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Abstract

Lung cancer in never smokers (LCINS) is a common cause of cancer mortality, but its genomic 

landscape is poorly characterized. Here, high-coverage whole genome sequencing of 232 LCINS 

showed three subtypes defined by copy number aberrations. The dominant subtype (‘piano’), 
rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants, and 

stem cell-like properties, including low mutational burden, high intra-tumor heterogeneity, long 

telomeres, frequent KRAS mutations, and slow growth, as suggested by the occurrence of cancer 

drivers’ progenitor cells many years prior to tumor diagnosis. The other subtypes are characterized 

by specific amplifications and EGFR mutations (‘mezzo-forte’), and whole genome doubling 

(‘forte’). No strong tobacco smoking signatures were detected, even in cases with exposure 

to second-hand tobacco smoke. Genes within the RTK-RAS pathway had distinct impacts on 

survival, and five genomic alterations independently doubled mortality. These findings create 

avenues for personalized treatment in LCINS.

Lung cancer is the leading cause of cancer-related deaths with ~2 million people diagnosed 

each year1. Lung cancers in never smokers (LCINS) account for 10–25% of all lung cancers, 

with most LCINS being lung adenocarcinomas (LUAD)2. Several studies have profiled the 

genomic landscape of LUAD3–10 and the rarer carcinoid subtype11. Previous LUAD samples 

were mostly from smokers, primarily subject to whole exome sequencing (WES). The 

largest moderate- to high-coverage whole genome sequencing (WGS)-based LUAD studies 

cumulatively total less than 100 LCINS subjects, mostly of Asian ancestry4,8,10,12–14. As 

part of the Sherlock-Lung study15, we evaluated the genomic landscape and mutational 

processes in 232 treatment-naïve LCINS using high-coverage WGS (tumor: 70.6–141.5×, 

mean: 85×; normal: 26.2–57.2×, mean: 31.6×) (Supplementary Table 1). Three subtypes 

based on somatic copy number alterations (SCNAs) were observed, with major genomic 

differences from LUAD in smokers, and distinct clonal evolutionary patterns affecting 

diagnosis and possibly survival. Our findings suggest developmental processes and possible 

novel therapeutic approaches for LCINS.
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Characteristics of Sherlock-Lung Cancer Patients

Fresh frozen tumor tissue and matched germline DNA were obtained from 232 treatment­

naïve never smoker lung cancer patients with unknown exposures to lung cancer risk 

factors, with the exception of second-hand (‘passive’) tobacco smoking in 27.6% of 

patients (Methods, Supplementary Table 1). Patients were diagnosed with non-small-cell 

lung cancer, including 189 adenocarcinomas, 36 carcinoids, and 7 other tumors of various 

subtypes (Methods). Patients were predominantly of European descent (n=226; 97.4%), with 

the remainder of Asian (n=4; 1.7%) or African (n=2; 0.9%) ancestry (Supplementary Fig. 1).

Genomic characteristics of LCINS

The median tumor mutational burden (TMB) was 1.1 Mut/Mb (single nucleotide variation 

(SNV)=1.0; insertions and deletions (indel)=0.06), more than 7-fold lower than in smokers4 

(P = 7.0e-73) (Fig. 1). TMB was significantly associated with tumor stage, histology, and 

age at diagnosis, but not tumor purity (Supplementary Fig. 2).

The major genomic characteristics of LCINS are summarized in Fig. 2 and in the 

Supplementary Note. Among genes in the RTK-RAS pathway, EGFR was the most 

frequently altered (30.6%), followed by KRAS (7.3%), ALK (6.0%), MET (4.3%), ERBB2 
(3.9%, all indels), ROS1 (2.6%) and RET (1.3%). A strong mutually exclusive distribution 

was observed across these seven genes, which were altered in total in 54.3% of tumors 

(Extended Data Fig. 1a). The pattern of genomic alterations was strikingly different between 

RTK-RAS+ and RTK-RAS− groups (Extended Data Fig. 1b). The former had significantly 

higher burden of SNVs/indels, SCNAs, structural variants (SVs), kataegis, whole genome 

doubling (WGD), and BRCA2 loss of heterozygosity (LOH), but lower tumor/normal 

telomere length (T/N TL) ratios. The 49 (21.1%) tumors bearing both TP53 deficiency and 

activating RTK-RAS mutations had higher TMB, as previously observed16, and also higher 

kataegis, WGD, and LOH in genes associated with DNA homologous repair, than tumors 

with either TP53 deficiency or RTK-RAS alterations alone (Supplementary Fig. 3).

As expected17, TP53 mutations were mutually exclusive with MDM2 amplifications 

(P=0.03; Extended Data Fig. 2a) and tumors with mutations in either gene (25.4% in total) 

were enriched with genomic alterations including SNVs, SCNAs, SVs, kataegis, WGD, 

human leukocyte antigen (HLA) LOH and LOH in BRCA1 (Extended Data Fig. 2b).

SVs were enriched in hotspot regions, including MDM2, TERT, 6p21, MYC, CDKN2A, 

NKX2–1, and GNAS, which together contributed 16.7% of SVs (>200 breakpoints within 

5Mb window, Extended Data Fig. 3) as observed in multiple tumor types18. Known 

driver fusion oncogene-generating rearrangements were observed in 24 (10.3%) tumors 

(Supplementary Table 2) and were mutually exclusive with EGFR mutations (P=1.1e-4). 

Non-clustered SVs were enriched in TP53-deficient tumors and RTK-RAS+ tumors 

(Supplementary Fig. 4a-c).
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Copy Number Alteration Subtypes

Unsupervised clustering of arm-level SCNAs identified three distinct subtypes, with 

increasing levels of SCNAs (Fig. 3a). Subtype 1 (49.6% of all tumors) largely 

lacked SCNAs despite relatively high purity, and included 33 of 36 carcinoids and 

78 adenocarcinomas. Subtype 2 (30.2%) was enriched with chromosome arm-level 

amplifications, primarily of 1q, 5p, 7p, 7q (each with P<0.001 subtype 2 vs other subtypes, 

Fisher’s exact test), and 8q (exclusively in subtype 2). Subtype 3 (20.2%) was dominated by 

WGD. Hereafter we refer to these three subtypes respectively as “piano”, “mezzo-forte” and 

“forte”, borrowing the terms from musical dynamics. Combining our copy number profiles 

with those of LUAD from smokers (n=38)12, the majority of LUAD from smokers (20/38, 

52.6%) fell into the subtype forte (P=6.6e-5) (Supplementary Fig. 5a). Focal amplifications 

of MDM2 and EGFR were significantly less frequent in subtype piano than in forte and 

mezzo-forte (P=0.001 and P=0.02 respectively, Supplementary Table 3, Supplementary Fig. 

5b). Mitochondrial-DNA copy numbers were higher than previously reported in LUAD 

from smokers (P=0.01)19 (Supplementary Note, Supplementary Fig. 6a-c). HLA-LOH has 

been previously identified in nearly 40% of lung cancer cases, particularly squamous cell 

carcinomas20. In our cohort, only 5.2% of tumors (all LUAD, mostly in forte and mezzo­
forte) harbored HLA-LOH (Methods, Supplementary Table 1).

