
Peripheral Nerve Healing: So Near and Yet So Far
Aslan Baradaran, MD, MSc1 Hassan El-Hawary, MD, MSc1 Johnny Ionut Efanov, MD, PhD, FRCSC2

Liqin Xu, MD, MSc, FRCSC1

1Division of Plastic and Reconstructive Surgery, Montreal General
Hospital, McGill University, Montreal, Quebec, Canada

2Division of Plastic and Reconstructive Surgery, Centre Hospitalier de
l’Université de Montréal, Montreal, Quebec, Canada

Semin Plast Surg 2021;35:204–210.

Address for correspondence Liqin Xu, MD, MSc, FRCSC, Division of
Plastic and Reconstructive Surgery, Department of Surgery, Montreal
General Hospital, 1650 Cedar Avenue L9-317, Montreal, Quebec, H3G
1A4, Canada (e-mail: liqin.xu@mcgill.ca).

Peripheral nerve injury (PNI) is a common condition that often
affectsayoungerandotherwisehealthy individual,with83%of
the patients being under 55 years old and an equal male to
female ratio.1 It is estimated that approximately 5% of all
patients admitted to a Level I trauma center have a PNI.2

Common etiologies include penetrating trauma, crush, ische-
mia, and traction, while injuries from electric shock and
vibration are less frequent.3 Their typical symptoms are
sensory/motor function deficits that could result in the devel-
opment of intractable neuropathic pain, with devastating
impacts on patients’ quality of life. Multiple factors predict
the outcome after a peripheral nerve repair including age,
gender, materials utilized, repair time, type of nerve injured,
defect size, and duration of follow-up.4

The peripheral nervous system has regenerative potential.
However, for optimal healing to occur, an appropriate environ-
ment must be provided physiologically or surgically. In this
article, we review the peripheral nervous system response to
injury, anddiscusssurgical repairoptionsandtheir applications.

Peripheral Nerve Injury Classification

Classically, after a focal injury to the peripheral nerve, one of
two consequences to the axon is observed: conduction block

or axonal degeneration.5 In the former, the axon remains
anatomically intact; the conduction of action potentials is
blocked in the zone of injury, while it persists distal to it. In
this case, if the underlying cause (i.e., ischemia, traction) is
removed, spontaneous recovery is expected. On the other
hand, in a nerve transection, axonal degeneration happens
through Wallerian degeneration,6,7 a rapid and active pro-
cesswhich takes place in the distal nerve stump secondary to
separation of the nerve axon from its cell body. Nerve
recovery in a degenerative lesion depends on the basal
lamina preservation. In other words, if the basal lamina
remains intact, the proximal axon may grow in an organized
fashion into the distal tube once the insulting injury is
eliminated. However, when there is an interruption in the
basal lamina, spontaneous regeneration will not be orga-
nized or may not occur at all.

In 1943, Seddon et al proposed three fundamentally
distinct groups of PNIs. He coined the terms neurapraxia,
axonotmesis, and neurotmesis. Neuropraxia refers to a nerve
conduction block, axonotmesis refers to a degenerative
injury with an intact continuous basal lamina, and neuro-
tmesis indicates nerve injury leading to disruption of the
basal lamina.8 In 1951, Sunderland9 refined this classifica-
tion and introduced five types of PNI based on increasing
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severity of damage to the nerve structure. Mackinnon and
Dellon10 introduced a sixth injury pattern that combines any
of the Sunderland’s classes and therefore variable degrees of
recovery is witnessed (►Table 1). A Type 2 or greater Sunder-
land PNI presents a diagnostic and decision-making chal-
lenge, as Wallerian degeneration and subsequent nerve
scarring begins within 48 to 72 hours following injury.11,12

For a nerve to fully regenerate, axons are required to grow in
an antegrade fashion within the endoneurial tube. However,
in the presence of excessive intraneural fibrosis, normal
neural migration and growth can be delayed or diverted.11,13

While crush and traction injuries may leave nerves in
continuity, penetrating injuries can be more complex. They
can present as isolated nerve transection, or be associated
with crush and traction. These mixed lesions may obscure
the diagnosis. While Sunderland introduced an elaborate
system of classifying injury, clinically, it is simpler to catego-
rize the injury to “degenerative” and “nondegenerative,” as
this is the more important question that should be initially
answered by the peripheral nerve surgeon.

