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Abstract

The design of next-generation alloys through the integrated computational materials engineering 

(ICME) approach relies on multiscale computer simulations to provide thermodynamic properties 

when experiments are difficult to conduct. Atomistic methods such as density functional theory 

(DFT) and molecular dynamics (MD) have been successful in predicting properties of never 

before studied compounds or phases. However, uncertainty quantification (UQ) of DFT and 

MD results is rarely reported due to computational and UQ methodology challenges. Over the 

past decade, studies that mitigate this gap have emerged. These advances are reviewed in the 

context of thermodynamic modeling and information exchange with mesoscale methods such as 

the phase-field method (PFM) and calculation of phase diagrams (CALPHAD). The importance 

of UQ is illustrated using properties of metals, with aluminum as an example, and highlighting 

deterministic, frequentist, and Bayesian methodologies. Challenges facing routine uncertainty 

quantification and an outlook on addressing them are also presented.

INTRODUCTION

Integrated computational materials engineering (ICME) describes the design of materials 

for target properties by the coupled use of experiments, computational simulations, and 

data-driven techniques. Atomistic simulation workflows that cross multiple time and length 
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scales are becoming popular for the determination of physical properties critical to ICME. 

One often overlooked tenet of ICME, however, is the reliable quantification of uncertainties 

of material properties. This is especially important for the design of metals that are used 

in transportation, structural, health, and energy industries due to the mission-critical nature 

of the materials performance and the potential for loss of life should failures occur.1–3 

In this review, we first introduce the terminology used to express uncertainties in the 

atomistic simulations [density functional theory (DFT) and molecular dynamics (MD)] 

literature. Next, we discuss the flow of information between atomistic simulation methods 

and mesoscale [phase-field modeling (PFM)] and thermodynamic [calculation of phase 

diagrams (CALPHAD)] models, in the context of calculated thermodynamic properties. We 

then introduce the uncertainty quantification approaches, both Bayesian and frequentist, 

that have been applied in the context of PFM and CALPHAD. In subsequent sections, 

we describe the uncertainty quantification approaches in DFT (“Uncertainty Quantification 

in DFT and Impacts on MD, CALPHAD, and PFM” section) and MD (“Uncertainty 

in Molecular Dynamics and Impacts on CALPHAD and PFM” section), and examine 

the uncertainties reported for the thermodynamic properties of aluminum with atomistic 

simulation methods. We then describe how atomistic simulation data with uncertainties 

have been used in CALPHAD (“Uncertainty Quantification and Bayesian Assessment of 

Atomistic Data for CALPHAD” section) and PFM (“Uncertainty Propagation in PFM Meso

Scale Microstructure Modeling” section). Finally, in the “Challenges and Outlook” section, 

we conclude by discussing the challenges with regards to the regular use of uncertainty 

quantified data in developing thermodynamic models with these methods and present our 

outlook on how some of these challenges can be addressed.

Types of Uncertainty

Formal approaches to the quantification of uncertainty continue to be an active area of 

development for atomistic simulations.4,5 Inherent to these activities is the definition of the 

types and sources of uncertainties/errors. A comprehensive review of the uncertainty concept 

in the context of multiscale materials simulations, their types, and sources lies beyond the 

scope of this article. For more information on these topics, the reader is encouraged to 

access the excellent book by Wang and McDowell.6 For the purpose of this review, we 

adopt the broad classification of uncertainties as epistemic and aleatoric uncertainties. In 

addition, a wide variety of terms are employed in the literature for uncertainty quantification 

in atomistic simulations. These include systematic error, random error, precision, accuracy, 

convergence error, numerical precision, controlled and uncontrolled approximations, model 
uncertainty, and parametric uncertainty. It is not always clear how these terms are related 

to the broad classification into epistemic and aleatoric uncertainty, so we introduce them as 

follows:

a. Epistemic uncertainties are uncertainties caused by a lack of knowledge 

stemming from data and/or model form insufficiencies and the subjectivity of 

model parameter choice due to experience. Data and model form insufficiencies 

are caused by computational cost considerations for data acquisition or model 

evaluation, or a combination of both. The uncertainties caused by computational 

cost considerations are controllable and hence are also referred to as controlled 
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approximations in the computational modeling literature. The bias in the model 

is referred as the model form uncertainty and manifests itself as a systematic 
error. The error itself is expressed as the accuracy if the ground truth is known. 

If the error originates as a result of computational cost considerations, this error 

manifests as the convergence error or numerical precision error. Sometimes 

however, the epistemic uncertainty cannot be reduced predictably, and such 

errors are referred to as uncontrolled approximations. The subjectivity of model 

parameter choice is an example of parametric uncertainty which is epistemic in 

nature.

b. Aleatoric uncertainty is random error that can be quantified in the form 

of probability distributions. They are caused by stochastic aspects of a 

computational experiment or setup of a model. Variability in the structure of 

a material with defects is an example of stochastic aspects of a computational 

experiment. The aleatoric component of parametric uncertainty is related to the 

distribution of a model’s parameters that best match the data.

Uncertainty quantification in DFT has historically dealt with epistemic uncertainty 

quantification using descriptive statistics, though probabilistic uncertainty quantification 

approaches for inferential statistics continue to be developed. Uncertainty quantification in 

MD, CALPHAD, and PFM, on the other hand, has also dealt with probabilistic uncertainty 

quantification for inferential statistics. Frequentist and Bayesian statistics are the two 

dominant approaches to probabilistic uncertainty quantification for inferential statistics. 

Frequentist statistics works under the assumption that a given model is deterministic (or that 

certain parameters have defined probability distributions), and that through large numbers 

of observations the probability of the data being supported by the model can be found, 

or an interval in which the true model parameters reside can be identified with a certain 

probability. In contrast, Bayesian statistics assumes models to be probabilistic, and uses 

observed data to update prior beliefs about the probability distribution of model parameters 

and other quantities. CALPHAD in particular makes use of both frequentist7 and Bayesian8 

approaches to uncertainty quantification.

Bayesian statistics and Bayesian concepts are highlighted in the remainder of this review. 

Consequently, a brief description of Bayes’ theorem is provided below. For a model M 

parameterized by θ , Bayes’ theorem,

Pr θ D , M =
Pr D θ , M Pr θ M

Pr D M
(1)

describes the posterior probability distribution Pr θ |D , M  of the model parameters given 

the observation of data D , where Pr D | θ , M  is the likelihood of the data given a specific 

parameter set, Pr θ |M  is the prior assumed distribution of the parameters before the 

observation of data, and Pr D |M  is the marginal likelihood, calculated by integrating the 

numerator of the expression across the entire parameter space. Given certain choices of 
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the model form, likelihood, and prior distributions, it is possible to derive an analytical 

expression for the posterior distribution, but in the majority of cases the posterior must be 

evaluated through numerical means, most typically Markov chain Monte Carlo (MCMC). 

