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Abstract

Recent studies have demonstrated the promising capabilities of magnetic resonance imaging (MRI)-based quantitative

susceptibility maps (QSM) in producing biomarkers of brain injury. The present study aims to further explore acute QSM

changes in athletes after sports concussion and investigate prognostication capabilities of QSM-derived imaging metrics.

The QSM were derived from neurological MRI data acquired on a cohort (n = 78) of concussed male American football

athletes within 48 h of injury. The MRI-derived QSM values in subcortical gray and white matter compartments after

concussion showed differences relative to a matched uninjured control group (white matter: z = 3.04, p = 0.002, subcortical

gray matter: z = -2.07, p = 0.04). Subcortical gray matter QSM MRI measurements also correlated strongly with duration

of symptoms (q = -0.46, p = 0.002) within a subcohort of subjects who had symptom durations for at least one week

(n = 39). The acute QSM MRI metrics showed promising prognostication capabilities, with subcortical gray matter com-

partment QSM values yielding a mean classification area under the curve performance of 0.78 when predicting symptoms

of more than two weeks in duration. The results of the study reproduce previous acute post-concussion group QSM

findings and provide promising initial prognostication capabilities of acute QSM measurements in a post-concussion

setting.

Keywords: MRI; quantitative susceptibility mapping, sports concussion; susceptibility weighted imaging; tissue

magnetism; traumatic brain injury

Introduction

The severity, mechanisms, and outcome risk factors of trau-

matic brain injury (TBI) are diverse and can vary widely from

one injury to another.1 To roughly differentiate injuries, TBI are

categorized using the Glasgow Coma Scale (GCS) score into

mild, moderate, and severe injury categories.2 Although mild TBI

(mTBI) rarely places injured patients in emergent danger, it is well-

documented that a substantial fraction of those with mTBI show

persistent symptoms and functional deficits.3–5 Recent large cohort

studies have reported that only a third of patients with mTBI

achieve full recovery by 12 months post-injury.6

Sport-related concussions (SRC) generally fall within the mild-

est spectrum of TBI severity. Because of the poor sensitivity of

GCS scores to SRC severity, alternative measures, such as the Sport

Concussion Assessment Tool (SCAT) are utilized as first-stage

clinical assessments of acute injury severity.7 Despite the relatively

minor acute severity of SRC injuries, increasing public awareness

of the potential neurological impact from individual concussive

events and longer-term risks from repeated injury events have

amplified efforts to understand pathophysiological changes indu-

ced by such injuries. Recent research studies have also been

leveraged to inform best practices in determining post-SRC return-

to-play timelines.8

Advanced diagnostic imaging, including magnetic resonance

imaging (MRI) and computed tomography (CT), have undergone

substantial exploration as probes for post-SRC changes in brain

structure and function. The physiological changes induced by the

SRC subcategory of mTBI are difficult to detect with qualita-

tive interpretation of MRI or CT.9 Advanced quantitative MRI

(qMRI), however, which moves beyond the limits of qualitative

morphological MRI analysis, has shown promise as an investiga-

tive probe of post-concussive pathophysiological changes in brain

tissue. As exemplified by the growing utility of qMRI in cancer

research,10 the sensitivity of MRI to local tissue environments

and physiological processes can be a valuable tool in pathology

quantification.

Most previous qMRI studies of SRC have focused on diffu-

sion tensor imaging,11,12 diffusion kurtosis imaging tensor imag-

ing,13 arterial spin labeling,14 and functional connectivity.15,16
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Quantitative Susceptibility Mapping (QSM) is a relatively newer

qMRI metric that has recently shown sensitivity to mTBI.17–19

As a quantitative extension of routinely applied susceptibility-

weighted MRI (SWI) sequences,20 QSM utilizes raw MRI signals

extracted from SWI MRI acquisitions to estimate an approximated

isotropic magnetic susceptibility tensor for each imaged tissue

voxel.21 The utility of QSM as a diagnostic and research tool hinges

on its sensitivity to physiological and structural changes in tissue

biomagnetism.

