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Nearly 20 million new cases of cancer are diagnosed each
year.1 Radiation therapy (RT) is one of the most significant
evidence-based advancements of modern cancer care, de-
creasing local tumor recurrence and increasing overall sur-
vival rates for a variety of malignancies. It is estimated that
around 50% of cancer patients receive RT.1,2

Despite the efficacy of RT from an oncological perspective,
RT also comes with negative consequences. A major area of
concern is the damaging effect of RT on normal neighboring
tissues. RT causes acute and chronic tissue damage in noncan-
cerous tissues with subsequent long-term clinical consequen-
ces that range frommild to life-threatening. As cancer survival
rates continue to improve, increasing numbers of patientswill
live with the long-term effects of RT.3 Understanding the
pathophysiology of radiation-induced tissue damage, the
long-term clinical consequences and current treatments are
essential. The aim of this paper is to review the literature on
radiation-induced tissue damage and its clinical implications.

Radiation

RT uses ionizing radiation energy which detaches electrons
from other atoms to destroy cancer cells. RT can be adminis-
tered in different ways. External beam radiation (EBT) deliv-
ers radiation from outside the patient’s body and will be the

main focus of the current review.4,5 Once RT is administered,
powerful energy is deposited within cells, damaging DNA,
and ultimately causing cancer cell death.5 DNA damage can
occur directly or indirectly through generation of reactive
oxygen species (ROS). Direct and indirect DNA damages
cause single- and double-strand breaks in DNA, the latter
accounting for the majority of cell death.5

The goal is to maximize the radiation dose to cancer cells
and minimize the dose to surrounding normal healthy cells.
Compared with normal cells, cancer cells are more sensitive
to radiation and cannot repair as efficiently, allowing for
specificity in cancer cell targeting.6 Still, radiation inevitably
damages healthy cells.

Pathophysiology of Tissue Injury

Radiation evokes a dynamic and complex series of events
characterized by (1) ROS production, (2) vascular injury and
chronic hypoxia, (3) chronic inflammatory response, and 4)
myofibroblast activation and fibrosis.7

Reactive Oxygen Species Production
ROS production is attributed with mediating a major
component of the cell and tissue damage induced by
radiation.8–10 ROS are highly unstable and reactive
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molecules that are formed when radiation interacts with
intracellular water molecules. ROS react with cellular com-
ponents including lipids, proteins and DNA, and cause severe
intracellular damage.11Akey feature of ROS-induced damage
is that, it amplifies the damage from radiation and can
continue for a long period of time.8

Vascular Injury and Hypoxia
Vascular injury is intimately involved in the pathogenesis of
radiation injury on both micro- and macroscopic levels.9

Macroscopically, radiation induces coagulation pathways
within vessels triggering vascular occlusion, tissue ischemia,
and ultimately chronic hypoxia.10 A low oxygen state per-
petuates the production of ROS, leading to further cellular
damage. Microscopically, the endothelial barrier is dis-
rupted, increasing vascular permeability and allowing for
release of proinflammatory chemokines and cytokines and
immune cell migration.7

Inflammation
Damaged cells release endogenous danger signals known as
damage-associatedmolecular patterns (DAMPs)which attract
innate and adaptive immune cells.7 Neutrophils arrive in the
acute phase of inflammation and secrete proinflammatory
cytokines including interleukin (IL)-1, IL-6, and tumor necrosis
factor (TNF)-α, further triggering ROS. Lymphocytes and
monocytes arrive during the chronic inflammatory phase
and interact to promote monocyte differentiation into two
subtypes of macrophages. M1 macrophages secrete further
inflammatory factors, while M2 macrophages attract fibro-
blasts, stimulatefibroblast differentiation intomyofibroblasts,
and release transforming growth factor β (TGF-β), a potent
profibrotic factor.11

Myofibroblasts and Fibrosis
Fibrosis is a dose-limiting complication of radiation, driven
by inflammation and largely mediated by TGF-β. TGF-β
works through multiple signaling pathways, resulting in
activation of a profibrotic genetic program. TGF-β converts
fibroblasts and other cell types into myofibroblasts. Myofi-
broblasts have contractile proprieties and are the main
source of extracellular matrix (ECM) proteins responsible
for fibrosis. The overall result is excess accumulation of
collagen and ECM proteins12 which underlies the pathology
of radiation-induced tissue damage.

Tissues that were not exposed to radiation are likewise
affected by signals from nearby radiated cells by a phenom-
enon known as the bystander effect.13 These mechanisms
persist for many years after the initial radiation exposure
driving profound changes at the cellular and molecular level.
The overall result of radiation damage to tissue is the
profound alteration tissue structure and function.