The critical choices that affect the posterior and therefore predictive uncertainties are those 

of the model form, the prior distributions, and the likelihood function. Of these, only the 

likelihood considers the data and therefore will be of most interest in understanding the 

connections between CALPHAD and DFT uncertainty. It is common practice to assume 

a Gaussian likelihood function (although Student’s t-distribution may be used to increase 

robustness to outliers), and therefore the variance must be specified.9 As the likelihood 

represents the distribution of the data around the mean model, this variance is equivalent to 

the uncertainty in the data. Two common choices are to fit a variance hyperparameter in the 

Bayesian inference, or to simply use the reported errors as an estimate.

Uncertainty Propagation Between Interdependent Simulation Methods

Uncertainty propagation between the individual components of multiscale simulations of 

materials structure is important because of the sensitivity of phase stability models to 

errors as small as 1 meV/atom, which is the resolution of energy accuracy required to 

determine phase transitions.10 Typically, multiscale atomistic simulations are viewed as 

traversing increasing length and time scales along a straight line as shown in Fig. 1,11 

with simulations at higher length and time scales depending on those at lower length 

and time scales. However, in practice, information can be passed between the methods 

from a higher scale method to a lower scale method or by skipping a length or time 

scale in between. Hence, for the purposes of uncertainty quantification and propagation 

between the four methods of DFT, MD, CALPHAD, and PFM, we propose viewing the 

methods as four interconnected points of a rectangle, as shown in Fig. 2. DFT, as the 

name suggests, calculates properties based on functionals of electron density.12 In contrast, 

MD simulations use Newton’s classical equations of motion, often with an interatomic 

potential that models the interactions between atoms, at specified conditions, such as 

temperature and pressure.13–16 CALPHAD describes the use of Gibbs energy models for 

phases of interest as a function of composition, temperature, and pressure to predict the 

stability and thermodynamic properties of pure components and mixtures through coupled 

equilibrium calculations. The phase-field method (PFM) is used to model the evolution 

of microstructures.17 The following properties of metals are exchanged between these 

methods: heat capacity at constant pressure (Cp), enthalpy (H), free energy (Gibbs, G 
and Helmholtz, F), phase-transition temperatures such as the melting point (Tm), diffusion 

coefficients (D), interfacial energies (γ), and elastic constants (Cij). As shown in Fig. 2, 

each of these properties can be determined independently by each of DFT and MD, or 

by a combination of methods; for example, DFT can be used to parametrize interatomic 

potentials for molecular dynamics by calculating properties such as an equation of state, 

or the energy, forces, and stresses that describe the potential energy surface. In turn, the 

interatomic potential can be used to calculate enthalpies (H), Helmholtz free energies (F), 

diffusion coefficients (D), and interfacial energies (γ), at given temperature and pressure 

by propagating a material system over a long enough time scale. These properties can 

also parametrize a PFM to describe the evolution of microstructures. Some of these 

thermodynamic properties (Cp, Tm, F) can also be calculated directly by DFT-based 
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molecular dynamics or the quasiharmonic approach, but system size and calculation time 

remain challenges for average computational budgets.

UNCERTAINTY QUANTIFICATION IN DFT AND IMPACTS ON MD, CALPHAD, 

AND PFM

DFT calculates materials properties by solving for the electronic ground state of the 

material. To this end, important approximations are made to describe the number of 

electrons and the interactions between them. In this section, we first describe how 

uncertainties have been quantified for DFT-computed properties in the context of choices 

of these approximations. We then describe the uncertainties for properties that are used in 

MD, CALPHAD, and PFM.

Uncertainty Quantification Approaches for DFT-Computed Properties

Uncertainty quantification approaches for DFT-computed properties have focused largely 

on quantifying epistemic uncertainties. These epistemic uncertainties are caused by the 

choice of exchange correlation functional, pseudopotential, or all-electron treatment of the 

interacting electrons, and by the choice of calculation convergence parameters. The first two 

choices define the physics of the system and hence result in model form errors. The choice 

of calculation convergence parameters results in numerical precision errors. To a lesser 

extent, there have been attempts to quantify aleatoric uncertainties arising from variability in 

the representation of the simulation box describing the system under study. In this section, 

we review how errors due to these choices have been quantified.

Modeling interacting electrons is beyond current capabilities, so, in DFT, electrons 

are approximated by an auxiliary system of noninteracting electrons, where each of 

them is immersed in an effective single-particle potential. Such a potential contains an 

electron–electron Coulomb repulsion term and an exchange–correlation potential term 

that approximate all the many-particle interactions. Many new exchange correlation 

functionals18–20 have been developed in recent years to improve property predictions, 

especially for certain elements. Whenever a new exchange–correlation functional or 

implementation thereof is introduced, benchmark studies are performed by comparing the 

new exchange–correlation functional with existing ones and with experimental data. In 

these benchmark studies, the uncertainties are quantified with respect to a chosen gold 

standard, using statistical quantities such as the mean absolute error (MAE) and mean 

absolute percentage error (MAPE). These are epistemic uncertainties contributing to the 

model form errors. For a given material and choice of exchange–correlation, this uncertainty 

is fixed; it can be reduced only by selecting a better exchange–correlation functional. For 

example, Tran et al.21 compared lattice constants, bulk moduli, and cohesive energies for 

63 new and old functionals from different classes: the local density approximation (LDA), 

generalized gradient approximation (such as the Perdew–Burke–Ernzerhof, called GGA

PBE), meta-GGAs [such as the strongly constrained and appropriately normed (SCAN) 

and meta Bayesian error estimation functionals (BEEF)], and hybrid functionals (such as 

PBE0), with or without dispersion corrections [van der Waals (vdW) corrections]. They 

found that, for strongly bound solids, GGA is as accurate as higher-level functionals, while 
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meta-GGA functionals are needed for finite systems, and dispersion-corrected ones are 

necessary for an accurate description of weakly bound materials. Janthon et al.22 determined 

that meta-GGA and meta-non-separable gradient approximation (meta-NGA) functionals 

provide good descriptions of molecular crystals while also offering accuracy comparable 

to that of the GGA functional for transition metals. Additionally, the BEEF20 provides an 

ensemble-averaged error estimate for property prediction, which is an intrinsic uncertainty 

independent of an experimental reference. The disagreement between the DFT prediction for 

a specific functional and experimental data can be exploited for materials design as well; For 

example, Choudhary et al.23 used the disagreement between predictions of lattice constants 

as a screening criterion to identify exfoliable materials.