Repair Cascade

When the continuity of a peripheral nerve is interrupted, its
distal and proximal ends retract, and Schwann cells in both
stumps orchestrate an inflammatory response that clears the
debris and begins the process of neuronal remodeling.14

Proximal to the injury, Schwann cells de-differentiate and
transform from a myelinating supporting role to a progeni-
tor-like cell and become repair cells.15 These cell changes,
characterized by the downregulation of the myelin protein,
and upregulation of growth-promoting factors,16–18 are
triggered by the injury signal19 or by axonal signal loss.20

A retrograde signal is sent to the nucleus to stimulate the
transcription factors in the injured neuron.21 In particular
nerves, the length of axons presents a special challenge, as
these signals have to travel more than 50 cm to reach the
nucleus.20

On the other end, tube-like structures (bands of
Büngner) are formed at the distal stump, which act as
“channels” to direct the regenerating axons back to their
original targets. In the case of a transection, however,
guidance of axons into the bands of Büngner will be more
complex.22 The two stumps are joint by a “bridge” of
inflammatory cells and matrix,23 which does not provide
sufficient directional capacity for axonal regrowth.
Schwann cells become responsible for guiding the axons
across this bridge region.24 While Schwann cells from both
proximal and distal nerve stumps migrate until they bridge
the gap, Schwann cells from the proximal stump attract the
growing axons. Fibroblasts organize this migration at the
wound level, via ephrinB/EphB2 signaling, which gives
Schwann cells an adhesive behavior necessary for their
orchestrated migration.24 Macrophages respond to the hyp-
oxia created within the bridge and secrete vascular endo-
thelial growth factor A, which triggers vascularization
within the bridging zone.23 This neovascularization acts
as tracks, guiding Schwann cells to cross the bridge, direct-
ing the sprouting axons to the distal stump. With vasculari-
zation begins a crucial part that guides Schwann cell
migration; when this system is disrupted, the blood vessels
may misdirect Schwann cells to grow into surrounding
tissues, and suboptimal healing inevitably occurs.23,24

Muscle Reinnervation and Motor Unit
Territories

Cross-section of motor nerves branching is similar to cross-
section of a tree and its roots. Motor nerves begin to branch
within the intramuscular nerve sheath of their destined
skeletal muscle.25 This branching takes the nerve to various
muscle fascicles. Motor units are territories of all muscle
fibers that are innervated byonemotor neuron. These spatial
territories specify the number of muscle fibers reinnervated
by a nerve after injury.26–28 The number of muscle fibers in
each motor unit has a direct correlation with the size of the

Table 1 Classification of nerve injuries

Seddon Sunderland Injury Recovery Need for surgical repair

Neuropraxia Type 1 Focal demyelination and
conduction block. No WD

Complete No

Type 2 Axonal discontinuityþWD Complete
- up to 12
wk

No

Axonotmesis Type 3 Axonal and endoneurial
disruptionþWD

Partial -
up to 12
wk

Yes/No

Type 4 Perineurial rupture with fas-
cicle disruptionþWD

None Yes

Neurotmesis Type 5 Nerve truck
discontinuityþWD

None Yes

Mackinnon
Type 6

Mixed Some Yes

Abbreviation: WD, Wallerian degeneration.
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unit territory; in a muscle cross-section, this territory can
take up to 30% of the surface area.26

If reinnervation is provided shortly postinjury, motor
units will not significantly reduce in number.15 On the other
hand, if a muscle suffers from prolonged denervation, the
number of motor units will drastically drop, affecting the
structure and function of the reinnervated muscle.29 In
chronic denervation, the intramuscular portion of the nerve
sheath can no longer support the regenerating axons.15

Other contributing factors have been recognized, namely
reduced number of Schwann cells and failure to maintain
their regenerative role, disintegration of muscle spindles,30

irreversible atrophy, and muscle fiber necrosis.31,32 All these
factors contribute to unsatisfactory functional recovery.

Functional Recovery after Nerve Injury

A functional recovery signifies a nerve has regained its
physiologic state preinjury. This is largely dependent on
three major factors: reinnervation of the end organ, timing
of the injury, and distance to target organ.