The biomagnetism of brain tissue can reveal changes in bio-

logical components such as ferretin, hemosiderin, water content,

myelin, cerebral blood volume, and calcium,21,22 Along with con-

ventional SWI, QSM MRI has been used previously to identify

regions of focal tissue damage in complicated mTBI on a cohort

of military personnel.23 In addition, preliminary group studies of

post-injury QSM have shown group magnetism changes in partic-

ular gray and white matter regions.18,17 White-matter QSM mea-

surements after SRC have also shown promising correlations with

injury severity metrics on an individual subject level.17

The present study seeks to expand on previous analyses of QSM

in athletes after sports concussion and focus on acute QSM mea-

surements. Specifically, this study has three general aims. First, it

seeks to reproduce previously reported group differences in acute

post-injury QSM values relative to control groups in a larger in-

jury cohort. Second, this study explores correlations of acute QSM

measurements with conventional symptom checklist scores. Third,

a measure of injury severity (self-reported symptom duration) is

used to explore prognostication capabilities of acute QSM mea-

surements, both as a stand-alone measurement and in combination

with symptom checklist scores.

Methods

Subjects

Male high school and collegiate American football players were
recruited within a three-year regional prospective study of SRC in
athletes. The criteria for exclusion from the study included con-
traindications or injuries that would prevent participation in the
study protocol, current psychotic disorders or reported narcotic use,
and/or a history or suspicion of conditions associated with cogni-
tive impairments (e.g., epilepsy, moderate-to-severe TBI). Adult
participants and parents of minors provided written informed con-
sent, while minors completed written assent. The study was ap-
proved by the Medical College of Wisconsin Institutional Review
Board.

Certified athletic trainers and/or team physicians trained in
sports medicine performed the initial diagnosis of concussion in-
juries. The definition of concussion was derived from the Centers
for Disease Control and Prevention HEADS UP educational ini-
tiative: ‘‘An injury resulting from a forceful bump, blow, or jolt to
the head that results in rapid movement of the head and causes a
change in the athlete’s behavior, thinking, physical functioning,

or the following symptoms: headache, nausea, vomiting, dizziness/
balance problems, fatigue, difficulty sleeping, drowsiness, sensitiv-
ity to light/noise, blurred vision, memory difficulty, and difficulty
concentrating.’’

Injured subjects enrolled within the study were imaged with an
advanced MRI protocol within 48 h after injury. The SCAT-3
symptom checklist, the Standardized Assessment of Concussion
(SAC), and the Balance Error Scoring System (BESS) were also
collected at baseline (on initial subject enrollment in study) and at
the MRI visit.

Male control subjects were matched on level (high school
vs. college), school, team, age, estimated pre-morbid intelligence,
race, handedness, concussion history, and position.

Additional exclusion criteria for present analysis included the
contingency that QSM raw data were saved successfully during the
MRI examination and that the reconstructed QSM passed quality
control checks. After these image quality assurance checks, which
excluded subjects with significant motion, registration failures, or
QSM processing failures, this study included a total of 153 QSM
MRI datasets (78 acute injury subjects, and 75 matched control
subjects). Complete study cohort demographics are summarized in
Table 1. All methods utilized within the study were performed in
accordance with relevant guidelines and regulations.

QSM MRI

MRI was performed on a 3T MRI system (Discovery MR 750,
GE Healthcare, Waukesha, WI) using a 32ch Nova Medical
(Wilmington, MA) head receive array. The QSM were acquired at
0.75 mm · 0.96 mm in-plane resolution across 2 mm axial slices.
Phase-sensitive MRI acquired at four echo times (10.4,17.4,
24.4,31.4) msec and a repetition time of 58.6 msec were used to
construct magnetic field perturbation maps. The total acquisition
time for each QSM MRI dataset was 4 min.

The MRI-based magnetic perturbation scalar maps of the lon-
gitudinal component the perturbed magnetic fields were derived
from the phase-sensitive MRI data. After background field removal
from the perturbation maps,24 susceptibility inversion was per-
formed using an adapted localized processing formulation25 of the
Morphology-Enabled Dipole Inversion (MEDI) algorithm (MEDI
Toolbox update version date 11/06/2017).26 Relevant parameters
utilized in the MEDI algorithm are lambda = 1250 (regularization)
and zero padding of 50% of the field of view. The QSM compu-
tations were performed using Matlab (MathWorks, Natick, MA)
Dell PowerEdge R730 servers running Red Hat Enterprise Linux
6.7 on Intel Xeon E5-2620v3 CPUs.