Although DFT avoids dealing with the many-body problem, solving the Kohn–Sham (KS) 

equations for all the electrons in the system is very computationally intensive. Therefore, 

in addition to the all-electron approach, where all the electrons in the system are taken into 

account, a second approach is commonly used: the pseudopotential approach.24–26 Here the 

(KS) equations are only solved for the valence electrons, while the nonvalence electrons 

are treated as a frozen core. Like exchange–correlation functionals, pseudopotential and all

electron approaches continue to be developed. A large study27 focusing on accuracy across 

different DFT codes showed that, for the same exchange–correlation functional (PBE), 

predictions from recent codes agree very well with each other, provided that the most recent 

version of the proper pseudopotential is used. Specifically, pairwise differences in equations 

of state (EOS) between codes are comparable or smaller than those between high-precision 

experiments. If older versions of pseudopotentials are used, differences between codes 

become substantially larger. This work introduced a quality metric for the comparison of 

different DFT codes, known as the delta gauge, that continues to serve as a quality metric for 

newly developed DFT codes.

In addition to pseudopotentials and exchange–correlation functionals, other parameters are 

key in determining the numerical precision and accuracy of DFT calculations. Examples of 

these parameters are the density of the k-point mesh used to perform the energy integration 

and the number of plane waves used to expand the wavefunction in plane-waves codes. Most 

databases of DFT calculated properties determine these parameters for a few key materials 

and then use these values for all compounds in the repository. One noticeable exception 

is the JARVIS-DFT database,28 where such parameters are converged for each included 

material. Typically, choices are made based on the requirement of achieving an energy 

convergence of 1 meV/atom, which is the energy difference over which phase transitions 

take place. However, Gabriel et al.29 showed that a k-point density choice sufficient for the 

convergence of energy does not always guarantee convergence for a derived property of 

interest; For example, the pressure derivative of the bulk modulus is converged to 1% only 

when the energy is converged to less than 1 meV/atom. This work showed that the precision 

of the equilibrium volume, bulk modulus, and the pressure derivative of the bulk modulus 

correlate comparably well with the k-point density and the precision of the energy, following 

an approximate power law. They also established that common k-point density choices in 

high-throughput DFT databases result in precision for the volume of 0.1%, the bulk modulus 

of 1%, and the pressure derivative of 10%.
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Fewer studies have attempted to quantify aleatoric uncertainty in DFT calculations. One 

approach to aleatoric uncertainty was undertaken to capture the effect of variability in the 

arrangement of atoms in amorphous materials.30 The aleatoric uncertainty was found to 

depend on the system size and could be as much as a factor of three larger than epistemic 

uncertainties for small systems.

Reported Uncertainties for DFT-Calculated Properties Relevant to MD, CALPHAD, and PFM

In this section, we describe the uncertainties of properties computed with DFT and that are 

used in MD, CALPHAD, and PFM. We begin with properties that serve as targets for the 

interatomic potential used in MD. Next, we describe properties that are used in CALPHAD 

and PFM.

For MD, the interatomic potential describes the interactions between atoms. Classical 

interatomic potentials, such as the embedded atom method (EAM), a popular interatomic 

potential for metals, are fit to reproduce target properties from experiment and DFT 

calculations. Among these target properties are the equation of state properties, namely the 

cohesive energy (E0), equilibrium volume (V0), bulk modulus (B), the pressure derivative 

of the bulk modulus (B1), and the elastic constants (Cij). The pseudopotential approach 

and the generalized gradient approximation functional of Perdew–Burke–Ernzerhof (PBE)31 

is the most widely used functional in DFT materials data repositories.32–35 Using this 

choice of exchange–correlation, Lejaeghere et al.36 estimated errors on equation of state 

properties and key elastic constants (C11, C12, C33, C13, and C44), and performed linear 

regressions through least-square fits between experiments and calculated properties for 

elemental crystals in their stress-free ground state. The experimentally measured properties 

were first extrapolated to 0 K and corrected for zero-point vibrations. From the fits, the slope 

and the scatter with respect to the regression line were determined. The difference between 

the slope and unity gave the systematic error, while the standard deviation of the scatter 

gave the residual error bar. The main source of this scatter is the model form error due to 

the choice of the exchange–correlation functional, which, for a given choice, performs best 

for certain elements and worse for others. The systematic error is the result of a specific 

implementation of the DFT code, which is reflected in the choice of algorithm to solve the 

Kohn–Sham equations, the chosen pseudopotential, etc. By grouping the elemental crystals 

into eight classes based on common physical properties, Lejaeghere et al. determined 

which structure types are well described by DFT calculations using PBE and excluded 

the others (strongly correlated materials and materials where dispersion interactions are 

essential, i.e., ionic crystals and noble gases) from their analysis. Magnetic materials were 

not excluded from the analysis but do show larger scatter than other groups with respect 

to cohesive energy, highlighting that PBE, and possibly other current GGA functionals, are 

not able to describe magnetic compounds as well as other types of materials. The largest 

relative systematic deviation from unity slope was found for the bulk modulus (− 4.9%) 

and its pressure derivative, B1 (+ 4.8%), followed by the equilibrium volume (+ 3.6%) 

and Cij (− 2.0%), where Cij is the mean over the key elastic constants. The slope was 

found to be unity for cohesive energy. A positive (negative) sign means that PBE tends 

to overestimate (underestimate) the quantity. Lastly, the authors noted that elements with 

the highest deviation in cohesive energy did not always show the highest deviations in the 
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other examined properties. A similar study related experimentally measured melting points 

to DFT-calculated cohesive energies aiming to develop a semiempirical model that could 

predict experimental melting points from DFT-calculated cohesive energies. Prediction 

errors can be as small as 10 K for some metals and as large as 750 K for other metals.37

For CALPHAD, the heat capacity (Cp) can be obtained from the quasiharmonic 

approximation to the free energy. The heat capacity at constant pressure can be computed 

from the free energy and can more easily be compared with experiment. In a recent 

study, the heat capacity was determined using the Bayesian error estimation functional 

and the quasiharmonic approach for aluminum.38 Although computationally expensive for 

regular practice, melting points and phase-transition temperatures with uncertainty have 

been determined from the trajectories of ab initio molecular dynamics (AIMD).39 Table I 

presents a subset of predicted thermodynamic properties of aluminum such as the melting 

point and heat capacity, and their reported errors, from DFT and MD. We intend Table I to 

provide examples of reported uncertainties in the DFT and MD literature on the enthalpy 

and heat capacity of aluminum, but by no means to be an exhaustive collection of all studies. 