Genomic features across SCNA subtypes

Notably, several other genomic features of LCINS differed between SCNA-defined 

subtypes. TMB was much lower in the piano subtype (0.7 Mut/Mb), particularly in 

carcinoids (0.4 Mut/Mb), compared to forte (1.4 Mut/Mb) and mezzo-forte (1.6 Mut/Mb) 

(P=2.0e-7 and 3.2e-11, respectively) (Fig. 3b).

While 24/25 recurrently mutated genes (Supplementary Table 4, Supplementary Fig. 7) 

were previously identified as drivers in the TCGA PanCancer cohort21, many of them 

had substantial frequency differences from LUAD in smokers and across SCNA subtypes 

(Extended Data Fig. 4; Fig. 2). For example, TP53 mutations were most common in forte 
(31.9%, 18.6% and 7.0% for forte, mezzo-forte and piano; P=1.2e-3), while remaining lower 

than in LUAD from smokers (53.4%)21. Further, we identified one likely new driver gene, 

UBA1 (6/9 in piano), which encodes an E1 ubiquitin conjugating enzyme that acts as one of 

the main orchestrators of the cellular DNA damage response22. All 25 recurrently mutated 

genes exhibited signals of positive selection23 (Extended Data Fig. 5).

Over half of the tumors in mezzo-forte had EGFR mutations (51.4% vs. 9.0% in LUAD 

from smokers), while only 1.4% had KRAS mutations (vs. 34.0% in LUAD from smokers). 

Tumors in piano were less likely to have TP53 deficiency or aberrations in EGFR and 

other RTK-RAS genes (P=4.4e-6 and 4.3e-7, respectively), with the exception of KRAS 
(76.5% of KRAS+ tumors were in piano, P=0.02). While carcinoids in piano were enriched 

(P=7.5e-4) with mutations in chromatin-remodeling genes (e.g., ARID1A) as previously 

observed11, LUAD in this subtype rarely harbored a known recurrent driver, with the 

exception of mutations in NKX2–1 (n=4, only in piano), SETD2 (n=8/10 in piano) and 

UBA1. These piano tumors exhibited low burden of SNVs/indels, SCNAs, SVs, kataegis, 
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and WGD, as well as a high T/N TL ratio and subclonal mutation ratio, with carcinoids 

being exceptionally quiet (Fig. 3b).

The median number of SVs per tumor varied widely between SCNA subtypes, with 73, 

63, and 10 in forte, mezzo-forte and piano, respectively, distributed as translocations 

(52.4%), deletions (32.7%), and tandem duplications (14.5%) (Supplementary Fig. 8). Of 

note (Extended Data Fig. 4), RET fusions were present only in the piano subtype (2.6%).

Rare, predicted deleterious, germline variants were identified24 (Methods, Supplementary 

Table 5) recurrently in CYP21A2, which encodes the 21-Hydroxylase enzyme involved 

in the synthesis of cortisol and aldosterone (n=8, 6 with an identical stop-gain variant, 

more common in forte and mezzo-forte) and GLUD2, which encodes for Glutamate 

Dehydrogenase 2 in the mitochondria (n=6, identical variant). Among known cancer 

susceptibility genes, AR was the most frequently mutated (n=5, 4 of which in piano). 

Variants in both CYP21A2 and AR suggest a role for hormones in driving LCINS, 

warranting further investigation. A handful of tumors had germline variants in homologous 

recombination genes25, including BRCA1 (n=3, 2 of which in piano), ATM (n=2), and 

RAD51D (n=2). Single variants, one per tumor, were identified in CDK4 in forte, SOS1 in 

mezzo-forte, and RET and MSH6 in piano.

Mutational Signatures in LCINS

Mutational signature deconvolution of single base substitutions (SBS) using SigProfiler26,27 

identified 14 previously reported signatures from COSMIC (Supplementary Table 6, Fig. 

4, Supplementary Fig. 9). Notably, SBS18, related to damage by reactive oxygen species 

(ROS)28, was observed in 46% of samples, particularly in SCNA subtypes forte and mezzo­
forte (59.6% and 67.1%, respectively, P=2.2e-9 in comparison to piano). SBS8, linked to 

nucleotide excision repair deficiency29 and late replication errors30, was present in 13% of 

samples, particularly in carcinoids (30.3%, P=2.7e-4). In the 38 LUAD from PCAWG12, 

SBS8 was not identified, indicating possible differences in the etiology of tumors from 

smokers and never smokers. Signature extraction using indel (ID-83) and double base 

substitution (DBS-78) profiles26 identified six ID (ID1, 2, 3, 5, 8, and 9) and four DBS 

(DBS2, 4, 9, and 11) signatures (Supplementary Fig. 10).

About 58% of samples (n=135) had ≥100 SNVs, mostly subclonal (median fold-change=1.2, 

interquartile range=1.0–1.5), assigned to APOBEC mutational signatures SBS2 and SBS13 

(Supplementary Note, Supplementary Fig. 11a,b), with substantial inter-tumor heterogeneity 

(Fig. 4). APOBEC mutational loads were verified using P-MACD31 (Supplementary Note, 

Supplementary Fig. 11c). APOBEC signatures were dominant (>80%) in 4 hypermutated 

tumors (TMB>8 Mut/Mb), 1 in forte and 3 in piano. Significant enrichment of the APOBEC 

signature was observed in TP53-deficient (P=1.9e-8) and RTK-RAS+ (P=3.5e-8) tumors.

In all tumors, endogenous processes (Supplementary Table 7) predominated over exogenous 

processes32 (median cosine similarities of 0.96 and 0.82, respectively, P=4.8e-53, Extended 

Data Fig. 6). Only a few samples showed higher cosine similarities combining exogenous 

and endogenous signatures in comparison with endogenous signatures alone (Supplementary 
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Fig. 12), particularly 6 tumors (4 in piano) with a signature of nitrated polycyclic aromatic 

hydrocarbons (Nitro-PAH), 1,8 dinitropyrene [DNP])32, contributing 18.7% of SNVs on 

average in these samples. No additional dominant or recurrent genomic events were apparent 

in these tumors (Supplementary Fig. 13). Nitro-PAHs derive mostly from diesel exhaust and 

are associated with cancer risk33.

The mutational signature associated with direct exposure to tobacco smoking (SBS4) was 

not observed, even in 62 cases with reported exposure to second-hand tobacco smoking 

(“passive smoking”) (Fig. 4). Our simulations demonstrated that signature SBS4, if present, 

is below the detection threshold of 15% of somatic mutations (Supplementary Note, 

Supplementary Fig. 14). The lack of passive smoking signatures was not explained by 

tumor purity differences between passive and non-passive smokers (P=0.39, Fig. 5a), and 

was confirmed by measuring alkylation-induced mutagenesis34 (Supplementary Note, Fig. 

5b). Directly comparing the mutational patterns in passive versus non-passive smokers, we 

found strong similarities between the two groups (Fig. 5c-e) (Q>0.05 for all SBS, DBS and 

ID signatures), even comparing highly and lowly exposed subjects (Methods, Supplementary 

Fig. 15, Supplementary Table 8) or comparing strand asymmetries for mutation types or 

SBS signatures (Supplementary Fig. 16-17). Of note, tumors from passive smokers had 

shorter telomere length (P=0.005, Supplementary Fig. 18).