Statistical analyses

Individual and group analyses were enabled via subject image
registrations to a common coordinate space. A 2-mm isotropic
Montreal Neurological Institute (MNI) neurological template
space was utilized.27 Registrations were performed using software
contained within the FSL suite.28 Specifically, the FLIRT function
in FSL was utilized using nine degrees of freedom and trilinear
interpolation to develop transformation parameters. Warping of the

Table 1. Characteristics of the Study Cohort

Injured (n = 78 males) Control (n = 75 males) z p

Age (y) 17.95 (17.63–18.27) 18.43 (18.05–18.81) -1.53 0.13
Height (in) 71.79 (71.18–72.40) 71.19 (70.62–71.76) 1.41 0.16
Weight (lb) 215.99 (205.11–226.86) 205.59 (196.47–214.70) 1.09 0.27
Y.I.S (y) 8.12 (7.41–8.84) 8.08 (7.45–8.71) -0.01 0.99
P.SRC 0.64 (0.43–0.85) 0.52 (0.33–0.71) 0.80 0.42

Y.I.S, years in sport; P.SRC, number of previous sports-related concussions; p, value from Mann-Whitney U test; z, approximated z-score from U test.
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images to the template space utilized the applywarp function
to apply the computed transformations. Manual verification of
template registrations was performed by the study team. No reg-
istration failures were identified in the template registration pipe-
line that necessitated further exclusion of any QSM datasets from
the analysis cohort.

Brain regions of sufficient QSM stability within the anatomic
template space were identified by computing coefficients of vari-
ation (CV) across a control cohort (n = 68 examinations) from an
independent study that utilized identical acquisition parameters.
A stability mask was then constructed from this CV map at a
threshold of CV <0.8, which is a QSM stability threshold that has
been utilized within previous published studies.17

Regional neurological segmentations extracted from the Johns
Hopkins University and Harvard MNI space atlases29,30 were to
define white and subcortical gray matter (SCGM) global com-
partments. The utilized compartments were refined using a physics-
based masking operation that restricted white matter as v <0.03
ppm31 and SCGM as v >0.05 ppm susceptibility thresholds. This
additional compartment masking was performed on a mean com-
posite QSM volume computed from the aforementioned inde-
pendent control cohort. Mean susceptibility values were computed
within each gray and white matter region of interest for each subject
and yielded a pair of QSM-MRI based biomarker estimates for each
subject.

Reported QSM values were referenced to a cerebral spinal fluid
(CSF) baseline, which was computed as the mean CSF compartment
susceptibility value averaged across the control subject cohort.

Group comparisons of the acute injured and control cohorts were
independently performed for the two QSM biomarkers and three
clinical metrics. Normality tests on each distribution were com-
puted using the Jarque-Bera approach.32 Given the resulting
prevalence of non-normal behavior of distributions within the study
data, non-parametric statistical tests were utilized. Statistical dif-
ferences between groups were performed using Mann-Whitney U
tests. Effect sizes of differences between the groups were also
estimated using estimated z-scores from the U test results.

Within the injured group, correlations were computed between
each acute predictive metric (two QSM MRI compartments and
three clinical metrics) and self-reported symptom duration. The
symptom duration was determined through reviewer questioning at
subject visits or follow-ups, whereby subjects were asked to recall
the date at which post-injury symptoms (dizziness, headache, bal-
ance, confusion, lack of focus, etc.) had resolved fully. To assess
the strength of the biomarker correlations as a function of injury
severity, correlations were computed for three categories of symp-
tom duration, whereby subjects with shorter durations of symptoms
are progressively excluded from analysis. These categories were
defined as: (1) all injuries, (2) injuries with symptom duration of at
least one week, and (3) injuries with symptom duration of at least
two weeks. The Spearman q was used to assess correlations be-
tween each metric and reported symptom duration.

Cross correlations of the QSM and clinical measures were
computed at an individual level within the injured cohort utilizing
the full analysis complement of subject markers: acute QSM (white
matter and SCGM) and acute clinical measures (SCAT-3, SAC,
BESS; differences from baseline scores). Again, the Spearman q
was used to compute correlations.