For DFT, major approximations are the different choices of the pseudopotential (PP), 

exchange–correlation (XC) functional, basis set, and k-point density expressed as the choice 

of Monkhorst–Pack (MP)40 mesh. For MD, only one interatomic potential is mentioned 

as an example comparison with DFT, although we note that a number of interatomic 

potentials exist for aluminum, most of which have not been evaluated systematically for 

these properties with reported uncertainties.41

For PFM, the interfacial energy, lattice parameters, elastic tensor, chemical potential, and 

diffusion coefficient can be derived from DFT calculations. Diffusion coefficients can be 

calculated from density functional theory metadynamics35 and ab initio molecular dynamics 

simulations.36 Comparing the surface energies for elemental crystals, Tran et al.42 created a 

database of Wulff crystal shapes of the elements and found that the maximum convergence 

error with respect to DFT calculation inputs, under the widely used GGA-PBE, was 0.02 

J/m2.

UNCERTAINTY IN MOLECULAR DYNAMICS AND IMPACTS ON CALPHAD 

AND PFM

In an MD simulation, the interatomic potential (IP) function defines the interactions between 

atoms.46 The gradient of the IP F = − ∇ U  determines the velocity of atoms and how the 

thermodynamic state of a system of atoms occupying a volume V evolves with time t to a 

state defined by the total energy E(V, t, p, T), where T is temperature and p is pressure. 

In an MD simulation, choices are made for the interatomic potential, the pathway to the 

desired thermodynamic state, the equilibration time to get to that state, and the boundary 

conditions of the simulation itself. Each of these choices cause both epistemic and aleatoric 

uncertainties. In this section, we review first the approaches to quantify these uncertainties. 

Then, we discuss uncertainties for thermodynamic properties and describe their impact on 

CALPHAD and PFM.
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Uncertainty Quantification Approaches for MD Simulations

Uncertainty quantification approaches for MD have largely focused on the choice of 

interatomic potential, the parameters that parametrize each potential, and descriptive 

statistical measures of the outputs of a simulation. The choice of interatomic potential 

defines the underlying physics and is hence a model form uncertainty. Sensitivity analysis 

approaches have also been applied to the parameters that define the interatomic potentials. 

These studies pertain to quantifying the parametric uncertainty with Bayesian statistics. For 

the purpose of this review, we classify MD simulations into three categories: classical MD 

simulations, machine learning force field molecular dynamics (MLFF-MD), and reactive 

molecular dynamics (RMD). In this subsection, we review model form and parametric 

uncertainty quantification approaches in the context of classical MD, MLFF-MD, and RMD.

Uncertainties in classical MD primarily occur for the following reasons: (a) the choice of 

the interatomic potential for a given MD simulation, (b) the choice of inputs outlined in 

the “Introduction” section for DFT calculations of reference properties and the experimental 

data that was used to fit the interatomic potential, (c) simplifications to the modeled material 

when compared with the experimentally characterized material, (d) differences in the testing 

procedures between experiments and simulations, and (e) data analysis technique.47 Most 

studies show that the choice of the force field is the main factor that affects the predictions 

of material properties.48

Interatomic potentials are derived to target certain experimental or DFT-calculated properties 

for a limited number (a calibration dataset) of known crystal structures and defects. As 

such, their transference to structures or property predictions outside the calibration dataset 

can be questionable.49 In addition, there is uncertainty in measurements and/or the DFT

calculated data, as well as the assumed functional form of the interatomic potential. The 

first IPs (pertaining to classical MD) were fit to simple functional forms of interatomic 

distances and/or bond angles to reproduce experimental data; new potentials (pertaining to 

MLFF-MD) are fit to DFT data such as atomic forces, energies, and stresses, sometimes 

using flexible functional forms or complex descriptions of local atomic environments. Some 

of these flexible functional forms such as Gaussians50 yield intrinsic uncertainties on the 

predicted energy and forces, which further guide the selection of calibration data.51

The quantification of parametric uncertainty for single potentials has been undertaken 

in several cases,52,53 while Bayesian frameworks have also been proposed for a variety 

of interatomic models and force fields.54–56 Furthermore, quantification of uncertainty 

due to the potential fitting reference set57 was augmented by propagation of parametric 

uncertainties to MD outputs.58 Recent efforts have focused on fitting interatomic potentials 

to data and subsequently quantifying the uncertainty.59 These efforts contributed to 

the uncertainty quantification and potential development by providing an open-source 

implementation of the framework proposed by Frederiksen et al.54 The uncertainty in the 

MD model parameters propagates to predictions of properties such as density, thermal 

expansion coefficient, isothermal compressibility, enthalpy, and viscosity. The level of 

uncertainties in relation to the uncertainties observed in the experimental quantities is partly 

due to the large fluctuation of these properties arising from the short time intervals used 

in MD simulations.58 Frederiksen et al.54 applied concepts from Bayesian statistics to 
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estimate error bars on properties predicted through MD. They compared three different 

potentials and assigned independent normal likelihood to the model discrepancies from DFT 

or experimental values.

A good measure of the confidence in the model predictions consists of evaluating the 

uncertainty in the effective potential. Longbottom et al.59 have demonstrated this technique 

using three potentials for nickel: two simple pair potentials, Lennard-Jones and Morse, 

and a local density-dependent embedded atom method potential. They were successful in 

developing a potential ensemble fit to DFT calibration data to calculate the uncertainties in 

lattice constants, elastic constants, and thermal expansion of nickel. A different approach 

was used by Reeve et al.,60 who used functional derivatives to quantify how thermodynamic 

outputs of an MD simulation depend on the potential used to compute atomic interactions. 

In this approach, the sensitivity of the quantities of interest (QOIs) is evaluated with respect 

to the input functions as opposed to its parameters, as done with traditional uncertainty 

quantification methods. Reeve et al. were successful in demonstrating the power of this 

approach under three different thermodynamic conditions: a crystal at room temperature, a 

liquid at ambient pressure, and a high-pressure liquid.

Rizzi et al.56 focused on the forward propagation of MD uncertainty starting with 

quantifying the effect of intrinsic (thermal) noise and the parametric uncertainty in MD 

simulations. The parametric uncertainty was assumed to originate from IP parameters as 

standard uniform random variables. The thermal fluctuations inherent in MD simulations, 

combined with parametric uncertainty, resulted in noisy MD predictions of bulk properties. 