Genomic Instability

Overall, 36.2% of tumors had WGD, with much higher prevalence in the forte subtype 

(95.7%, vs. 41.4% and 8.7% in mezzo-forte and piano, respectively) (Extended Data Fig. 4). 

Similarly, the proportion of the genome affected by SCNAs was much lower in piano than 

forte or mezzo-forte tumors (P=6.8e-35; Supplementary Fig. 19).

Kataegis was identified in 49.6% of tumors, with an average of 4 events per sample (range: 

1–55), rarely in piano tumors (29.6%, versus 68.1% and 70%, in forte and mezzo-forte, 

respectively; P=1.3e-9). As expected, mutations within kataegis events had APOBEC-related 

signatures26 in both APOBEC3A-like and APOBEC3B-like tumors35 (Supplementary Note, 

Supplementary Fig. 20). Kataegis frequently occurred within the MDM2 locus (P=1.3e-15) 

and often co-localized with SVs (Supplementary Fig. 21).

We estimated telomere length (TL) using two previously published methods36,37, with 

comparable results, confirming an inverse correlation with age (r=−0.14, P=0.04), and no 

association with tumor purity (Supplementary Fig. 22). Notably, tumor TL in LUAD of 

LCINS was significantly longer than that observed in LUAD of smokers36 (6.4 Kb, 95% 

confidence intervals [CI]: 5.3–7.6 Kb, P=7.1e-11, Extended Data Fig. 7a, Supplementary 

Fig. 23). Losses of 9q, 9p, and 22q, and HLA LOH were significantly associated with TL 

shortening (two-sided t-test; Q < 0.05), and were most frequent in forte and mezzo-forte 
(Extended Data Fig. 7b,c). While tumors in forte had significantly shorter telomeres (mean 

T/N TL ratio 0.9, P=0.01, t-test), mezzo-forte tumors displayed no significant difference, 

and piano had significantly longer telomeres than their matched normal tissues (mean T/N 

TL ratio 1.1, P=4.7e-3).
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Approximately 16.0% (n=37) of tumors had a high HRDetect score25,38,39 (>0.7), with 

genomic aberrations predictive of Homologous Repair Deficiency (HRD) (Extended Data 

Fig. 8), particularly in forte and mezzo-forte (P=1.4e-3 versus piano) (Fig. 3b). Biallelic loss 

of ATM in one tumor and monoallelic loss of HRD-associated genes in 42% of tumors had 

higher HRDetect scores (Extended Data Fig. 9).

The Evolutionary History of LCINS

We reconstructed the likely order of acquisition of recurrent genomic aberrations, including 

SCNAs, WGD, and common cancer driver genes within each of the SCNA subtypes in 

LUAD (Methods, Fig. 6). In all three subtypes, mutations in driver genes TP53, RBM10, 

KRAS or EGFR were generally early events, occurring prior to both WGD and most 

other SCNAs. Two exceptions in mezzo-forte were the earlier occurrences of LOH on 17p 

targeting TP53 and LOH on 3p12.2, likely targeting transcription factor ZNF717, suggesting 

that these events are also early drivers of mezzo-forte tumors. Whereas putative copy 

number drivers in mezzo-forte were balanced between gains and LOH, forte was dominated 

by LOH events. Compared to mezzo-forte, WGD generally occurred after other key SCNAs 

in forte. Early events in piano included mutations in SETD2, LOH of 8p and 17p, and focal 

gain at 3p12.2, and at 2p11.2 involving the immunoglobulin gene IGKV1–5.

Using the proportion of mutations on ≥2 chromosome copies allows for the relative timing 

of clonal copy number gains and copy-neutral LOH (CN-LOH)40,41. Gains of 5q, 16p, 1p, 

and 14q occurred early during tumor development, whereas gain of 7q and CN-LOH events 

occurred relatively late (Supplementary Fig. 24a). Reversing this method to time driver 

mutations relative to clonal gains or CN-LOH identified that mutations in EGFR, MET, 

KRAS, ERBB2, TP53, and UBA1 generally occurred before the corresponding copy number 

gain (Supplementary Fig. 24b). In contrast, mutations in PIK3CA and SFTPB occurred after 

gain events.

We adopted a previously validated model42 using the clock-like mutations (CpG>TpG in 

an NpCpG context) to time the appearance of the most recent common ancestor (MRCA) 

of all tumor cells. We used an estimated acceleration rate of 1×, given the low mutational 

burden and the paucity of exogenous mutational signatures in LCINS. The MRCA, by 

definition, possesses all driver mutations for tumorigenesis. Grouping tumors according to 

common driver events (>3% frequency) (Fig. 7a) enables the estimation of the occurrence 

of these events in an individual’s lifetime. For example, in tumors with EGFR mutations 

the MRCA was estimated to appear at 61 years of age, but the tumors became clinically 

evident a median of 8 years later. There were substantial latency differences across tumors 

with different drivers. For example, in tumors harboring ERBB2, CDKN2A, or TP53 
mutations, or NKX2–1, STK11, or chr22q SCNAs, the MRCA appeared more than a 

decade prior to clinical diagnosis. In contrast, tumors with MDM2 amplifications, or MET, 

RBM10, HUWEI1 or KRAS mutations, had much shorter latency. Notably, tumors in piano 
had significantly longer latency (median: 9.10 years) than forte (median: 0.08 years) and 

mezzo-forte (median: 0.28 years) (P = 8.3e-4, Fig. 7b), suggesting a large amount of time 

passed between the last clonal sweep and diagnosis, during which mutations continued to 

accumulate. This observation was robust to assumed acceleration parameter values between 
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1× and 20× (Supplementary Fig. 25). We also observed a lower age of appearance of 

the MRCA in piano (median: 60.4 years), particularly the piano with carcinoid histology 

(median: 55.0 years) compared to forte (median: 63 years) (all piano: P = 0.038; piano 
carcinoids: P = 0.062, Fig. 7c), which requires further confirmation in larger future studies.

Impact of molecular pathways on survival

Cases with TP53 mutation or MDM2 amplifications had poor survival (hazard ratio 

[HR]=2.9, 95% confidence interval CI=1.6–5.2, P=4.5e-4; Supplementary Fig. 26a,b), as 

previously reported in LCINS43 and NSCLC44, with a suggestive stronger impact of TP53 
mutations compared to MDM2 amplifications (Fig. 8a). Similarly, EGFR mutation, CHEK2 
LOH, 22q loss, and 15q loss were associated with poor survival (Fig. 8b-e). A risk score 

calculated as the mutational burden of these five independent genomic alterations (Fig. 8f) 

showed an increment of mortality risk for each genomic alteration of approximately 1.9 

(CI=1.5–2.4, P=3.7e-7).

Interestingly, no significant association was found between RTK-RAS status and overall 

survival (Supplementary Fig. 26c). However, there were strong differences in clinical 

association patterns across different genes in the pathway (Fig. 8b). Patients with ERBB2 
mutations had poor overall survival (HR=5.7, CI=1.6–20.4, P=7.2e-3), although >50% of 

ERBB2+ tumors (4/7) also harbored TP53 alterations, requiring further confirmation in 

ERBB2+/TP53− tumors. KRAS mutations and ALK fusions were also associated with 

poor survival, but not significantly. In contrast, patients with MET-altered tumors had 

better overall survival than the RTK-RAS− group. The small number of patients with both 

TP53-deficient and RTK-RAS− tumors (n=8) had poorer survival (HR=5.3, CI=1.8–15.2, 

P=2.0e-3; Supplementary Fig. 26d).