Subcompartment QSM-MRI analyses of the white matter and
SCGM compartments (based on Johns Hopkins and Harvard MNI
atlas segmentations) were performed using individualized z-score
analysis. Mean subregional QSM-MRI metrics were computed
from each subcompartment (j) within each individual subject (i),
yielding the indexed parameter, Ii

j. In addition, means and stan-
dard deviations of the means were computed within of each sub-
compartment of the control cohort, yielding respective parameters,
Cmean

j and Cstd
j. Subcompartment (j) z-scores were then computed

for each subject (i), according to:

zScore
j
i ¼

I
j
i �Cj

mean

C
j
std

(1)

For each subject, the maximum subcompartment absolute
z-score was then computed:

jmaxZ
i ¼maxj zScore

j
i

� �
(2)

Finally, the incidence rate of maximum subcompartment z-score
was computed across the injured subject cohort of size ninj:

Max Rate j¼
+

i
jmaxZ
i

ninj

(3)

This process was repeated for each of the aforementioned injury
category cohorts.

Predictive modeling of symptom duration was performed using
binomial logistic regression. The predictors utilized in the regres-
sion models included the acute QSM MRI metrics and clinical
measures (reported as differences from baseline scores). Regres-
sion models were computed using the individual (univariate) and
combined (multi-variate) predictors of self-reported symptomatic
durations. After the aforementioned correlation analysis, models
were trained for two binary classifications: symptom duration of
at least oe week (Category 2 injuries) and symptom duration of at
least two weeks (Category 3 injuries) in length.

Before logistic regression modeling, predictor values for each
metric were standardized through z-score transformations (mean of
zero and a standard deviation of one). In addition, algorithm bias
was mitigated by dividing each predictor data into training and
testing cohorts using stratified k-fold cross-validation with k = 10,
yielding a 10% validation holdout in each fold. Model training was
class balanced33 by weighting the dataset by class population ratios.
For example, in training a set of 61 null and 13 injured cases, the
injured cases were weighted by a factor of 61/37.

The results of these logistic models were used to perform re-
ceiver operating characteristic (ROC) analysis34 of the specificity
and sensitivity of the various markers to classify symptom duration
within subjects. The area under the curve (AUC) of a ROC plot
(sensitivity vs. 1-specificity) was used as a measure of performance
of the predictive models. For a given model, an AUC of 1.0 indi-
cates a perfect sensitivity and specificity of the classifier, whereas
0.5 indicates a random classification. Mean and 95% confidence
intervals were computed for each of the logistic regression models,
calculated from each fold of the k-fold cross-validation procedure.

All statistical and analysis procedures were performed using
the Matlab Statistics and Machine Learning Toolbox (MathWorks,
Natick, MA).

Results

Table 1 provides general characteristics of the study cohort.

Using a significance threshold of 0.05, none of the presented

metrics showed any significant difference between the injured and

control groups.

Acute QSM MRI and clinical checklist metrics for both study

cohorts are depicted graphically in Figure 1. Within each plot, the

central line indicates the median of the distribution, and the box

indicates the interquartile range. Whiskers in each plot extend to the

most extreme non-outlier distribution points not considered outli-

ers, while outliers are plotted individually. Group-wise statistical

tests of the QSM and checklist metrics are summarized in Table 2.

Several relevant observations within the MRI QSM results are

noted. First, both derived acute QSM MRI tissue compartment

metrics (white matter and SCGM) within the injured group showed
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strong acute differences from the matched control group. Second,

the effective z-scores of the observed effects showed opposite signs

of QSM changes in the white matter and subcortical gray matter

compartments. Relative to controls, the white matter compartment

in the injured group shows a roughly 1 ppb acute increase in mag-

netic susceptibility relative to controls, whereas subcortical gray

matter shows a roughly 2 ppb decrease.

As expected, the SCAT-3 and BESS checklist scores (measured

acutely post-injury and relative to pre-season baselines) showed

strong differences relative to the control group.

Correlation analysis of the acute QSM MRI and clinical metrics

with injury outcomes (self-reported symptom duration) are pre-

sented in Table 3. The Spearman q and associated hypothesis test

p values are reported for pairwise correlations between each metric

against self-reported symptom duration for three categories of

injured subjects: (1) all injured subjects, (2) those subjects with

self-reported symptoms of at least one week, and (3) at least 2

weeks. A key result from this analysis is that two of the clinical

metric scores (SCAT-3 and SAC) were the only metrics showing

correlation trends with the inclusion of all injuries.

These clinical metrics, however, showed poorer correlations

when the lesser injuries (>1 week of symptom duration) were

excluded from the analysis. For subjects with more substantial in-

juries, the BESS metric and QSM biometrics showed notable cor-

relation trends with symptom duration. For the most severe injuries

(>2 weeks of symptoms), none of the individual acute metrics

showed correlations with the symptom duration.