In subsequent studies, Rizzi et al.61 explored the inference of small-scale, atomistic 

parameters, based on the specification of large, or macroscale, observables. The results 

demonstrated that a suitable choice of the observables allows the recovery of “true” 

parameters with high accuracy even with low-order surrogate models. MD evolution 

equations are nonlinear and strongly62 coupled, as discussed by Grogan et al.63 In their 

study, they made detailed numerical comparisons between full classical MD simulations 

and MD simulations using large-scale approximations. The reliability of these methods 

was evaluated by measuring the differences between full, classical MD simulations and 

those based on these large-scale approximations. The study demonstrated the existence 

of computationally efficient large-scale MD approximations that accurately model certain 

large-scale properties of the molecules such as energy, and linear and angular momenta.

Stochastic methods are also used to evaluate uncertainty of MD simulations. For example, a 

methodology enabling the robust treatment of model form uncertainties in MD simulations 

was proposed by Wang et al.62 The approach consists of properly randomizing a reduced

order basis, obtained by the method of snapshots in the configuration space. A multistep 

strategy to identify the hyperparameters in the stochastic reduced-order basis was further 

introduced, enabling the robust, simultaneous treatment of parametric uncertainties on a set 

of potentials.62

Furthermore, uncertainty quantification in nonequilibrium phenomena, such as thermal 

transport, was studied to estimate bulk thermal conductivity via nonequilibrium molecular 

dynamics (NEMD).52
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Reactive molecular dynamics (RMD) simulations can also be subject to multiple sources 

of error, and the approach in tracking UQ is somewhat more involved in comparison 

with other classical MD simulations. Many reaction networks can progress along multiple 

different pathways, leading to entirely different products and product distributions at 

the end of RMD trajectories. Multiobjective optimization of force field parameters and 

uncertainty quantification can be merged to provide a standardized UQ capability for 

reactive simulations.55 In the case of extremely fast reactions of thermal deflagration, 

the velocity of propagation can make a significant difference unless the time steps for 

RMD simulations are restricted to 0.1 fs and below for obtaining consistent results.64–66 

Subsequently, mirrored atomistic RMD and continuum simulations show that averages of 

rates, temperature, and pressure can also exhibit significant differences due to atomistic

scale fluctuations in averages calculated using a control volume (CV) approach and 

propagated to the continuum scale.65,67,68 Integration schemes and polynomial fitting of 

rates of reactions are prone to their own numerical error. However, it is important to develop 

UQ approaches for MD and RMD simulations to develop better methods for taking averages 

from a stochastic and fluctuating domain in an atomistic ensemble simulation, and upscaling 

them for use at continuum scale.

Reported MD Uncertainties and Their Impact on PFM and CALPHAD

For CALPHAD, as shown in Fig. 2, the heat capacity (Cp), enthalpy, and free energy can 

be estimated with MD simulations. The enthalpy and free energy are obtained as direct 

outputs of an MD simulation. The heat capacity can be obtained as the derivative of the 

enthalpy from MD runs performed at different temperatures. Table I presents examples 

of uncertainties reported from statistical averaging of the enthalpy of aluminum. Such 

an approach, though simple, we note is not yet widely reported for different interatomic 

potentials for these properties. The magnitude of the error bars is dependent on the 

equilibration time of the MD simulation runs, which is another input parameter in MD 

simulations.

The EAM potential is one of the favorite choices for MD modeling of metals. Dhaliwal 

et al.69 have performed uncertainty and sensitivity analyses of mechanical and thermal 

properties computed through EAM. They concluded that the predictions can be sensitive to 

the small perturbations in IP parameters. To make MD predictions for complex material 

systems more reliable, they studied in detail the variations in the experimental values 

of various mechanical and thermal properties of face-centered cubic (FCC) Al. The 

probability distributions of the IP parameters were obtained using a Bayesian statistical 

framework, and the reliability of potential parameters was assessed by performing MD 

simulations for a range of mechanical and thermal properties, using perturbed potential 

parameters. A comparison of the computed properties with experimental and first-principles 

data revealed that higher-order properties such as grain-boundary formation energy are 

sensitive (with variance of order 105) to 1% perturbations. It was also observed that QOIs 

computed through EAM were highly sensitive to changes in the IP parameters. For example, 

perturbing the IP parameters by 1% resulted in grain-boundary formation energy variations 

as high as 85% of the original fit values. Tran et al. used the interval-based approach for 

uncertainty analysis in EAM potentials.70 The uncertainty in the tabulated EAM potential 
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was captured by analytical forms of error-generating functions, and the method was applied 

to aluminum, resulting in accurate stress–strain curves.

MD simulations have been coupled with PFM to describe the evolution of microstructures. 

As shown by Zhang et al.71 in a study of solidification dynamics of cobalt using an EAM 

potential, the microstructures can be slightly different for different choices of MD simulation 

inputs such as the time step, thermostat parameters, and domain decomposition scheme 

for the atoms. Differences in these inputs, under the same cooling rates, were shown to 

yield nanocrystalline, lamellar, or microcrystalline grain structures, due to small differences 

in nucleation location and growth possible under severely undercooled regions. Hence, 

great care is needed to manage the uncertainties by controlling time steps, thermostat 

parameters, and even domain decomposition schemes before a converged observation of 

microstructure with the same potential energies is achieved. These differences become more 

pronounced when the microstructure evolution is modeled in additive manufacturing of Co 

alloys such as AF75 alloys (Co-Cr-Mo) using phase-field methods. The robustness of PFM 

predictions is affected by model form and parametric uncertainties. Tran et al.72 have studied 

and quantified the uncertainty of PFM predictions of Al-Cu microstructure evolution. A 

surrogate model was used to interpolate QOIs such as perimeter, area, primary arm length, 

and solute segregation, as functions of thermodynamic and process parameters. The effect 

of parametric uncertainty on the Al-Cu dendritic growth during solidification simulation 

was investigated. The results showed that the dendritic morphology varies significantly with 

respect to the interface mobility and the initial temperature.

UNCERTAINTY QUANTIFICATION AND BAYESIAN ASSESSMENT OF 

ATOMISTIC DATA FOR CALPHAD

CALPHAD serves a critical role in the design and improvement of engineering alloys, 

and as an input to other simulation approaches (e.g., precipitation simulations and the 

phase-field method). In this method, thermodynamic equilibrium is given by Gibbs’ rules. 