Patients with piano tumors had overall better survival (HR=0.52, CI=0.3–0.9, P=0.03), 

particularly patients with carcinoids (HR=0.24, CI=0.06–1.0, P=0.05), as did patients with 

SETD2 positive tumors (HR=0.13, CI=0.02–1, P=0.05) (Supplementary Fig. 26e-g).

Discussion

WGS of 232 LCINS samples revealed three subtypes based on SCNAs and profound 

differences from adenocarcinomas in smokers. Whereas WGD is observed in over 60% 

of LUAD in smokers42,45 and is considered to be a major driver of aggressive lung 

adenocarcinomas46,47, it occurs in 36% of LCINS overall, but in 95.7% of the forte subtype. 

While mezzo-forte is enriched for specific chromosomal arm-level amplifications and has 

frequent EGFR mutations, tumors in the quiet piano have low mutation burden, infrequent 

WGD, small numbers of known drivers, and a larger proportion of subclonal mutations 

indicative of extensive intra-tumor heterogeneity.

Forte tumors and tumors from passive smokers had shorter telomeres than their matched 

normal samples, while piano had longer telomeres, suggesting fewer cell divisions. TERT 
was amplified in only 11.6% tumors and had promoter mutations in only 0.9%, and they 

were rarely in piano, excluding a major role for TERT reactivation in TL elongation.
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Notably, we found no major difference between passive and non-passive smokers for 

mutational signatures or mutation types, while we observed a few tumors with diesel exhaust 

signatures. Simulation studies showed that smoking-related mutations in the 62 tumors from 

passive smokers had to be below the detection threshold of 15%. It is possible that SBS4 

is present in some passive smokers below this mutation threshold. Second-hand tobacco 

smoke has been causally linked to lung cancer48, but it is a weak carcinogen compared to 

active smoking48,49 and may also act through alternative tumorigenic processes and selective 

constraints50. Larger studies including highly exposed cases and in vitro or animal models 

are needed to definitively characterize the tumors arising from these exposures.

The long telomeres, low growth rate suggested by the occurrence of the MRCA 

approximately a decade prior to tumor diagnosis, scarcity and heterogeneity of driver 

mutations, low mutation rate, high ITH, and paucity of SBS18 indicating low ROS 

activity51, are all consistent with piano tumors being derived from adult stem cells that 

have exited their quiescent state52,53. Driver genes specifically mutated in piano also suggest 

stem-like features. Oncogenic mutations in KRAS, the most frequently mutated driver gene 

in piano, have been shown to induce proliferation of bronchioalveolar stem cells, giving 

rise to lung adenocarcinoma54. Similarly, KRAS55,56 and UBA157 have important regulatory 

roles in hematopoietic and pluripotent stem cells. The presence of fusions and germline 

variants in RET (as well as mutations in NKX2, a regulator of RET58) uniquely in piano 
suggests a role for RET in these tumors. RET expression and activity are enriched in human 

hematopoietic stem cells (HSCs)59 and are involved in murine HSC regulation60. Notably, 

ARID1A is essential for telomere cohesion61, deleting Arid1a in mice greatly enhances 

the ability to regenerate organ tissues62–64, and ARID1A depletion in humans promotes 

cells to enter the cell cycle65. Mutations in ARID1A, as well as NOTCH1, another gene 

whose signaling has a role in stem cell expansion and progenitor cell survival66, have 

been found in normal and near-normal bronchial epithelial cells from former smokers67, 

which are also characterized by long telomeres and polyclonal origins. Notably, alterations 

in KRAS, UBA1, RET and ARID1A were mutually exclusive in piano. Hypothetically, 

mutations in NOTCH1, ARID1A or other genes with similar function could promote exit 

from a quiescent cell state, resulting in high ITH, and could drive some of the tumors with 

no detected known cancer driver gene mutations or fusions. Carcinoids and LUAD in piano 
would then represent tumors diagnosed prior to acquisition of a dominant clone. Using 

RNA sequencing for an orthogonal assessment of stemness and cell of origin (Methods, 

Supplementary Note), we found that both a “development score”, incorporating expression 

of the SOX2, SOX9, and HMGA2 genes68–70, and a marker of basal cells suggesting 

lineage infidelity71 were higher in piano (Supplementary Fig. 27), consistent with piano 
representing a stem cell-like state. Larger studies are needed to verify the WGS-based 

stemness hypothesis, possibly using single-cell RNA sequencing and methylome analyses, 

particularly in tumors with no apparent drivers.

The founder cells of piano appear around a decade before diagnosis and provide an optimal 

time window for early detection. In contrast, driver gene mutations and WGD or gross 

SCNAs in the forte and mezzo-forte are generally clonal, with later onset followed by rapid 

expansion of a single ancestral cell. Their clonal nature could facilitate identification with a 

single biopsy and successful treatment.
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Currently, treatments targeting the most recurrent genomic alterations in forte and mezzo­
forte are available or are under investigation in clinical trials, namely for TP5372 or 

MDM2-TP53 interaction73, as well as for mutations in EGFR or ERBB274–77, genes that 

conveyed the poorest survival among the RTK-RAS pathway, and even for tumors with 

both TP53 deficiency and RTK-RAS mutations (21% of our tumors)78. Together with TP53 
and EGFR alterations, tumors with loss of chromosome 22q, 15q or CHEK2 LOH were 

frequently identified, particularly in forte. A 2-fold higher mortality risk was estimated 

for each of these 5 independent genomic alterations, suggesting that compounds targeting 

bystander genes that are deleted together with tumor suppressor genes in chromosome arm 

losses (collateral lethality)79,80 should be explored in these subtypes. Moreover, >15% of 

tumors had LOH of an HRD associated gene. Targeting these genes could be a promising 

therapeutic option to explore. Moreover, mutations in HRD associated genes could act as 

predictors of immune checkpoint inhibitor response81, broadening the options for treatment 

for this subgroup. In contrast, piano has a scarcity of driver mutations, offering limited 

targets for therapeutic intervention. Furthermore, due to low TMB82–84 and HLA-LOH20, 

these patients may not benefit from immunotherapy. However, targeting KRAS85 and stem 

cell-associated signaling pathways51,86, or regulating the stem cell microenvironment87, are 

promising for this subtype.

Methods

A detailed description of the methods used in this paper and many additional results are 

described in the Supplementary Note. Here, we summarize the key aspects of the analysis.

Ethics declarations

Since NCI only received de-identified samples and data from collaborating centers, had no 

direct contact or interaction with study subjects, and did not use or generate identifiable 

private information, Sherlock-Lung has been determined to constitute “Not Human Subject 

Research (NHSR)” based on the Federal Common Rule (45 CFR 46; eCFR.gov).

