subgroup #1 (15/56; 26.8%) was similar in Belgian (26.5%) and Czech (27.3%)
patients (Table 3) and concerned 5 × BRCA2, 3 × ATM, 3 × Lynch syndrome genes,
2 × BRCA1, 1 × TP53 and 1 × CDKN2A. Additionally, three patients harbored the c.1100delC
variant in CHEK2 and another one had a PV in FANCM.

The prevalence of PV in established PDAC-susceptibility genes in subgroup #2 (15/86;
17.4%), was higher in Belgian (34.8%) than in Czech (11.1%) patients (p = 0.04; Figure 2B).
However, this subgroup retained an increased proportion of higher risk individuals among
Belgian patients, including multiple primary cancer patients (8/23; 34.8% vs. 6/63; 9.5%;
p = 0.009) or first-degree relative(s) with breast and/or ovarian cancers (15/23; 65.2% vs.
23/63; 36.5%; p = 0.02; Figure 2C). We also evaluated the presence of “non-syndromic tu-
mors” in the familial cancer history but their occurrence did not contribute to the increased
frequency of PV.
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In subgroups #1 and #2, the prevalence of PV in cancer predisposition genes for which
an association with PDAC has not been established, was low (8/142 (5.6%)). The most
frequent were PV in CHEK2 (in three patients from PDAC families and in one colorectal
cancer family). PV in BRIP1, FANCM, NBN, and POLE were identified only once each. One
Czech PDAC patient harbored a PV in three genes: CHEK2, ERCC4, and FANCG.

Taken together, a family cancer history of PDAC or other syndromic tumors (in
30/35 patients with PV) represented the most important factor indicating a PV in a PDAC-
predisposing gene.

Subgroups #3 and #4 included 149 sporadic (mainly Czech) PDAC patients. Only
five (3.4%) of them harbored a PV in an established PDAC-predisposition gene, including
2 × BRCA2, 2 × PALB2, and 1 × ATM. Interestingly, the age at PDAC onset in these PV
heterozygotes ranged between 59 and 71 years, while no PV in an established PDAC-
predisposition gene was identified in the 52 patients diagnosed before the age of 59 years
(Figure 2C).

The prevalence of PV in cancer predisposition genes for which an association with
PDAC has not been established, was comparable for sporadic (11/149; 7.9%) and familial
cases (subgroups #1 and #2: 8/142; 5.6%).

Our data indicate that PDAC patients without a family history of tumors associated
with PDAC risk have a lower probability to harbor a clinically actionable PV.

3.4. Survival in Individuals with PV

The overall survival (OS) data were available for 223/226 Czech PDAC patients, in-
cluding 31/33 patients with PV. The survival ranged between 0.3 and 281.1 months with
mean OS 12.8 months for all PDAC patients. Baseline clinicopathological characteristics
were similar for patients with and without PV (Table S6), except for the decreased pro-
portion of tumors localized in the caput (having better survival) in patients with a PV in
non-HR gene.

We first compared OS between patients with and without any PV (Figure 2D, left)
and, secondly, with a PV in the genes coding for proteins involved in DDSB repair via HR
pathway (ATM, BRCA1/FANCS, BRCA2/FANCD1, BRIP1/FANCJ, ERCC4/FANCQ, FANCE,
FANCG, and PALB2/FANCN) and with PV in other non-HR genes (CHEK2, HOXB13, NBN,
POLD1, and TP53), respectively (Figure 2D, right).

The risk of death was significantly reduced in patients with PV compared to patients
without PV (HR = 0.66). Indeed, the mean OS (mOS) was 12.4 months in patients without
PV versus 15.9 months in patients with PV. This improved survival was mainly associated
with PV in HR genes because the presence of PV in non-HR genes actually led to worse OS
(HR = 3.26). In only 4/22 (18.2%) of the patients with a pathogenic HR variant survival
was shorter than the mOS (12.4 months), compared to 7/9 (77.8%) of the patients with a PV
in a non-HR gene.

4. Discussion

Our study enabled a comparison of germline variations in unselected Czech and high-
risk Belgian PDAC patients, for whom no studies have been published previously. The
highest clinical utility is attributed to germline variants in genes known to be associated
with PDAC predisposition (Table 2) [3]. The most frequently mutated genes in our study
included ATM, BRCA1, and BRCA2 (found in 25/35 (71.4%) patients with a PV in a PDAC-
predisposition gene). BRCA2 PV were the most frequent, accounting for 17% and 50% of
all PV in PDAC-predisposing genes in Belgian and Czech patients, respectively. BRCA2
and BRCA1 code for proteins participating in the DNA DSB repair by HR and are the
major genetic factors involved in hereditary breast/ovarian cancer syndromes. PV in both
genes were associated independently with a high (OR > 5) and statistically significant
PDAC risk in both populations. Interestingly, while in Belgian and Czech breast cancer
patients the frequency of BRCA1 germline PV is higher than BRCA2, BRCA2 PV prevails
in PDAC patients in both populations [19,20]. Thus, the BRCA2-associated risk could be
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higher for pancreatic than for breast cancer, as indicated by our analysis of pooled patients
against gnomAD data (BRCA1: OR = 6.0 vs. BRCA2: OR = 11.7; Figure 1). Similar data
were presented in the US study of 3030 PDAC patients by Hu and colleagues (OR 2.6 vs.
6.2) [21].