To facilitate reinnervation, a nerve repair must primarily
guide the regenerating axons to their original endoneurial
tubes.33Motor and sensory nerves can find their correct path
to a motor unit or sensory dermatome, respectively. Despite
this capacity, motor fibers occasionally fail to follow their
respective pathway and, consequently, fibers never meet the
preinjury target organ.34 This misdirection can happen even
after surgical repair of a nerve, which poses a major long-
term functional deficit.35,36

Although sensory nerves reinnervate their specific
organs, it is unlikely for them to reach their original mecha-
noreceptor. With a portion of healing consisting of misguid-
ed afferent fibers, misinterpretation of tactile stimuli and
poorly localized sensation may occur. This is observed in
patients with severe brachial plexus injury, in particular
patients who report “wrong-way” sensation.37 Similarly,
the efferent motor fibersmay reinnervate a different muscle.
This has a particular clinical importance following complete
transection of large mixed sensory and motor nerves. Ran-
dom reinnervation was observed in patients’ hand muscles
after surgical approximation of a transected ulnar nerve at
the wrist, and result in simultaneous antagonistic muscles
contractions.38

While the regeneration of sensory nerves can still happen
with delayed repairs over months to years,39 the timing of
reinnervation is particularly important for motor nerves, as
the regenerated nerve must make contact with its denervat-
ed target (i.e., motor endplate) in a timely manner.15,40 In
motor nerves, a significant delay in regeneration becomes a
major challenge to functional recovery.15,40,41 In chronic
denervation, newly generated axons approach the motor
endplate of the target muscle, but cannot form functional
connections or synapses.42 This is possibly due to the irre-
sponsive Schwann cells in the end plate that no longer
support reinnervation. This is observed clinically in patients
with complete brachial plexus palsy with almost no func-
tional recovery in repairs delayed beyond 12 months follow-

ing injury, whereas patients with an operative delay of
6 months or less have significantly better return of biceps
function.43 Delayed presentation further complicates the
clinical assessment and decision-making for the appropriate
treatment course. The current consensus is that if reinner-
vation is not expected to have occurred within 12 to
18 months postinjury, the neuromuscular junctions degen-
erate, precluding any future reinnervation.3,44–47 It is gener-
ally recommended to consider functional reconstruction for
patients presenting after this cutoff and to avoid nerve repair
since reports have clearly demonstrated its dismal out-
comes.48 The distance to target organ reinnervation goes
hand-in-hand with the timing of reinnervation and plays
another important role in functional recovery. Axons regen-
erate at a relatively constant rate of 1mmper day, or one inch
per month, and usually can be followed clinically with an
advancing Tinel sign.49 Hence, in a proximal motor nerve
injury (e.g., above-elbow ulnar nerve laceration) where the
distance tomotor target reinnervation exceeds the estimated
12 months period, other strategies such as distal baby sitter
nerve transfers (e.g., anterior interosseous to distal ulnar
nerve transfer) may be needed to maintain muscle stimula-
tion pending reinnervation from the proximal original nerve
repair.50 Alternatively, a functional distal nerve transfer (e.g.,
Oberlin transfer) can be employed to restore a specific motor
deficit.51 Specific well-documented examples of functional
transfers form a whole topic on its own, and are beyond the
scope of this article.

Primary Nerve Coaptation

The ideal nerve repair occurs after trimming the proximal
and distal nerve ends to healthy fascicular structures. The
topographic anatomymust be restored to decrease the risk of
aberrant reinnervation.52 This can be achieved by realigning
the vasa nervorum, and by visually identifying known fas-
cicular groups within the nerve. Whenever possible, a ten-
sion-free, precisely aligned, and atraumatic primary
neurorrhaphy is favored.53,54 ►Fig. 1 describes three main
categories of primary direct nerve repair and their

Fig. 1 Schematic presentation of proximal and distal nerve stumps:
(A) grouped fascicular repair, suture coapting the corresponding a
group of fascicles using the perineurium; (B) fascicular repair; and (C)
standard epineural repair, stumps are aligned based on the anatomy
of vessels.
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subcategories. Although there is theoretical advantage of
precisely realigning each fascicle in interfascicular neuro-
rrhaphy, the formation of excessive internal scarring has
proven to adversely affect the clinical outcome of such repair.
Today, the epineural repair is the mainstay of primary
neurorrhaphy.55