Collection of Lung Cancer Samples

Fresh frozen tumor tissue and matched germline DNA from whole blood samples or fresh 

frozen normal lung tissue sampled ~3 cm from the tumor were obtained from 256 treatment­

naïve lung cancer patients from five institutions/centers (Supplementary Note). Among 

the 256 samples, 20 were excluded after quality check and four were excluded based on 

mutational signatures analysis (Supplementary Note). The resulting 232 samples and the 

associated demographic and clinical data were included in the final analysis. For these 232 

subjects, the mean age at lung cancer diagnosis was 64.8 years (range: 21–86); 75.4% of 

patients were female. To confirm the ancestry of these patients, we estimated the admixture 

proportions based on WGS data using the fastNGSadmix88 tool.

Of the 232 tumors, 189 were adenocarcinomas, 36 carcinoids, 5 sarcomatoid carcinomas 

or undifferentiated non-small cell carcinomas with sarcomatoid features, and 2 squamous 

cell carcinomas. Three pathologists reviewed the histological diagnoses. Histological images 

can be found here: https://episphere.github.io/svs. All 232 matched tumor and germline 
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samples underwent DNA whole genome sequencing. Of these, 35 (all adenocarcinomas) 

also underwent RNA sequencing.

Genome-Wide Somatic Variant Calling

The analysis-ready BAM files were processed using four different algorithms, including 

MuTect89, MuTect2, Strelka (v2.9.0)90, and TNscope91. To improve the performance of 

the variant calling, we used Sentieon’s genomics package (v201808.03) to run MuTect, 

MuTect2 and TNscope. Only those SNVs that passed calling by a minimum of three 

algorithms were kept. To reduce false positive calling, we applied an in-house filtering 

script (https://github.com/xtmgah/Sherlock-Lung) similar to our previous publication92. To 

summarize, variant calling was considered only at the genome positions with 1) read depth 

>12 in tumor and >6 in normal samples; and 2) variant read count >5 in tumor and VAF 

<0.02 in normal samples. To remove possible germline variants from the called somatic 

variants, somatic variants were filtered against the dbSNP138, 1000 genomes (phase 3 

v5), ExAC (v0.3.1), gnomAD (v2.1.1)93 database, and an in-house Italian germline variant 

database from EAGLE WES study (dbGAP access ID phs002496.v1.p1) for commonly 

occurring SNPs (somatic variant frequency<0.001). The filtered variants were annotated 

with Oncotator (v1.9.1.0)94 and ANNOVAR95. For the indel calling, only variants called 

by three algorithms were kept (MuTect2, TNscope, and Strelka). UPS-indel96 algorithm 

was used to compare and combine different indel call sets. Similar filtering steps as those 

used for SNV calling were also applied to indel calling. The final set of indels were left 

normalized (left aligned and trimmed) for the downstream analysis. Clustering of subclonal 

somatic mutations was analyzed using a Bayesian Dirichlet Process (DPClust) as previously 

described92,97,98. Further details are available in the Supplementary Note.

Germline Variant Calling

Final BAM files from paired normal samples were used to call germline variants using 

the GATK Haplotyper algorithm in Sentieon’s genomics package. Default parameters or 

suggested input files, such as the most recent dbSNP VCF file were applied. The final joint 

callings from all normal samples were generated and annotated with ANNOVAR95. Strict 

filtering criteria were used to identify the potential pathogenic variants: 1) Minor allele 

frequencies <0.05% in the GnomAD non-cancer and non-finnish European ancestry dataset 

(v2.1.1); 2) Estimated CharGer score >4 to include the pathogenic or likely-pathogenic 

variants based on the CharGer algorithm (version 0.5.2)99. The default parameters for 

CharGer were used and the most damaging interpretation from ClinVar100, excluding OMIM 

and genereview as submitters, was used for annotation; 3) Variants predicted to have 

‘silent’ functional activity were removed, including variants in the UTR, upstream or intron 

regions. All the final germline variants have been manually inspected through IGV and the 

suspicious variants have been removed.

Driver Gene Discovery

The IntOGen pipeline23, which combines seven state-of-the-art computational methods, was 

employed to detect signals of positive selection in the mutational pattern of genes across the 

cohort. Default parameters were used, and in the post-processing phase, the gene CSMD3 
was filtered out based on warnings provided by the pipeline. The 25 genes identified as 
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drivers in the cohort were classified according to their mode of action in tumorigenesis 

(i.e., tumor suppressor genes or oncogenes) based on the relationship between the excess 

of observed non-synonymous and truncating mutations computed by dNdScv101 and their 

annotations in the Cancer Gene Census (CGC). In the case of UBA1, only the excess 

values were used. Genes with conflicting computed and annotated mode of action are 

labeled ambiguous. To identify potential driver mutations across the 24 cancer driver genes 

annotated in the CGC, we used boostDM gene-tumor type specific (LUAD) or more general 

models depending on their availability and accuracy102.

Somatic Copy Number Alterations (SCNA) Analysis

We used the updated Battenberg (v2.2.8) algorithm98 to estimate the clonality of each 

segmentation, tumor purity and ploidy (Supplementary Note). Unsupervised clustering 

of copy number profiles including both major clone and subclone segmentations were 

generated based on relative copy number log2 (copy number/Tumor_Ploidy) using the 

euclidean distance and Ward’s method. Recurrent copy number alterations from WGS at a 

gene level were identified using GISTIC 2.0103 based on the major clonal copy number for 

each segmentation (Supplementary Note).

Whole Genome Doubling Identification

Multiple methods were used to determine the genome doubling status for each tumor. First, 

tumors were considered to have undergone WGD if greater than 50% of their autosomal 

genome had a major copy number (MCN) (i.e., the more frequent allele in a given segment) 

>=246. Also, the number of chromosomes with 50% of the segment with MCN>=2 had to 

be greater than 11. Next, we applied a modified version of the published WGD algorithm104, 

where a p-value was obtained using 10,000 simulations with observed probabilities of copy 

number events. For samples with ploidy ≤3 and ploidy=4, p-value thresholds of 0.001 and 

0.05 were used, respectively. All samples were classified as genome doubled if the ploidy 

exceeded 4. Tumors were determined to have undergone WGD if the tumors met the criteria 

for WGD for both methods. Finally, to improve the WGD calling, we manually checked the 

Battenberg CNA profile to resolve tumors with ambiguous WGD calling (e.g., MCN close to 

0.5), evaluating features such as presence of multiple copy losses after WGD (total copy of 

3) and/or LOH events having 2:0 copy number state. For the chronological reconstruction of 

genomic aberrations, we limited the WGD samples with average ploidy > 3.

Structural Variants Calling and Clustering

The Meerkat algorithm105 was used to call somatic SVs and estimate the corresponding 

genomic positions of breakpoints (Supplementary Note). The parameters were selected 

based on the sequencing depth for both tumor and normal tissue samples and the library 

insert size as in a previous publication92. Driver oncogenic fusions were selected from SVs 

based on the driver gene list21 and an oncogenic fusion list previously reported in LUAD8. 

We selected the fusions with the following SV features in Meerkat output: “gene-gene”, 

“head-tail” and “in_frame” or “out_of_frame”. All driver oncogenic fusions in our study 

were reported with the same partners and no other new recurrent oncogenic fusion was 

found.
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We used the algorithm developed by Li et al.106 to cluster the SVs in each sample. The 

algorithm groups the structural variants into clusters based on the proximity of breakpoints, 

the number of events in that cluster regions and the size distribution of those events. A 

cluster contains structural variants that have arisen from the same event and are significantly 

closer than expected by chance, given the orientation and the number of SVs in that patient. 