Figure 2 provides representative images of MRI-based suscep-

tibility maps across brain tissues. The QSM MRI for two axial

slices demonstrates changes in the white matter (A) and subcortical

gray matter compartments (B). Column i provides mean control

QSM MRI masked within respective tissue compartments (row A,

white matter, row B, subcortical gray matter). The utilized QSM

tissue masks are derived from template-space atlases and externally

derived QSM stability maps. Column ii provides masked differ-

ence QSM MRI from an individual injured subject relative to the

control QSM mean. The injured subject displayed in column ii had

a reported symptom duration of 34 days.

Figure 3 provides scatter plots of QSM values for the white

matter (row A) and gray matter (row B) compartments for Category

2 injuries (those beyond one week of symptom duration). Trends

are clearly identified for both white matter (row A, q = 0.32,

p = 0.05) and SCGM (row B, q = -0.46, p = 0.002).

Cross-correlation of the analyzed metrics (available in Supple-

mentary Table 1) showed strong correlations between the QSM

compartment metrics (q = -0.47), as well as SCAT3 and BESS

metrics (q = -0.37). These trends were observed in the Category

1 and 2 injured groups, but not in the Category 3 (most severe)

injury group.

FIG. 1. Distribution box-plots for acute (within 48 h) (A) quantitative susceptibility maps (QSM) magnetic resonance imaging (MRI)
measurements and (B) clinical assessment scores (from baseline). Distribution plots for the matched control groups are also displayed
for each metric. WM, white matter; SCGM, subcortical gray matter; SCAT, Sport Concussion Assessment Tool; SAC, Standardized
Assessment of Concussion; BESS, Balance Error Scoring System.

Table 2. Statistical Group Tests of Acute

Quantitative Susceptibility Maps Magnetic Resonance

Imaging and Clinical Checklist Metrics

QSM MRI Clinical metrics

WM SCGM SCAT-3 SAC BESS
z p z p z p z p z p

3.04 0.002 -2.07 0.038 -7.81 < 0.001 1.35 0.178 -3.92 < 0.001

QSM, quantitative susceptibility maps; MRI, magnetic resonance
imaging; WM, white matter; SCGM, subcortical gray matter; SCAT-3,
Sport Concussion Assessment Tool; SAC, Standardized Assessment of
Concussion; BESS, Balance Error Scoring System.

Estimated z-scores and p values from Mann-Whitney U tests between
the concussed and control groups are displayed for each metric.

Table 3. Correlation of Acute Clinical

and Quantitative Susceptibility Maps Metrics

against Self-Reported Symptom Durations

Metric
Cat. 1:

All injuries

Cat. 2:
Symptoms
‡1 week

Cat. 3:
Symptoms
‡2 weeks

QSM MRI q p n q p n q p n
WM 0.03 0.81 74 0.32 0.05 39 -0.003 0.99 13
SCGM -0.16 0.18 74 -0.46 <0.01 39 0.12 0.70 13
Checklists
SCAT-3 0.38 <0.01 73 0.07 0.67 39 0.08 0.79 13
SAC -0.22 0.06 72 0.06 0.71 37 0.05 0.87 11
BESS -0.18 0.15 70 -0.37 0.03 35 0.29 0.42 10

Cat., Category; QSM, quantitative susceptibility maps; MI, magnetic
resonance imaging; WM, white matter; SCGM, subcortical gray matter;
SCAT, Sport Concussion Assessment Tool; SAC, Standardized Assess-
ment of Concussion; BESS, Balance Error Scoring System.

Spearman q, hypothesis test p values, and cohort sizes for each
correlation (n) are reported.
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To explore the effects of acute post-injury QSM MRI changes

within white matter and SCGM tissue subcompartments, QSM

MRI z-scores for individual injured subjects were computed rela-

tive to control values. The results of this analysis are graphically

depicted in Figure 4. Individual subject z-scores for each self-

reported symptom injury Category (1,2,3) are depicted across each

subregion within the white matter (A) and SCGM (B) tissue com-

partments. For each subcompartment, bar graphs represent the rate

at which each region showed the maximal injury z-score within a

subject. The aim of this analysis was to identify whether any sub-

compartments strongly impacted concussion-induced QSM MRI

changes on an individual level.

The z-scores within the injured white matter (A) or gray matter

(B) compartments did not show a clear or substantial preference

to any subcompartments for any of the injury severity cohort ca-

tegories. In general, the respective positive and negative z-score

trends for the white and gray matter subcompartments increased in

magnitude with injury category.