For a binary system with components A and B and phases α and β, the required equality of 

chemical potentials µ is given by: μA
α = μA

β  and μB
α = μB

β . CALPHAD models are calibrated 

with two classes of information: (1) phase stability/transition measurements, and (2) the 

thermodynamic properties of phases and mixtures. It is this second category of information 

that is most useful for the extrapolation to metastable regimes and multicomponent systems, 

and simultaneously the most difficult to access experimentally. For this reason, CALPHAD 

practitioners have turned to DFT and MD to calculate quantities including enthalpies 

of formation at 0 K and finite temperatures, specific heats, enthalpies of mixing, defect 

structures, and lattice site preferences.73–75 DFT- and MD-predicted properties have played 

a critical role in informing the third-generation Scientific Group Thermodata Europe 

(SGTE) database of thermodynamic properties of unary systems, especially at low or high 

temperatures, or where phases are metastable.76 Examples include the low-temperature 

specific heat of numerous elements,77,78 and free energies near and above the melting 

point for aluminum.76 For multicomponent systems, the previously mentioned properties 

provide thermodynamic information where experiments have not or cannot be performed; 

for example, DFT may be used to calculate the enthalpies of formation for special 
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configurations called end-members in a Gibbs energy description called the compound 

energy formalism (CEF).79 Furthermore, the use of these DFT enthalpies alone can provide 

sufficient information to specify the exact form of the CEF expressions most appropriate for 

a given system.80 While it is widely understood that DFT or MD results may deviate from 

experiments and have uncertainties deriving from several sources, few studies examine the 

connections between DFT and CALPHAD uncertainty. In the remainder of this section, we 

describe the current state of the art in propagating DFT uncertainties through CALPHAD 

and suggest future strategies to estimate DFT uncertainties through CALPHAD assessment 

and parameter fitting.

The widespread use of atomistic simulation data in the calibration of CALPHAD models has 

coincided with the development of strategies to fit CALPHAD parameters with uncertainty 

and provide probabilistic predictions, including both Bayesian8 and frequentist7 approaches. 

In 2016, Duong et al.81 described a Bayesian framework for CALPHAD uncertainty 

quantification and propagation and demonstrated the approach on the uranium-niobium 

binary system. In that work, DFT calculations are performed to estimate the ground-state 

formation enthalpies for the γ phase, leveraging two Green’s function-based approaches 

in addition to semi-quasi random structures (SQS). A Gaussian likelihood function was 

selected, and a single variance parameter was included in the inference to capture the data 

uncertainty. This in effect provides a single uncertainty estimate across all data, including 

both DFT and experimental data. Parameter inference was performed via MCMC, then 

propagated analytically to phase boundaries in the binary diagram. In 2017, Duong et 

al.9 leveraged a similar framework to characterize the pseudobinary Ti2AlC-Cr2AlC phase 

diagrams with uncertainty. In this case, finite-temperature Gibbs energies were largely 

provided by SQS DFT calculations, across 27 compounds and seven temperatures, with 

some constraints provided via CALPHAD models and experimental phase stability and 

thermodynamic information. As with the previous study, the variance in the likelihood 

function was fit in the Bayesian inference with a single parameter. In contrast, a novel 

scheme was developed that directly propagated uncertainty in the phase stability in the 

multicomponent space through samples from the MCMC posterior samples. This enabled 

qualitative comparison of atomistic-driven CALPHAD with experiment, demonstrating 

similar levels of uncertainty. Also in 2017, Otis et al.82 introduced the extensible 

self-optimizing phase equilibrium infrastructure (ESPEI) framework for semiautomated 

Bayesian CALPHAD and demonstrated MCMC parameter inference in the Al-Ni system. In 

this framework, the CEF model selection process, including the specification of sublattices, 

site ratios, and occupancies, was performed entirely using SQS enthalpies of formation and 

mixing. Bayesian inference was then performed using a dataset comprising 10 synthetic 

datasets with variance. Although not specified, we can assume that the variance in the 

likelihood definition was assigned as the true values for each dataset, which is common 

practice in the field. In 2019, Paulson et al.83 described a framework for the numerical 

propagation of uncertainty from Bayesian CALPHAD inference through MCMC for a 

variety of predictions used for material design tasks. As a case study, the paper demonstrates 

inference and uncertainty propagation for the copper-magnesium binary system using the 

ESPEI framework. In contrast to the Otis et al. study, real atomistic and experimental 

datasets were employed by Paulson et al., with reported or estimated variances (when not 
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available or in the case of calculated data). Consequently, these variances were assigned 

to the Gaussian likelihood definition as weighted by a prefactor corresponding to the data 

category (e.g., specific heat/enthalpy, activity, and phase stability).

Each of the above-mentioned studies propagates the uncertainty in atomistic data forward 

to the CALPHAD predictions but provides no mechanism to estimate the error contribution 

from each dataset. A possible path forward can be found in a 2019 paper by Paulson et 

al.,84 wherein Bayesian inference was employed to assess and calibrate models for the 

thermodynamic properties of elemental hafnium and rescale the reported errors for the 

included datasets. This Bayesian approach was additionally compared with a frequentist 

approach in Ref. 85. In this approach, the reported variances corresponding to each dataset 

served as a first guess for the variance in the likelihood. In contrast to prior work, 

however, each dataset was assigned a unique hyperparameter that rescaled the reported 

variance and was included in the Bayesian inference. Through this mechanism, it was 

not only possible to propagate uncertainty forward, but to estimate the Bayesian scaled 

uncertainties associated with each dataset. The authors suggest that this same approach 

might be used for multicomponent systems and systems that include atomistic data. This 

would be a complementary mechanism to those discussed in “Uncertainty Quantification 

in DFT and impacts on MD, CALPHAD, and PFM” section to estimate the uncertainty in 

the DFT results. The implementation of such a scheme would encounter several challenges, 

most notably that this would dramatically increase the number of parameters involved in 

the Bayesian inference and therefore the computational expense. A potential strategy to 

mitigate this obstacle would be the use of approximate inference strategies that enable 

high-dimensional inference such as variational inference, where the shape of the posterior 

is assumed and the inference problem is reduced to a simple optimization.86 Alternatively, 

analytical gradients of the likelihood could be leveraged to accelerate Bayesian inference 

through Hamiltonian Monte Carlo (HMC)87 or the no U-turn sampling (NUTS) approach.88

UNCERTAINTY PROPAGATION IN PFM MESOSCALE MICROSTRUCTURE 

MODELING

Microstructure evolution is a critical component of mesoscale modeling in materials science. 