In addition, to visualize the hotspots of breakpoints, we counted the number of breakpoints 

across the whole genome using a 5 Mb window. A similar approach was also applied to 

visualize the kataegis hotspots.

Telomere Length Estimation

We estimated telomere length (TL) in kb using TelSeq107. We used 7 as the threshold for 

the number of TTAGGG/CCCTAA repeats in a read for the read to be considered telomeric. 

TelSeq calculation was done individually for each read group within a sample, and the total 

number of reads in each read group was used as weight to calculate the average TL for 

each sample. To validate the estimation of telomere length by TelSeq, telomere content was 

quantified using TelomereHunter37 using ten telomere variant repeats including TCAGGG, 

TGAGGG, TTGGGG, TTCGGG, TTTGGG, ATAGGG, CATGGG, CTAGGG, GTAGGG 

and TAAGGG.

To compare telomere length in Sherlock-Lung with previous studies, we collected the 

telomere length estimation from the same algorithms across the TCGA cohort and applied 

the same linear mix model to predict the mean telomere length as described by Barthel et 
al.36.

Mutational Signature Analysis

Mutational signature analysis was analyzed by the updated computational framework 

SigProfiler26,108. SigProfilerExtractor with default parameters was used to perform both 

de-novo extraction and decomposition to known global Cosmic mutation signatures (v3). 

Mutation probabilities for each mutation type in each sample were generated for grouping 

samples based on different genomic features. Hierarchical clustering of contribution of 

mutational signatures was performed using “euclidean” distance and Ward’s minimum 

variance clustering method.

To investigate the endogenous and exogenous mutational processes in our Sherlock-lung 
study, we collected four mutational signature sets according to the likely etiologies, 

including 65 Cosmic SBS mutational signatures, 22 Cosmic SBS endogenous signatures, 

53 environmental mutagens signatures32 and 75 combined endogenous and exogenous 

mutational signatures (See Supplementary Table 7 for the included signatures). We then 

performed SBS mutational signature analyses as described above. To maximally deconvolute 

all mutations to these global signatures in SigProfilerExtractor, we decreased the cosine 

similarity threshold for de novo mutational signatures until no new mutational signature was 

found. Among these 4 mutational signature sets, we compared the cosine similarity between 

the reconstructed mutational profiles to the original mutational profiles for each sample.
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Analysis of Passive Smoking

To investigate tumor mutational patterns between passive smokers and non-passive smokers, 

we first excluded 4 hypermutated tumors (2 from passive smokers, 1 from a non-passive 

smoker, and 1 with unknown passive smoking exposure) driven by APOBEC mutagenesis 

(TMB>8 Mut/Mb). We then compared each mutation type among SBS, DBS and ID 

between passive and non-passive smokers using the Mann-Whitney U test followed by 

multiple testing correction using the Benjamini & Hochberg method. To quantify and 

visualize differences in the overall mutational patterns between passive and non-passive 

smokers, we combined all mutations in each tumor group into a single profile and estimated 

their cosine similarity and residual sum of squares (RSS). As a sensitivity analysis, we 

replicated these analyses within samples from two studies (EAGLE and Yale) with high 

quality passive smoking exposure data. The EAGLE study had details on exposure during 

childhood, during adulthood at home, and during adulthood at work. Thus, we created a 

score from the highest exposure (“1”: during all three periods) to the lowest (“4”: only one 

exposure setting during adulthood). We then extracted the mutational patterns across the 

groups and estimated the cosine similarity of the two extremes (1 and 4).

Homologous Recombination Deficiency by HRDetect

We applied HRDetect to assess the homologous recombination deficiency (HRD) as 

described in previous studies25,38,39. Mutations including SNVs and Indels, Battenberg 

segmentation profile, SVs, and tumor purity and ploidy were included for HRDetect. 

HRDetect scores were computed by aggregating six features associated with HRD including 

SNV signature 3, SNV signature 8, SV signature 3, SV signature 5, HRD index from copy 

number profile, and the fraction of deletions with microhomology. All the features were 

normalized and log transformed. A logistic model was used to predict the HRDetect scores 

using previously trained data38.

Assessment of Loss of Heterozygosity

Loss of heterozygosity in human leukocyte antigen (LOH HLA) was identified by the 

LOHHLA algorithm20. Patient-specific HLA genotypes were inferred by POLYSOLVER109 

based on the normal samples. Then, tumor and normal BAM files, HLA calls, HLA fasta 

file, and tumor purity and ploidy were used as input to LOHHLA. A copy number < 0.5 is 

classified as subject to loss, and thereby indicative of LOH. Allelic imbalance is determined 

if P <0.01 using the paired t-test between the two distributions.

LOH analysis for HRD genes was based on the overlapping gene location with copy number 

profile by Battenberg. LOH segmentation was called if the clonal minor copy number was 0. 

The HRD gene list was based on a previous publication25.

Prediction of Chronological Timing

We adopted the approach from PCAWG42 to estimate the elapsed time between the 

appearance of the MRCA and the last observable subclone in our Sherlock-lung study. 

Briefly, the number of clock-like CpG>TpG mutations in an NpCpG context was counted 

for all tumors, accounting for tumor ploidy as well as clonal and subclonal mutations. 

Tumors with no age information, insufficient number of clonal and subclonal clock-like 
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mutations (<50 mutations/sample) to estimate mutation rate, abnormal mutation rate, or 

high fraction of APOBEC-associated mutations (SBS2 and SBS13 fraction >70%) were 

excluded from the analysis as previously advocated 8,42, leaving 153 samples for this 

analysis. The latency of the MRCA was estimated for each tumor, adopting an estimated 

tumor acceleration rate of 1×. We subtracted the estimated latency from the age at diagnosis 

to obtain the real-time age at which MRCA likely emerged, grouping tumors by the presence 

of specific genomic alterations or features with >3% frequency (such as SCNA subtypes; 

groups with RTK-RAS alterations, TP53 deficiency, ALK fusions, and ARID1A mutations, 

etc.). Significant differences between subgroups were assessed using Wilcoxon rank-sum 

test.

Timing Model of Ordering Events

Mutational drivers and CNAs were simultaneously incorporated into the timing model 

based on the clonality of the events. For CNAs, Battenberg copy number calls were used 

to assign clonality of CNAs (whether cancer cell fraction (CCF)=1 or <1), describe the 

type of CNA (i.e. gain, LOH and HD) and whether WGD has occurred in the overall 

copy number profile. To include only recurrent regions, first, CNA events of each type 

were piled up across all samples along the chromosomes to get the frequency landscape 

of each CNA type based on all observed breakpoints. Next, a permutation test (N=1,000) 

followed by FDR-based multiple testing correction was undertaken to identify regions that 

were significantly enriched above the random background copy change rate. The enriched 

regions that encompassed the HLA region (6p21), or specific to telomeric ends or present 

as a singleton were excluded. For each mutational driver (with ≥ 5% recurrence), CCF of 

each variant was estimated by adjusting VAF according to the CNA status of the locus 

and purity of the tumor sample as previously described110. Variants were then classified 

as clonal (CCF=1) and subclonal (CCF <1) using DPClust. All events were combined per 

sample and ordered based on CCF. Where more than one tree could be inferred based on 

subclonal events, all possible trees were generated and randomly chosen in each iteration of 

ordering events. To time the events based on the entire dataset, events were ordered based 

on clonality (randomized clonal events followed by a sampled tree of subclonal events) in 

each sample. To classify events with respect to WGD, we used the estimated number of 

chromosomes bearing the mutation (NCBM) and major/minor copy number status to call 

pre-WGD and post-WGD mutations and CNA respectively. The Plackett-Luce model111,112 

for ordering partial rankings was implemented (https://github.com/hturner/PlackettLuce) to 

infer the order of events based on the ordering matrix of the entire dataset while allowing 

for unobserved events. This analysis was undertaken for 1,000 iterations to obtain the 95% 

confidence interval of the timing estimate of each event. We repeated this analysis across the 

three subtypes of tumors based on SCNA clusters (forte, mezzo-forte, and piano).