The prognostication capabilities of acute QSM MRI and clinical

metrics in predicting post-concussive symptom duration are sum-

marized through the multi-variate logistic regression modeling

results presented in Table 4. As described further in the Methods

section of this report, ROCs were constructed from each derived

logistic regression model. The AUC metric, also known as the dis-

crimination coefficient, of the constructed models was utilized as the

primary performance metric in evaluation of the computed models.

Figure 5 provides an example ROC curve of the univariate acute

QSM MRI SCGM Category 3 model (Fig. 4A), along with the

multi-variate model (Fig. 4B) derived from all acute QSM MRI and

clinical metrics for Category 3 injuries.

For each constructed model, the mean AUC of k-fold cross-

validation results (k = 10) along with the 95% confidence intervals

FIG. 2. Representative quantitative susceptibility maps (QSM) for two axial slices demonstrating changes in the white matter (A) and
subcortical gray matter compartments (B). Column i displays mean control QSM masked within respective tissue compartments.
Column ii provides masked difference QSM from an injured subject relative to the control QSM mean. Masks are derived from MNI
atlases and externally derived QSM stability maps. Color image is available online.
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are reported for the two modeled injured group categories. Per-

formance is reported as both recall (performance on the training

dataset) and validation (performance on a reduced test dataset).

It is clear that the predictive model performs substantially better

for the more severe injury category (>2 weeks of symptoms). Of

note, the univariate model constructed using the QSM subcortical

gray matter compartment demonstrated reasonable validation AUC

performance (0.78). The use of both QSM metrics and clinical

assessment scores yielded a similar prognostic validation perfor-

mance. For the lower injury category, the QSM metrics did not

show the same level of prognostic capabilities (validation AUC

<0.6), whereas the clinical assessment score multi-variate model

was able to perform reasonably (validation AUC = 0.70). Relative

to their training performance, the constructed models generally

showed reduced validation performance, which is an expected

consequence of the modest dataset size and suggests a limited level

of overfitting.

Discussion

Previous studies have demonstrated preliminary trends of QSM

MRI changes after mTBI.18,17 In the present study, the quantitative

trends identified in these studies have been reproduced in acute

QSM MRI measurements. In particular, increases in magnetic sus-

ceptibility have been identified in white matter tissue, while de-

creases were found in the subcortical gray matter.

Compared with previous studies of QSM in mTBI, the present

analysis has provided more emphasis on individualized correlations

of QSM MRI values with injury severity metrics (symptom dura-

tion). Koch and associates17 demonstrated a correlation of QSM

MRI white matter values with a SRC injury severity metric (return-

to-play delays). In the present study, this finding was reproduced

using a different metric (symptom duration) in subjects with more

than one week of symptoms. Subcortical gray matter values were

similarly shown to anticorrelate with symptom duration.

Individualized z-score analysis of subregions within injured

subjects provided another unique viewpoint into QSM MRI chan-

ges after SRC. This analysis is particularly important, because

the QSM MRI tissue changes are not expected to be spatially ho-

mogeneous across a large spectrum of different SRC injuries. By

examining z-score changes across multiple subregions, localized

individualized QSM MRI changes can be visualized. As depicted

in Figure 4, the QSM MRI changes induced by SRC become more

apparent with injuries yielding longer symptom duration. Of in-

terest, no particular white or subcortical gray matter subcompart-

ments showed a clear increase in sensitivity to injury. This result

is not unexpected, because the nature of post-SRC pathophysi-

ology is not hypothesized to be locally focused when evaluated

across a broad spectrum of SRC events. Future work may use

specific injury classifications, such as head impact measurements,

to explore further localized post-injury QSM MRI effects.

Utilizing this study’s injury cohort for training of prognostic

logistic regression models yielded modest predictive capabilities,

with the subcortical gray matter compartment showing the most

promise for Category 3 injuries (symptoms for at least two weeks)

[(validation AUC: 0.78). This validation performance was similar

to that of the combined use of acute QSM MRI and clinical metrics

for this injury inclusion category. None of the analyzed metrics

(individually or in combination) showed exceptional prognostic

capabilities for less severe injuries (symptom duration less than two

weeks). The unilateral SCAT-3 and combined use of all (clinical

and QSM MRI) metrics, however, yielded modest prognostic val-

idation performance (SCAT-3: validation AUC = 0.67, all metrics:

validation AUC = 0.63).