The microstructure of a material strongly affects the material’s properties and performance. 

The phase-field method is one method to model the evolution of microstructure by seeking 

to model phase regions.

The phase-field method makes use of field variables to describe the evolution of phase 

regions in time. In modern practice, evolution equations describing the evolution of field 

variables in time are often derived by thermodynamically consistent minimization of an 

energy functional using variational principles. An example is the Cahn–Hilliard functional89

F xB, ηk = ∫
V

f0 xB, ηk + ε
2 ∇ xB

2
+ ∑

k

κk
2 ∇ ηk

2
d r (2)

where xB is the concentration of phase B, ηk is an order parameter, f0(xB, ηk) denotes the 

classical free-energy density of a homogeneous system or driving force, and the last two 
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gradient terms represent surface tension with ε and jk being related to interfacial energy and 

thickness, respectively.

As there are different energy functionals,89–92 there are various phase-field models, even 

for the same purposes. Besides their own choices of field variables, each model features 

a different set of physical and/or model parameters, e.g., ε and κk in Eq. 2. Of these 

parameters, some can be derived from atomistic simulations with epistemic errors while 

others are assessed by trial-and-error approaches. The selection of models and variations 

of model parameters could strongly affect the modeled microstructural evolution. In this 

section, we discuss possible ways in which the uncertainties of parameters derived from 

atomistic simulations (DFT and MD) or CALPHAD calculations impact PFM-simulated 

microstructure evolution.

The parameters most widely used for the phase-field method, derived from atomistic 

simulations, are interfacial energy, lattice parameters, elastic tensor, diffusion potential, and 

diffusion coefficient. Depending on how these parameters are conveyed to and throughout 

phase-field simulations, their uncertainties impact the simulated microstructural evolution 

differently. Figure 2 illustrates three possible flows of physical parameters (and their 

uncertainties) from atomistic simulations to and throughout PFM: the first two are cross

scale, while the third is cross-time. The first cross-scale propagation is the vertical link 

between DFT/MD and PFM, and the second is the indirect (cross link between CALPHAD 

and PFM) contributions of atomistic data uncertainties to CALPHAD and then to PFM. The 

third flow is cross-time (indicated by the differential equation within the PFM box) and is 

the propagation of uncertainty through PFM simulation time.

The interfacial energy, lattice parameters, elastic tensor,93 and vacancy formation energy94 

are often sourced from atomistic simulations or experiments. Correspondingly, their 

uncertainties are directly conveyed to PFM, and their impact on the simulated microstructure 

evolution is straightforward. Although diffusion potential and diffusion coefficient can be 

derived directly from atomistic simulations, this process can be expensive and/or is not 

preferred. Alternative practical approaches rely, for instance, on the use of parametric 

models such as the Landau energy formulation to describe the thermodynamic driving force 

(diffusion potential) of the evolutionary system (e.g., Refs. 95 and 96) or the CALPHAD 

method, which can be used to model both the chemical potential and diffusion coefficient 

(e.g., Ref. 97). For reliable thermodynamic and kinetic descriptions, these parametric 

approaches often adopt atomistic simulation data. In this way, atomistic simulation data 

and their uncertainties are not conveyed directly to phase-field simulations but still 

contribute meaningfully to the simulations via the parametric models and their propagated 

uncertainties. For simplicity, the propagated uncertainties of parametric models can be 

seen as a composite of uncertainties coming from the atomistic simulation data, other 

experimental sources (if available), and the model uncertainty (i.e., the uncertainty of the 

model itself). It should be noted that such an uncertainty composite is not necessarily larger 

than the uncertainty of the atomistic simulation data. In fact, given sufficient and reliable 

data from various sources, it is possible that the uncertainty of the physical parameter 

derived from a parametric model (e.g., CALPHAD) is smaller than that calculated from 

DFT/MD.
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In the context of indirect uncertainty propagation from atomistic simulations (like the cross 

link from CALPHAD shown in Fig. 2), some recent notable works include those of Attari 

et al.93 and Moraes et al.98 The former quantified the uncertainties of microelastic and 

kinetic parameters, whose ranges are biased by expert knowledge, as well as the propagation 

of uncertainty from CALPHAD thermodynamic driving force through the Cahn–Hilliard 

model. The uncertainty quantification and propagation were reliably realized by brute-force 

Markov chain Monte Carlo. The latter uses the Landau energy model instead of CALPHAD 

and introduced the novel use of the probabilistic collocation method (a surrogate approach) 

integrated with sensitivity analyses to effectively reduce the computational cost required by 

their Monte Carlo sampling.

Whether uncertainties are passed directly or indirectly to PFM, they have to subsequently 

propagate through the PFM. Since a phase-field simulation is an evolutionary process, the 

propagation of parameter uncertainties through PFM can be time-related. If a simulated 

evolution allows the microstructure growth to reach a steady state, the uncertainties on PFM 

parameters could affect the microstructure growth at the early state of the evolution but 

should eventually converge to the steady state. As such, their impact can be considered 

time-independent. If a simulated evolution was not allowed to the steady state (e.g., rapid 

solidification in additive manufacturing), the impact of parameter uncertainties on simulated 

microstructure growth through PFM could be time-dependent. Often, in such a case, model 

parameters are functions of time. Correspondingly, their uncertainties could also evolve with 

time and impact the microstructure evolution in a rather complicated manner. Karayagiz et 

al.,97 for instance, coupled a time-dependent thermal model with their phase-field model 

to simulate rapid solidification processes during laser powder bed fusion (L-PBF). Since 

Karayagiz et al.97 adopted a temperature-dependent CALPHAD chemical potential to 

describe their phase-field model’s thermodynamic driving force, the changing temperature 

affects the chemical potential with time, leading to a variation of dendritic microstructures 

ranging from cellular to planar. Intuitively, the propagation of parameter uncertainties in 

time would result in magnified uncertainties of output microstructural evolution.

CHALLENGES AND OUTLOOK

The success of multiscale modeling efforts depends on the accuracy of the individual 

modeling components, which for alloy design efforts frequently include PFM and 

CALPHAD. The inputs to these models are sometimes expensive or impossible to obtain 

through experimental means. This has driven the use of atomistic simulation methods, such 

as DFT and MD, to fill gaps in the available data. A review of the literature has revealed 

general rules of thumb for the accuracy expected from atomistic simulation methods. Purely 

DFT approaches have been shown to predict errors of up to 5 J/mol/K in the heat capacity 

of solid aluminum. MD simulations using traditional interatomic potentials can yield smaller 

errors of up to 1 J/mol/K for the same property, though care must be taken in choosing 

the interatomic potentials. Furthermore, ab initio molecular dynamics (AIMD) has shown 

uncertainties of up to 20 K in the melting point. Although various first-principles32–34 

and CALPHAD thermodynamic and diffusion databases99 exist that can be readily used 

for phase-field simulations, corresponding uncertainty databases required for UQ/UP cross

scale through PFM are not available. We believe that the generation of databases that report 
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uncertainties along with predictions will give a more confident outlook for the usage of 

calculated property data in PFM models.