Statistical and Survival Analysis

All statistical analyses were performed using the R software (https://www.r-project.org/). To 

investigate the functional relevance of potential driver mutations of each pair of genes, we 

performed mutual exclusivity analysis and co-occurrence analysis using two-sided Fisher’s 

exact test. P values less than 0.05 were considered as statistically significant. If multiple 

testing was required, we applied the false discovery rate (FDR) correction based on the 
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Benjamini & Hochberg method. For survival analyses, a proportional hazards model was 

used to investigate the associations between genomic features and overall survival, adjusting 

for age at diagnosis, gender, and stage. The multiple testing correction for survival analysis 

was performed based on 33 different genomic alteration events with at least 5% frequency 

including mutations, focal SCNA, arm-level SCNA, and gene fusions. Genomic alterations 

were identified as significant if Q<0.1. A risk score was calculated as the mutational burden 

of these significant independent genomic alterations and we then performed association 

between risk score and overall survival using the same method.

Data Availability

232 normal and tumor paired raw data (BAM files) of the whole genome sequencing 

datasets have been deposited in dbGaP with accession number: phs001697.v1.p1. 

Researchers will need to obtain dbGaP authorization to download these data. RNA-seq 

raw data (FASTQ files) have been submitted to NCBI GEO database with access number 

GSE171415. Germline variant dataset from EAGLE whole exome sequencing study can be 

access in dbGaP with access number phs002496.v1.p1. In addition, histological images of 

these tumors can be found at https://episphere.github.io/svs. Public datasets were used in this 

study including: gnomAD (v2.1.1)/ExAC (v0.3.1) (https://gnomad.broadinstitute.org/), 1000 

genomes (phase 3 v5, https://www.internationalgenome.org/) and dbSNP (v138, https://

www.ncbi.nlm.nih.gov/snp/).

Code Availability

The code for whole genome sequencing subclonal copy number caller can be found 

at https://github.com/Wedge-lab/battenberg (v2.2.8). The code for somatic mutation 

filtering can be found at https://github.com/xtmgah/Sherlock-Lung. The code for Dirichlet 

Process based methods for subclonal reconstruction of tumors can be found at https://

github.com/Wedge-lab/dpclust (v2.2.8). The code for mutational signature analysis can 

be found at https://pypi.org/project/sigproextractor/ (SigProfilerExtractor, v0.0.5.77). The 

code for inferring the order of genomic events can be found at https://github.com/hturner/

PlackettLuce (v0.2–2). The code for chronological timing analysis can be found at https://

gerstung-lab.github.io/PCAWG-11/. The code for P-MACD (Pattern of Mutagenesis by 

APOBEC Cytidine Deaminases) can be found at https://github.com/NIEHS/P-MACD.
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Extended Data

Extended Data Fig. 1. Genomic alterations of RTK-RAS pathway in Sherlock-Lung.
a, Oncoplot showing mutual exclusivity of genes within the RTK-RAS pathway, which were 

used to define the RTK-RAS status. The bottom bar shows tumor histological types. b, 

Comparison of genomic features between RTK-RAS negative and positive tumors. Left four 

panels: tumor mutational burden, percentage of genome with SCNAs, SV burden and T/N 

TL ratio. P-values are calculated using the two-sided Mann-Whitney U test; Middle three 

panels: enrichments for Kataegis events, WGD events, and BRCA2 LOH. P-values and OR 
are calculated using Fisher’s exact test (two-sided); Right panel: Contributions of each SBS 

signature.
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Extended Data Fig. 2. Genomic alterations of TP53 pathway in Sherlock-Lung.
a, Oncoplot showing the mutual exclusivity between TP53 mutations and MDM2 
amplification, which was used to define the TP53 proficient and deficient groups. The 

bottom bar shows tumor histological types. b, Comparison of genomic features between 

TP53-proficient and TP53-deficient tumors. Left three panels: tumor mutation burden, 

percentage of genome with SCNA and SV burden. P-values are calculated using the two­

sided Mann-Whitney U test. Middle four panels: enrichments for BRCA1 LOH, Kataegis 

events, WGD events, and HLA LOH. P-values and OR are calculated using Fisher’s exact 

test (two-sided). Right panel: Contributions of each SBS signature.
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Extended Data Fig. 3. Recurrence of SV breakpoints in Sherlock-Lung.
The frequencies of chromosomal breakpoints are calculated using 5 Mb as a window across 

the whole genome.
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Extended Data Fig. 4. Summary of genomic features in LCINS based on different SCNA 
clusters.
Panels from top to bottom describe: 1) most frequently mutated or potential driver genes; 2) 

oncogenic fusions; 3) somatic mutations in surfactant associated genes; 4) significant focal 

SCNAs; 5) significant arm-level SCNAs; 6) genes with rare germline mutations; 7) and 8) 

other genomic features. The numbers on the right panel show the overall frequency (1–7) or 

median values (8). NRPCC: the number of reads per clonal copy.
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Extended Data Fig. 5. Genes with signals of positive selection in Sherlock-Lung.
a, The scatter plot showing significantly mutated genes according to IntOGen q-value 

<0.05 (y-axis) and mutational frequency in the cohort (x-axis). Genes are colored according 

to their inferred mode of action in tumorigenesis. b, Recurrent non-synonymous driver 

mutations (in ≥2 patients).
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Extended Data Fig. 6. Dominant endogenous processes in Sherlock-Lung.
a, Density plot of cosine similarity between original mutational profile and reconstructed 

mutational profile using reference signatures from (top to bottom): 65 COSMIC SBS 

signatures, 22 COSMIC SBS signatures for endogenous processes, 53 MutaGene SBS 

signatures of environmental exposures, and a combined set of signatures including the 

22 endogenous and 53 environmental exposure signatures. b, Comparison of the cosine 

similarity between the original mutational profiles and reconstructed mutational profiles 

using endogenous and exogenous signatures (similar to a). Each dot represents one sample. 