While BRCA2 PV dominated in the Czech patients, ATM PV were the most frequent in
Belgian patients (5/72; 6.9%). Biallelic ATM inactivation causes ataxia-telangiectasia while
heterozygous variants moderately increase the risk of several tumors including breast or
pancreatic cancers [22]. The frequency of ATM PV found in the Belgian subgroup is similar
to observations in unselected Canadian PDAC patients (12/177; 6.8%) [23]. In the Czech
PDAC patients, the frequency of germline ATM PV was lower (3/226; 1.32%) but still over
three-times as high as in population-matched controls (Table 2). Interestingly, all eight ATM
PV carriers in our study had a positive family cancer history (this may explain a significant
association with the PDAC risk in the Belgian subgroup only, enriched in such patients).
An aggregated analysis of all patients showed a high PDAC risk associated with ATM PV
(OR = 5.6), comparable with that of BRCA1. Similar ATM-associated risks were calculated
in Canadian (OR = 7.7) and US (OR = 5.7) PDAC patients [21,23].

PV in other PDAC-predisposition genes (PALB2, CDKN2A, and TP53) were substan-
tially less frequent (5/35; 14.2% of PV carriers) and their significant associations with
PDAC were not reached. However, PV in the mismatch repair genes (MLH1, MSH6, and
PMS2) identified in five Belgian (but none in Czech) PDAC patients resulted in a significant
association with PDAC collectively (and for MLH1 and PMS2 separately) in the Belgian
subgroup. Generally, the prevalence of germline PV in mismatch repair genes in unselected
PDAC patients is estimated at 0.3% to 1.3% [8,9,21,24].

Germline PV in cancer predisposition genes for which the association with PDAC has
not been firmly established were less frequent. However, CHEK2 PV accounted for 13.1%
of all germline PV (identified in 8 of 298 PDAC patients (2.7%)), a proportion comparable to
ATM. CHEK2 was initially reported as a multi-organ cancer susceptibility gene associated
with breast, prostate, colon, and pancreas cancer, with low-to-moderate penetrance [25].
Nevertheless, the majority of the clinical knowledge was adopted in pre-NGS era and
only a few recurrently-analyzed CHEK2 variants were included [26,27]. An increased
frequency of CHEK2 PV was reported in several PDAC studies but without statistical
significance [10,21,28]. We found an increased population-specific PDAC risk for CHEK2
PV in both Czech and Belgian cohorts and also when considered all patients together
(Figure 1). In the three Belgian patients, c.1100delC was identified; the Czech CHEK2
PV spectrum was more diverse, as recently reported in Czech breast cancer patients [15].
Interestingly, 3/5 PDAC patients (one Czech and two Belgians) with the c.1100delC also
had one or more relatives diagnosed with PDAC. However, clinical classification of the
CHEK2 VUS (dominantly missense variants and short in-frame indels) as well as larger
case-control studies in other populations are warranted to further analyze the CHEK2
association with PDAC risk.

The ERCC4 gene was the second most frequently mutated gene among genes with
uncertain PDAC risk. Germline ERCC4 inactivations causes xeroderma pigmentosum
complementation group F, Cockayne syndrome, or Fanconi anemia complementation group
Q [29]. Japanese patients homozygous for ERCC4 p.Arg799Trp or compound heterozygous
with another variant were diagnosed with autosomal recessive cerebellar ataxias [29].
Heterozygous carriers were recently described in PDAC patients from the USA and the
authors recommended to include ERCC4 into the germline panel testing [11]. We found
p.Arg799Trp to be present in 4/226 (1.34%) Czech PDAC patients but also in 5/777 (0.64%)
population-matched controls, making the risk in Czech patients insignificant.

The c.657_661del variant in NBN represented another example of a variant prevailing
in Czech patients. An association of this variant with PDAC was previously documented
in Polish patients and in an independent Czech PDAC cohort [30,31]. In the current study,
the c.657_661del variant was more frequent in Czech PDAC patients than in the population-
matched controls; however, the difference was not significant. The ERCC4 and NBN
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variants exemplify the need for careful analysis of risk, associated with population-specific
or founder variants, using appropriate geographically-matched controls [32]. However,
the insignificant differences in the overall frequency of PV in non-PDAC established
cancer predisposition genes among subgroups of patients considering personal/family
cancer history or population origin indicate that the roles of many these genes in PDAC
predisposition is limited.

Considering the clinical characteristics of patients with PV, our study demonstrated
that a family cancer history is an important risk factor for the identification of a germline PV
in PDAC-predisposition genes in both populations. The PDAC patients with first or second
degree relatives developing pancreatic/breast/ovarian/colorectal cancer or melanoma
have a much higher chance to have a PV in a PDAC-predisposition gene compared to the
patients without a family cancer history (OR 7.7; p = 2.6 × 10−6; Table 3).