Fibrin glue is sometimes used instead of standard micro-
surgical suturing.56,57 The first commercially available fibrin
sealant was introduced in the 1970s, and since then, its use in
nerve repair has increased.58 Potential benefits of fibrin glue
utilization are: shorter procedure time, reduced recovery
time, possible barrier to invading scar tissue, minimal trau-
ma and scarring, and subsequently decreasing fibrosis and
inflammation.56,59 The main disadvantage of this technique
is its inferior holding strength.58 Currently, most available
studies are from animalmodels and awell-controlled human
study is lacking. Most of this literature demonstrates similar
clinical outcomes for fibrin glue and microsutures in small
diameter peripheral nerve coaptations.56,59–61 Fibrin glue
can also be used as an adjunct tomicrosuturing to reduce the
total number of sutures, thus theoretically reducing the
chance of suture-induced fibrosis.62,63 That being said, there
is a dichotomy in the evidence, while some works show the
ease of use and noninferiority of fibrin glue to suturing,
others show that it can lead to an inflammatory response and
a high degree of scarring. This paucity in strong literature and
human studies, warrants further studies to better investigate
their comparative efficacy.64

Even when optimal end-to-end microsurgical coaptation
is done, scar tissue formation postoperatively can lead to
excessive collagen deposition, fibrosis of the epineurium,
and nerve compression that eventually impedes regenera-
tion.11 Pathophysiology of epineural scarring and compres-
sion are due to threemain reasons: (1) vascular compromise,
(2) tethering forces, and (3) direct nerve compression.65 Few
of the regenerating axons may escape the coaptation and
create a neuroma.45 To prevent this, nerve wraps were
introduced to support repairs and minimize fibrosis and
scarring. Wraps potentially offload tension from the repair
site and distribute it across a larger length of the nerve. They
can also act as a barrier and reduce axonal escape.66 Cur-
rently, different nerve wraps are being utilized with autolo-
gous veins being the most common; mainly the great
saphenous vein.67 Several other types are namely: local
and free flaps, autograft, allograft, and xenograft wraps. In
a recent review, improvement in subjective and objective
outcomeswere drawn across all studies using vein autografts
and despite a paucity of clinical and experimental data, many
surgeons tend to use nerve wraps to protect the repair.68

Nerve Defects

To overcome a nerve gap and to achieve a tension-free repair,
interpositional nerve grafts or conduits can be used. The gold
standard for such a repair is an autologous nerve graft.69

Nerve grafts can be single, cable, trunk, and interfascicular, to
provide a proper size match with the recipient nerve.62 The
ideal donor is a dispensable nerve, salvaged from spare part

surgery, or from an easily accessible sensory nerve that does
not result in a critical sensory deficit. Common autograft
donors include the sural nerve, medial antebrachial cutane-
ous nerve, and lateral antebrachial cutaneous nerve, with the
sural nerve offering up to 40 cm of graft length from each
leg.70 When possible, an autograft 10 to 20% longer than the
measured defect length should be harvested to ensure a
tension-free repair and to avoid future shortening.71

While nerve repair using autografts is a valuable surgical
reconstructive option, it can be limited by tissue availability,
donor sitemorbidity, or when amajor size discrepancy exists
between the donor and recipient.72,73 Alternatives to nerve
autografts include the use of autologous or synthetic con-
duits, nerve allograft, and xenograft.

Nerve conduits guide and facilitate axonal regeneration
across segmental nerve defects, mimicking the natural struc-
ture of the nerve pathway. Natural material such as skeletal
muscle tissue or vessels,74 nondegradable materials such as
silicone, and more recently biodegradable materials such as
collagen,75 have been widely investigated. Autologous vein
grafts impart minimal donor site morbidity, and serve as a
conduit that facilitates cellular migration between the cut
nerve ends, bridging gaps up to 3 cm.76 The advantages of
synthetic nerve conduits include no donor sitemorbidity and
the elimination of donor size discrepancy. However, they are
limited to the defect size, with defects>2 cm are better
treatedwith autologous nerve grafting.77 Processed allograft
is a decellularized and sterile extracellular matrix obtained
from human peripheral nerve tissue which requires no
immunosuppressive therpay.78,79 Clinical data support their
use in noncritical nerve defects up to 5 cm.

Neuroma Formation

In situations where regenerating axons cannot successfully
reenter the distal stump, the biologic response of the proxi-
mal stump leads to neuroma formation. This swelling of the
terminal bulb of the proximal stump contains Schwann cells,
fibroblasts, blood vessels, and most importantly, regenerat-
ing axons.