The results of this preliminary prognostication modeling effort

suggest that combined QSM MRI and clinical metrics could pro-

vide useful validation or identification of more severe SRC cases

and could aid in the guidance of return-to-play decisions for these

athletes. The incorporation of additional biometrics, such as alter-

native advanced MRI metrics or blood markers, could also improve

the sensitivity of these preliminary prognostic models to lower

grades of SRC severity.

While the prognostic logistic regression models demonstrate

better capabilities for more severe injuries with longer symptom

durations, continuous metric correlations (Table 3) showed better

agreement with reported symptom duration when more moderate

injuries are exclusively included in the analysis. An explanation for

this discrepancy is the broader modeling capabilities of the logistic

regression approach, whereby continuous variable labels (symptom

durations) are converted into binary classifiers (symptomatic or

asymptomatic) for each analysis cohort. This suggests that the more

severe injuries do not linearly correlate with any of the analyzed

biometrics and reported symptom duration, while more mild in-

juries do show trends of linear correlation with some metrics.

FIG. 3. Scatter plots of quantitative susceptibility maps (QSM)
values for the white matter (A) and subcortical gray matter
(B) compartments plotted against self-reported symptom duration
for each injured subject. Color image is available online.
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Previous reports of QSM MRI findings after mTBI have pro-

vided limited speculative context on the biophysical cause of the

observed effects. The consistent reproduction of these QSM

MRI effects warrants further investigation of the pathophysio-

logical source.

Within the white matter, increased water content is a probable

explanation for the post-injury tissue magnetism increases that

have been identified in other studies17,18 and reproduced in the

present study. Crude estimates utilizing known tissue magnetism

properties suggests that the magnetism changes observed in the

present study reflect between a 1.5–3% increase in water volume—

which could be indicative of mild diffuse edema in the white

matter. While demyelination and iron increases could also cause

susceptibility increases, these potential causes are not known to

be acute physiological white matter effects after mTBI.

In the subcortical gray matter, calcium ion influx and cerebral

blood volume reduction have been measured in acute TBI

phases.35,36 Again, crude biophysical estimates using the tissue

magnetism changes observed in this study suggest potential CBV

reductions of 4%, calcium ion concentration increases of 8%,

or an antisymmetrical superposition of these two parameters. Un-

fortunately, the effects of these two subcortical gray matter injury

effects on QSM MRI values cannot be decoupled without addi-

tional diagnostic information.

While the validation of these hypothesized post-injury bio-

physical sources of QSM MRI changes are beyond the scope of this

FIG. 4. Z-score maps across concussed subjects for each of the three injury categories (1,2,3) and subregions within the (A) white
matter (WM) and (B) subcortical gray matter (SCGM) tissue compartments. Bar graphs indicate incidence rate at which a given
subregion provided the maximum z-score for the given subject. The utilized subregion index labels are as follows. WM: 1 = L. Anterior
thalamic radiation, 2 = R. Anterior thalamic radiation, 3 = L. Corticospinal tract, 4 = R. Corticospinal tract, 5 = L. Cingulum (cingulate
gyrus), 6 = R. Cingulum (cingulate gyrus), 7 = L. Cingulum (hippocampus), 8 = R. Cingulum (hippocampus), 9 = Forceps major,
10 = Forceps minor, 11 = L. Inferior fronto-occipital fasciculus, 12 = R. Inferior fronto-occipital fasciculus, 13 = L. R. Inferior longitu-
dinal fasciculus, 14 = R. Inferior longitudinal fasciculus, 15 = L. Superior longitudinal fasciculus, 16 = R. Superior longitudinal fas-
ciculus, 17 = L. Uncinate fasciculus, 18 = R. Uncinate fasciculus, 19 = L. Superior longitudinal fasciculus (temporal), 20 = R. Superior
longitudinal fasciculus (temporal). SCGM: 1 = L. Thalamus, 2 = L. Caudate, 3 = L. Putamen, 4 = L. Pallidum, 5 = R. Thalamus, 6 = R.
Caudate, 7 = R. Putamen, 8 = R. Pallidum. Color image is available online.