The size and color represent the total number of mutations and tumor histological type, 

respectively.
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Extended Data Fig. 7. Association between T/N TL ratio and somatic alterations in Sherlock-
Lung.
a, Distribution of mean telomere lengths (TL) in Sherlock-Lung (dark blue, overall and by 

histological type), TCGA LUAD (green, overall and by smoking status) and TCGA other 

cancer types (Grey). Total sample numbers for each type are shown at the top. Error bars, 

95% CIs from linear mixed model. b, Scatterplot showing association between T/N TL 

ratio and somatic alterations. Association P-values (two-sided t-test; FDR adjusted using 

Benjamini-Hochberg method) are shown on the y-axis. Genomic alterations with FDR <=0.1 

or T/N TL ratio >1.1 or <0.9 are labeled and further highlighted in red when significant 

(FDR=0.05; horizontal dashed line). c, The proportion of each SCNA cluster among the 

group of tumors with somatic alterations significantly associated with shorten T/N TL 

including Chr22q Loss, Chr9p/q Loss or HLA LOH.
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Extended Data Fig. 8. Homologous recombination deficiency (HRD) in Sherlock-Lung.
a, HRDetect scores of Sherlock-Lung samples. HRD-high: >0.7, HRD-low: < 0.005. b, 

Comparison of the number of total indels, microhomology deletions, SVs, and SNVs 

between samples with HRDetect score below 0.7 (group N) and above 0.7 (group Y). 

P-values are calculated using the two-sided Mann-Whitney U test. For box plots, center lines 

show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 

times the interquartile range from the 25th and 75th percentiles.
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Extended Data Fig. 9. Genomic alterations in HRD associated genes in Sherlock-Lung.
a, Oncoplot of genomic alterations in HRD associated genes, including germline mutations, 

somatic mutations and LOH. Samples with biallelic alterations are represented by bars 

with two different colors. The bottom bar shows tumor histological types. b, Boxplots of 

HRDetect scores (top) and SBS mutation loads (bottom) in tumors with and without LOH 

of six HR associated genes. FDR are calculated using the two-sided Mann-Whitney U test 

with multiple testing correction based on the Benjamini & Hochberg method. For box plots, 

center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers 

extend 1.5 times the interquartile range from the 25th and 75th percentiles.
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Fig. 1. Tumor mutational burden (TMB) across lung cancer in never smokers from the Sherlock-
Lung study and 33 cancer types from the TCGA study.
The Sherlock-Lung samples (blue) are shown overall and by histological type. TCGA 

LUAD samples (green) are shown overall and by smoking status. Each dot represents a 

sample; total sample numbers for each type are shown at the top. The red horizontal lines 

are the median numbers of mutations per megabase (log10). On the bottom, acronyms of 

cancer types as in TCGA (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga­

study-abbreviations).
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Fig. 2. Genomic characteristics of lung cancer in never smokers.
Panels from top to bottom describe: 1) distribution of genomic alteration numbers; 2) most 

frequently mutated or potential driver genes; 3) oncogenic fusions; 4) somatic mutations in 

surfactant associated genes; 5) significant focal SCNAs; 6) significant arm-level SCNAs; 7) 

genes with rare germline mutations; 8) and 9) different genomic features. The numbers on 

the right panel show the overall frequency (1–8) or median values (9). NRPCC: the number 

of reads per clonal copy.
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Fig. 3. Genomic classification of lung cancer in never smokers based on somatic copy number 
alterations.
a, Left panel shows unsupervised clustering of arm-level SCNA events: piano, mezzo-forte 
and forte. The relative copy number is calculated as: total copy number - ploidy (non­

WGD=2 and WGD=4). Samples in rows are annotated by tumor purity, WGD status, HLA 

LOH, RTK-RAS status, TP53 deficiency, and tumor histological type. Top panel shows 

SCNA frequency including amplification, deletion and copy neutral LOH (black line). b, 

Comparison of genomic aberrations or features (Y=“with”, N=“without”) among forte, 

mezzo-forte, piano-LUAD, and piano-Carcinoids tumors. Left five panels: tumor mutation 

burden, percentage of genome with SCNAs, SV burden, T/N TL ratio and subclonal 

mutation ratio. P-values are calculated using two-sided Mann-Whitney U test. Right six 

panels: enrichments for WGD, Kataegis, BRCA2 LOH, BRCA1 LOH, HRD LOH and HLA 
LOH. P-values and OR are calculated using two-sided Fisher’s exact test. All statistical 

analyses were performed between forte and piano-LUAD.
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Fig. 4. Landscape of mutational processes in Sherlock-Lung.
Mutational signature profile of single base substitutions (SBS) across 232 Sherlock-Lung 
samples. Panels from top to bottom: 1) Unsupervised clustering based on the proportion 

of SBS signatures; 2) Tumor histological type; 3) SCNA cluster; 4) Pie chart showing the 

percentage of mutations contributed to each SBS signature and the barplot presenting the 

total number of SNVs assigned to each SBS signature; 5) Cosine similarity between original 

mutational profile and signature decomposition result; 6) Proportions of SBS mutational 

signatures in each sample. 7) Proportions of SBS mutational signatures in each SCNA 

subtype.
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Fig. 5. Comparison of mutational spectra between passive smokers and non-passive smokers in 
Sherlock-Lung.
Identification of tumor purity (a) and alkylation-induced mutagenesis (hTg → hGg 

signature) (b) between passive smokers (Y, N=62) and non-passive smokers (N, N=148). 

Mutational spectra comparison of single base substitutions (c), double base substitutions (d) 
and indels (e) between passive-smokers and non-passive smokers.
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Fig. 6. Diagram of estimated ordering of significant SCNAs (including chromosome gains/losses 
and mutations) relative to WGD in three lung cancer subtypes based on SCNA clusters forte, 
mezzo-forte and piano.
The size of violin plots denotes the uncertainty of timing for specific events across all 

samples and the short black solid lines represent the median time. The vertical dashed line 

indicates the median time for WGD events. Ordering of genomic events was based on the 

PlacketLuce package model with 95% CI. The frequency of each event is labeled on the 

right y-axis.
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Fig. 7. Reconstruction of the evolutionary history of lung cancer in never smokers.
a, Estimated age at which the most recent common ancestor (MRCA) emerged in tumors 

(y-axis), grouped by genomic alterations or features (x-axis, frequency >3%) as shown 

in Figure 2. The color of each dot represents the tumor histological subtype. The orange 

solid and dashed lines indicate the median estimated MRCA age and the median age at 

diagnosis in the same group, respectively. The blue solid and dashed lines indicate the 

median estimated MRCA age and the median age at diagnosis in all samples, respectively. 

b, Boxplots show the latency between the MRCA and the age at diagnosis based on 1× 

acceleration rate across forte, mezzo-forte, and piano subtypes with 95% CI for each 

tumor. c, Similar to a, estimated MRCA age among SCNA subtypes: forte, mezzo-forte, 

piano-LUAD and piano-carcinoids. For box plots from a to c, center lines show the medians; 

box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile 

range from the 25th and 75th percentiles.
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Fig. 8. Association between genomic aberrations and clinical outcomes in never smoker lung 
cancer patients.
Kaplan-Meier survival curves for overall survival stratified by (a) TP53 mutations and 

MDM2 amplification, (b) activation of individual driver genes in the RTK-RAS pathway, 

(c) CHEK2 LOH, (d) Chr22q loss, (e) Chr15q loss, and (f) Risk score based on the burden 

of five genomic alterations. P-values for significance and hazard ratios (HR) of difference 

are calculated using the cox proportional hazards regression (two-sided) with adjustment for 

age, gender and tumor stage. No multiple-testing correction applied. For groups in each plot, 

Y= “with” aberration; N=“without” aberration. The numbers in brackets indicate the number 

of patients.
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