Severe neuropathic pain is normally not provoked if a
main nerve fiber is cut sharply. Nonetheless, significant pain
is almost always unavoidable after accidental damage to the
terminal branch of the same type of cutaneous nerve. Some
susceptible cutaneous sensory branches are: medial cutane-
ous nerve of the forearm, superficial radial nerve, sural
nerve, and the long saphenous nerve. As the name implies,
in complete neuromas (fully transected), the nerve trunk has
been divided, whereas partial neuromas (neuroma in conti-
nuity) contain a portion of intact fibers.

Themost commonly performed treatment of a neuroma is
excision and anastomosis of the two ends.80 Recent studies
have compared various surgical options including: excision
alone, traction neurectomy, excision and cap, excision and
transposition, excision and repair with allograft or auto-
graft,81 and neurolysis and coverage, showing no superiority
of one to another.82,83 The current concept supports the shift
to attempt to heal rather than hide the injured nerves.84
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A neuroma that has no distal nerve stump for a recon-
struction of the resected nerve segment with a graft can be
treated with a regenerative peripheral nerve interface or
targeted muscle reinnervation (TMR). The former involves
wrapping the cut nerve end with a small free muscle graft,
which allow nerve ingrowth and innervation. In TMR, the
nerve stump is coapted to a small targetmotor nervewithin a
nearbymuscle. In bothmodalities, the goal is to create a new
functioning nerve–muscle interface for the transected nerve
to innervate, thereby conferring it a new “job” to facilitate
normal nerve healing and to prevent its dysregulated growth
into a painful neuroma. TMR, in particular, has been shown in
randomized controlled trials to decrease the incidence of
postamputation neuroma pain and phantom limb pain com-
pared with traditional traction neurectomy.80

Strategies to Enhance Nerve Healing

There are several strategies to improve functional recovery
after a nerve injury. As previously mentioned, a distal
babysitting nerve transfer was initially proposed by Terzis
and Tzafetta.85 To decrease the risk of muscle atrophy and
endplate loss in a high motor nerve injury, the procedure
utilizes an end-to-side neurorrhaphy between a healthy
donor located close to themotor target and the distal injured
nerve to rapidly restore efferent stimuli to the denervated
muscles, thereby preventing irreversible atrophy. This meth-
od has multiple applications, for instance, ipsilateral hypo-
glossal to facial nerve transfer is performed with cross-facial
nerve grafting, anterior interosseous nerve to distal motor
branch of the ulnar nerve transfer is done with high ulnar
nerve laceration repair, and many other.

Emerging evidence demonstrates accelerated axon out-
growth across injury sites with brief electrical stimulation.86

Electrical stimulation of the injured nerve can enhance the
functional recovery even after delayed surgical repair.87 A
more recent study also supported the accelerating effect of
immediate electrical stimulation in TMR with daily stimula-
tion right after denervation.88 These promising findings
anticipate more rigorous clinical studies regarding their
practicality and application. If proven to be clinically suc-
cessful, intraoperative and postoperative brief electrical
stimulation may become the standard of practice.

Low-intensity pulsed ultrasound (LIPUS) has demonstrat-
ed some benefit in different therapeutic applications such as
pseudarthrosis, bone fractures, and various soft tissue con-
ditions.89 Although further studies are required to clearly
demonstrate clinical efficacy, there are some promising
reports on animal models indicating that LIPUS use accel-
erates peripheral nerve regeneration.90

One of themost recent biologic agents administered to assist
nerve regeneration is FK506, a Food and Drug Administration
approved immunosuppressant. While FK506 has proven to
enhance nerve regeneration, side effects of the systemically
delivered FK506 has averted clinicians from its routine use. The
current research is focused on developing innovative routes of
local medication delivery such as using a fibrin gel matrix to

significantly reduce the biodistribution, thereby reducing the
chance of FK506 systemic toxicity.91 Until this milestone is
reached, its wide use in nerve repairs is unlikely.

Conclusion

During the last several decades, our knowledge of periph-
eral nerve pathophysiology has expanded drastically, and
parallel to our refined microsurgical skills, we have discov-
ered strategies to enhance its healing. We have become
more consistent in achieving satisfactory reinnervation and
functional outcomes in short nerve gap reconstructions,
and recently have found new venues to repair larger defect.
Future approaches should focus on new methods to
improve the outcome in more challenging scenarios such
as chronic injuries and delayed nerve repairs, for the aim of
offering a better quality of life to a large portion of our
trauma patients.
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