Radiodermatitis- and Chronic Radiation-
Induced Fibrosis

Acute radiation damage, also known as radiodermatitis,
occurs within 90 days of treatment. Signs include erythema,

edema, desquamation, and ulceration. These acute symp-
toms can often improve with conservative treatment.14

Chronic damage, known as chronic radiation-induced
fibrosis (RIF), presents 4 to 6 months after RT and continues
to develop for years. Skin becomes thin, dry, and semitrans-
lucent. Hair follicles and sebaceous glands are often lost.
Subcutaneous tissue is replaced by dense fibrous tissue that
causes induration and limited range of motion. Ischemia
caused by vessel occlusion and changes in vasculature,
including telangiectasia, deprive tissue of oxygen and
nutrients, predisposing skin to breakdown, and ulcer forma-
tion. Skin is injured from light trauma and ulcers persist for
years due to impaired healing capabilities and increased
susceptibility to infection. For patients, chronic RIF can be
extremely painful and for the most part, is irreversible.8,15

Current areas in which RIF presents challenging clinical
problems and patient morbidity includes breast reconstruc-
tion, osteoradionecrosis (ORN) of the jaw, secondary skin
malignancies, and wound healing issues.

Clinical Challenges of Chronic Radiation-
Induced Fibrosis

Breast Reconstruction
RT significantly reduces local recurrence and mortality of
breast cancer.16 Postoperative radiation is required for al-
most all breast-conserving therapy and is used postmastec-
tomy in a variety of clinical situations.17 The structural and
functional changes in irradiated breasts include skin retrac-
tion, discoloration, induration, and pain and tightness in the
surrounding chest, shoulders, and neck.18 RIF significantly
impacts both implant-based and autologous reconstructive
outcomes.

Implant-Based Reconstruction
Implant-based reconstruction is currently the most popular
reconstruction technique.19 However, implant-based recon-
structions in irradiated patients have higher complication
rates compared with nonirradiated patients, including cap-
sular contracture (CC), infection, implant loss, and recon-
structive failure.20–27 Patient-reported outcomes also tend to
be inferior among radiated patients including for aesthetic
outcomes, satisfaction, and quality of life.28,29

Two-Stage Implant-Based Reconstruction
Arecentmeta-analysis estimates overall implant-based recon-
structive failure in irradiated breasts is 17.6%.30 In this study,
tissue expander (TE) reconstruction was associated with
higher reconstructive failure rates comparedwith single-stage
direct-to-implant (DTI) reconstruction. Similarly, Naoum et al
found that TE reconstruction had significantly increased com-
plication rates compared with DTI, including infection, skin
necrosis, implant exposure, CC, and failure.31 Higher rates of
complicationsand failures inTEreconstructioncomparedwith
DTI have been further supported by other recent data.32 Lin
et al33 retrospectively reviewed 256 radiated patients and
found the TE patients had more complications, skin necrosis,
wound breakdown, infections, and explantations compared
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with DTI.34 These results are in line with previous
literature.32,34,35

Inferior surgical outcomes associated with two-stage TE
reconstruction may be related to the fact that the second
operation is performed on radiated tissue, given the dimin-
ished capacity for tissue healing. This is supported by evi-
dence that 75% of complications within TE patients occur
following exchange surgery.31While radiation is a risk factor
for complications and reconstructive failure in TE-based
reconstruction,36 it allows for a second-stage surgery to
correct some of the structural changes that occurred with
Post-Mastectomy Radiation therapy (PMRT).

Single-Stage Implant-Based Reconstruction
DTI reconstruction has advantages of immediate psycholog-
ical and physical benefits from immediate restoration of
breast volume and shape, shorter procedure time, hospital
stay, and recovery.37,38 There is also the benefit of a single
surgery. Nonetheless, RT increases the risk of developing
minor and major complications including cellulitis, delayed
wound healing, and dehiscence.39 Another potential issue is
that any early complications following DTI surgery can delay
the initiation of adjuvant RT. A recent analysis determined
that while there is an increased risk of delay, the time period
is not long enough to impact survival outcomes.40

The prepectoral surgical plane has gained popularity in
recent years for DTI reconstruction.39,41 A benefit of the
prepectoral plane is that it avoids pectoralis muscle fibrosis
and shortening caused by radiation. In the irradiated sub-
muscular plane, the implant can be disrupted by these
muscle tissue changes.42 The prepectoral plane is associated
with reduced pain, elimination of animation deformity, and
high patient satisfaction.43,44 Avoiding irradiation of the
pectoralis muscle minimizes associated issues.45

Capsular Contracture
Considering the capacity of radiation to induce fibrosis, it is
unsurprising that radiation is also a risk factor for developing
CC. The same TGF-β pathways that underlie RIF may also be
associated with the pathogenesis of CC.46 It is estimated that
CC effects 10% of patients and 40 to 50% of patients with
history of radiation.30,47 CC causes significant patient mor-
bidity including pain, poor aesthetic outcomes and has been
attributed with being a primary cause of failure in implant-
based reconstruction of radiated patients.48