Table 4. Performance of Logistic Regression Models Trained Using Acute SRC Metrics

Cat. 2: Symptoms ‡1 week Cat. 3: Symptoms ‡2 weeks

Training Validation Training Validation

Clin-SCAT 0.688 (0.667–0.709) 0.672 (0.439–0.905) 0.672 (0.657–0.687) 0.558 (0.360–0.757)
Clin-SAC 0.610 (0.596–0.624) 0.522 (0.370–0.675) 0.558 (0.531–0.585) 0.417 (0.192–0.641)
Clin-BESS 0.537 (0.517–0.558) 0.461 (0.213–0.710) 0.670 (0.651–0.689) 0.733 (0.543–0.924)
QSM-WM 0.542 (0.531–0.554) 0.511 (0.335–0.688) 0.697 (0.676–0.718) 0.717 (0.471–0.962)
QSM-GM 0.523 (0.510–0.536) 0.422 (0.211–0.634) 0.756 (0.739–0.772) 0.783 (0.597–0.970)
QSM-ALL 0.596 (0.578–0.614) 0.500 (0.308–0.692) 0.765 (0.750–0.779) 0.633 (0.410–0.857)
Clin–All 0.676 (0.661–0.690) 0.589 (0.476–0.702) 0.618 (0.604–0.632) 0.520 (0.305–0.735)
All Metrics 0.701 (0.681–0.721) 0.633 (0.483–0.783) 0.872 (0.853–0.890) 0.760 (0.598–0.922)

Cat., Category; SCAT, Sport Concussion Assessment Tool; SAC, Standardized Assessment of Concussion; BESS, Balance Error Scoring System;
QSM, quantitative susceptibility maps; WM, white matter; GM, gray matter.

AUC metrics are reported as means (95% confidence interval) for the 100 bootstrapped models computed for each metric. In addition, precision recall
and validation performance results are reported.
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study, future studies could perform more in-depth analyses that

may help illustrate the biophysical sources.

The present study utilized well-established logistic regression

approaches to prognostic modeling. Given the limited cohort size,

modest overfitting of trained models was observed. More sophis-

ticated prognostication models, leveraging regularization of the

applied cost functions, can be applied to reduce the observed

over-fitting.

The present study had several limitations that may be overcome

in future post-injury analyses of QSM MRI after mTBI. First, de-

spite a very large recruitment pool (1318 athletes), acute QSM MRI

data were acquired only on 13 subjects with injuries inducing

symptoms for more than two weeks. As a result, the majority of

the 78 injured subjects with acute QSM MRI had relatively mild

injuries. This reduced the statistical power of both group and in-

dividualized correlation analysis.

Given the limited cohort size, modest overfitting of trained lo-

gistic regression models was observed. More sophisticated prog-

nostication models, leveraging regularization of the applied cost

functions can be applied to reduce the observed overfitting. It is

anticipated that larger studies with larger cohorts of more severe

injuries will help to provide greater confidence in the preliminary

trends observed in this study. In particular, the use of more ad-

vanced prognostication models on larger datasets may also enable

the use of individual subcompartment QSM values in building

models composed of larger predictor arrays.

The choice of MRI QSM inversion algorithm offers a second

opportunity for improving the results of the current study. The

construction of QSM is a well-known technical challenge that has

undergone more than a decade of algorithmic development. The

methods utilized in the present study leverage well-known methods

that are optimized to reduce persistent artifacts in QSM. Despite

these efforts, imperfect QSM estimation inevitably added to vari-

ances with the group and individualized analyses. This source of

error was a likely contributor to the poor individualized QSM MRI

correlation with symptom duration for weaker injuries. In partic-

ular, as seen in Table 3, Category 2 injuries showed the best cor-

relations, which are likely explained by the balance of injury

severity (>1 week of symptom duration) and remaining cohort size

(n = 39) in this group.

Conclusion

This study of QSM MRI in an acute post-concussive setting has

provided two notable results. First, it reproduced previously re-

ported acute post-concussion QSM findings in a larger injury co-

hort. Specifically, findings of increased global white matter

susceptibility and decreased global subcortical gray matter sus-

ceptibility in the injured cohort, relative to a matched control group,

were reproduced. In addition, this study has provided preliminary

evidence that acute QSM measurements may hold value for prog-

nostication in a post-concussion setting. Future work will investi-

gate the use of deep-learning applications, which recently have

seen rapid progress from several groups,37–39 in post-TBI QSM

MRI reconstruction. The use of these new algorithms may allow

for improved sensitivity of QSM measurements to lower grades of

mTBI.
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