In practice, DFT calculations of thermodynamic properties with uncertainty can be 

expensive for alloys and so have not been routine. While the cost is much lower for MD 

simulations, they are often constrained by the availability of MD interatomic potentials. 

Uncertainty estimates so far have been made by analyzing the effects of input parameter 

choices in DFT and MD simulations, using both descriptive and inferential statistics. 

Bayesian error estimation frameworks, which generate an ensemble of predictions, represent 

one cost-effective path forward to calculate properties with uncertainty in DFT and MD. 

We believe that software that automates the estimation of uncertainty, during DFT and 

MD simulation runs, will aid in the generation of databases of properties with uncertainty 

that would be helpful to CALPHAD and PFM models. For MD, several frameworks59,60,70 

exist that could be used to generate databases with uncertainty estimates on thermodynamic 

properties, especially for metals and their alloys. These databases should include calculation 

details and scripts to enhance reproducibility and allow users of the data to assess the 

methods, approximations, and limits of applicability. This approach would be facilitated 

by readily usable software packages that can be documented and cited; the DAKOTA 

framework100 could be one step in this direction. Such calculation frameworks would also 

enhance assessments and comparisons of UQ methods as applied to MD simulations.

While CALPHAD modeling extensively utilizes atomistic data and uncertainty 

quantification has been a research topic of recent interest, no known studies examine 

the relationship between the uncertainty in atomistic data and in CALPHAD models. 

Uncertainty estimates for atomistic data would be a significant contribution to CALPHAD 

assessment, as these could serve as weights in deterministic fitting routines or could specify 

the likelihood in Bayesian ones. Alternatively, recently developed automated data weighting 

schemes could provide uncertainty estimates for atomistic data where this information is 

missing, either on a per-dataset basis or on the basis of another data grouping strategy (e.g., 

by MD interatomic potential selection). Such an approach would coincide with increased 

computational expense, requiring the use of more efficient inference techniques. Currently, 

we expect that the DFT and MD errors in the total energy would translate to a similar value 

for the Gibbs free energy, which affects both CALPHAD and PFM calculations. For the case 

of CALPHAD, this may result in up to 50 K temperature and 5% concentration uncertainty 

on phase diagram features. The impact is system specific, as the shapes of the free energy 

curves (surfaces) play an important role in determining the accuracy and precision of the 

calculations.

One of the biggest challenges in uncertainty quantification and propagation of PFM is the 

choice of PFM model and the computational cost due to the choice of numerical solver for 

the model. Sometimes different phase-field models exist that share the same purposes and 

the same set of DFT-based/MD-based physical parameters but are different in other model 

parameters.101,102 For such models, the same input set of DFT-based/MD-based physical 

parameters and uncertainties would likely yield different output microstructural evolutions. 

Although the handling of parametric and model uncertainty coexistences and their 

propagated impacts have been studied,103 how model uncertainty affects microstructural 
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evolution by itself and in combination with parametric uncertainty is still an open topic in 

PFM.

On the choice of the numerical solver, in most cases, the implementation of the phase-field 

model makes use of the computationally expensive finite difference solver. Some models 

additionally require a fine grid, large spatial domain size, and/or a three-dimensional 

(3-D) model, thus increasing computational cost. Approaches to the propagation of DFT/

MD-based parameters’ uncertainties to phase-field simulation include brute-force MC 

that involves many such phase-field simulations sampling the parameter space, or more 

expensive inferential variance approaches requiring fewer simulations,88 to properly capture 

the effect of uncertain input parameters on output microstructural evolution. In a few 

exceptional cases, an implicit or semi-implicit solver104 can be used to accelerate a 

simulation while maintaining numerical stability. Consequently, studies in uncertainty 

quantification and propagation are generally scarce and are often for cases where an 

implicit/semi-implicit solver can be exploited.93,98 One approach to tackle computational 

cost is the use of surrogate models that improve computational efficiency for the expansive 

parameter sampling required for uncertainty quantification. However, special attention must 

be paid to preserving the key physics of the phenomenon. Otherwise, significant information 

loss may occur. Uncertainty quantification and propagation coupled with smart sampling of 

the parameter space forms a reasonable methodology for evaluating the success of surrogate 

models. More studies are needed to understand how the uncertainties of surrogate models 

interplay with the uncertainties of the phase-field model’s parameters.105

The current frameworks for thermodynamic model development using DFT, MD, 

CALPHAD, and PFM reveal that uncertainty quantification approaches exist in DFT 

and MD that could provide data with uncertainty to CALPHAD and PFM, but their 

widespread usage is limited by computational cost. For DFT and MD, we expect Bayesian 

error estimation frameworks to mitigate part of this cost. In the context of CALPHAD, 

Bayesian approaches have gained in popularity and are facilitating robust connections 

that have historically been difficult to achieve. Surrogate modeling continues to be 

developed for accelerating uncertainty propagation studies, while minimizing accuracy loss 

in PFM. These developments, with increases in computational capabilities, are exciting for 

future simulation reliability and suggesting probable ranges of phase stability, instead of 

deterministic points of stability.
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Fig. 1. 
Spatiotemporal regions covered by atomistic simulation methods (DFT and MD) in the 

context of other time and length scale methods. Reprinted with permission from Ref. 11.
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Fig. 2. 
Properties passed between simulation methods show the uncertainty transferred forward and 

inversely between methods. E is the total energy from DFT, D is the diffusion constant, F is 

the Helmholtz free energy, G is the Gibbs free energy, either of which can have electronic 

(elec), vibrational (vib), and configurational (config) components, Cp is the heat capacity at 

constant pressure, H is the enthalpy, γ is the interfacial or surface energy, a is the lattice 

parameter, and µ is the chemical potential. “EFS” corresponds to energy, force, and stress 

data calculated with DFT and used to fit interatomic potentials in MD, and E0, V0, B0, 

and B1, are respectively the cohesive energy, equilibrium volume, bulk modulus, and the 

pressure derivative of the bulk modulus that are considered as fitting targets for MD.
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