The difference in PV frequencies in PDAC-predisposition genes between Czech (8.0%)
and Belgian (23.6%) PDAC patients were attributable to an ascertainment bias towards
high-risk PDAC patients in the Belgian subgroup. The overall PV frequency in unselected
Czech PDAC patients (8.0%) corresponded to studies from unselected PDAC patients in the
USA (7.7%) [24], or Canada (10.7%) [23]. The frequency of PV in Belgian high-risk PDAC
patients insignificantly exceeded the frequencies reported in high-risk PDAC patients from
the USA (17.7%) [33] or familial PDAC patients from Germany (16.7%) [34].

To leverage the differences in enrollment of high-risk individuals in Belgian and Czech
cohorts, we assigned all patients into subgroups reflecting their family cancer history or
PDAC age of diagnosis. The subsequent analysis revealed similar frequencies of PV in
PDAC-predisposition genes in Belgian and Czech familial PDAC patients (subgroup #1;
26.5% and 27.3%, respectively). These frequencies were higher than in published studies
from Germany (16.7%) [34], the USA (11.9%) [35], and Japan (14.8%) [36]. However it is
important to note that there is no uniform definition of familial PDAC and many different
working definitions are being used [6,37].

We observed that double primary PDAC/another tumor from breast/ovarian/ col-
orectal/melanoma hereditary cancer spectrum strongly predicts the presence of a germline
PV in a PDAC-gene, as described previously [33].

We found no effect of PV presence on the age of PDAC onset, in agreement with
previous reports from Canada and the USA [38,39] but in contrast to two other US studies
[7,40]. These contradictory results indicate that the association of germline PV with age of
onset remains inconclusive. Most experts in current CAPS guidelines do not recommend
screening of high risk individuals before the age of 50 with the exception of patients with
Peutz-Jeghers syndrome or hereditary pancreatitis [4].

Clinical data from Czech PDAC patients confirmed a positive impact of germline PV,
especially in HR genes, on the survival of PDAC patients (21.4 months vs. 12.4 months,
Figure 2D). Similar data were reported from Goldstein et al. (17.9 vs. 9.6 months) [11],
Fountzilas et al. (22.6 vs. 13.9 months) [10] or Yurgelun et al. (34.4 vs. 19.1 months) [9].
An association of germline PV in non-HR genes with inferior survival (4.7 vs. 12.4; HR
= 3.26; p = 0.017) needs to be further evaluated because our group consisted of only nine
individuals enriched in tumors with prognostically-inferior localization in the pancreas.

The identification of germline PV associated with an increased PDAC risk has im-
portant implications for both patients and their relatives. The predictive role of germline
PV include application of programmed death receptor–1 (PD-1) pathway inhibitors (in
patients with mismatch repair deficiencies) or PARPi (in patients with germline PV in HR
genes) [13,41].

There are some limitations to this study. The ascertainment criteria differed between
Czech and Belgian patients. The family history of the PDAC patients relied on self-reported
family history of PDAC and other cancers, potentially biasing an inaccuracy of medical
history. Although multigene panel testing is an effective and cost-effective strategy to
identify PV in various genes, the clinical interpretation of cancer risk for multiple moderate
penetrance genes remains challenging. To allow formulating consensus guidelines for
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medical management of the PV carriers, additional large studies with detailed information
on personal and family history are definitively warranted.

5. Conclusions

Our study demonstrated that germline PV in BRCA2, ATM, and BRCA1 are the
most frequent in both Belgian and Czech PDAC patients and we confirmed that these
are associated with a significantly increased PDAC risk. PV are more frequent among
PDAC patients with multiple primary tumors and/or with a positive family history of
PDAC or breast/ovarian/colon cancer or melanoma. The presence of PV in BRCA2, ATM,
BRCA1, and other HR genes was associated with improved OS in PDAC patients and
entails clinically useful prognostic information. Therefore, clinical germline genetic testing
of genes increasing the PDAC risk (including BRCA2, ATM, BRCA1, PALB2, MLH1, MSH2,
MSH6, PMS2, CDKN2A, TP53, STK11, and possibly also CHEK2) should be offered to
all PDAC patients or at least to those with a positive family cancer history or personal
history of multiple primary tumors. Beyond the prognostic information, the identification
of a germline PV in PDAC patients bears a predictive value enabling tailored anticancer
treatment using platinum chemotherapy or PARPi. Moreover, the cascade testing in
relatives and intensified cancer surveillance in carriers of a particular PV in a cancer-
predisposition gene represent an important approach reducing cancer burden in these
high-risk individuals. Our study also highlights the importance of a population-matched
control population for establishing correct risk associations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13174430/s1, Table S1: Overlapping genes between both panels; Table S2: List of
226 genes Czech CZECANCA panel; Table S3: List of 66 targeted genes in Belgian SeqCAP panel;
Table S4: List of all the (likely) pathogenic variants in PDAC patients; Table S5: Comparison of
pathogenic variant frequencies between PDAC cases (BEL + CZE) and control data; Table S6: Baseline
characteristics comparing mutation carriers (in HR and non-HR genes) collectively and separately
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