Research on acellular dermal matrix (ADM) has shown grow-
ing evidence that it may reduce the risk of radiation-induced
CC.49,50While initially intended to provide support and cover the
lower breast pole, there is also increasing scientific evidence in
support of the reduced clinical risk of CC.51,52 This effect may be
related to decreased inflammation, fibroblast activity, and colla-
gen deposition that can be seen with capsule samples from
patients that have been reconstructed with ADM.53

Secondary procedures for managing radiation associated
CC can be successful. A recent study demonstrated that
implant exchange with capsule release successfully treated
over 70% of cases, while fat grafting elevated success rates up
to 86%.48 While fat grafting shows promise in the treatment

of RIF, it has not demonstrated the ability to influence the
occurrence or severity of CC alone.54

Autologous Reconstruction
Autologous flaps still represent the gold standard of recon-
struction in irradiated fields, as it allows for the transfer of
health nonirradiated tissue to be brought into the radiation
field. Compared with implant-based reconstruction, autolo-
gous reconstruction is associated with decreased complica-
tions and failures, greater patient satisfaction, and improved
quality of life.52,53,55 However, radiation of an autologous
breast reconstruction is still prone to complications, partic-
ularly RIF, contracture, fat necrosis, volume loss, and distor-
tion of breast shape.56,57

Similar to implant-based reconstruction, the optimal
timing of reconstruction in relation to radiation is an active
area of discussion. The options are to perform autologous
tissue transfer at the time of mastectomy, before radiation is
administered or to perform tissue transfer in a delayed
fashion after radiation treatment has been completed.
Emerging evidence tends to be in support of delayed
autologous reconstruction; however, the ideal time period
is still unknown. Delayed reconstruction avoids the expo-
sure of flap tissue to radiation. Many studies show de-
creased complications, wound contracture, volume loss, fat
necrosis, and need for revision surgery,58–61 although
delayed reconstruction comes with the disadvantage of
requiring the patient to have an unreconstructed mastecto-
my defect for some time. Several studies support safe and
acceptable outcomes for immediate autologous reconstruc-
tion, and it should be considered an optimal option for
selected patients.62–64

Osteoradionecrosis
Radiation damage also has implications for head and neck
cancer (HNC) patients. ORN is a significant and morbid
complication associated with poor cosmetic and functional
outcomes that affects 7% of radiated HNC patients.65 By
definition, ORN is a necrotic process of the bone resulting
from RT that persists for greater than 3 months and is
unrelated to neoplastic disease or recurrence.66 The mandi-
ble is most often the site of pathology and symptoms usually
present within the first year of RT.67 ORN typically presents
as painful denuded bone and can include purulent drainage
and fistula formation. In advanced stages, necrosis can
progress through the full thickness of bone and lead to
pathologic fractures.68,69

Treatment of ORN correlates with severity of disease,
ranging from conservativemanagement to surgical resection
and free flap reconstruction. Basic management approaches
involve optimization of oral health. Poor periodontal health
hygiene is not only a significant risk factor for ORN, but
dental extractions are the most common initiating fac-
tor.68,70 Other risk factors include a high radiation dose
(>60 Gy), as well as alcohol and tobacco abuse.70 Manage-
ment of risk factors, local irrigation, and antibiotic therapy
for acute infections results in resolution in up to one-third of
cases for patients with mild disease.70–72
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Surgical treatment options include wound debridement,
sequestrectomy (removal of isolated islands of necrotic
bone), and mandibulectomy for advanced disease. Advanced
ORN includes those with fractures and fistulas. Risk of flap
failure and postoperative complications are significantly
higher compared with in nonradiated HNC patients.73 The
fibular free flap remains the gold standard for advanced ORN
reconstruction.74

Radiation-Induced Skin Malignancy

Nonmelanoma Skin Cancer
RT increases life-time risk of developing precancerous
lesions and nonmelanoma skin cancer (NMSC) within the
radiation field.14,75 The mechanism may be linked to the
reduction of tumor suppressor genes and activation of
oncogenes induced by RT.8 Most cases of radiation-induced
NMSC are connectedwith head and neck radiation.76 There is
an established association between RT and basal cell carci-
noma (BCC), with an estimated incidence of 2%.76 Evidence
for squamous cell carcinoma (SCC) and melanoma are
weaker.77,78

Merkel’s Cell Carcinoma
Merkel’s cell carcinoma (MCC) is another rare and aggressive
cancer that may be induced by RT. MCC is a cutaneous
neuroendocrine tumor that usually presents in the elderly
and is linked to immunosuppression, chronic ultraviolet
radiation exposure, and Merkel’s cell polyomavirus.79

Wound Healing
The damage induced by radiation fundamentally impairs
normal skin function and wound healing processes.15,80,81

Normal wound healing relies on inflammation, proliferation,
and remodeling phases. Inflammation is hindered from
disrupted cytokine and chemokines involved in normal
wound healing. Proliferation is impacted by endothelial
damage, the resulting vasculopathy, and impaired neovas-
cularization. Lastly, damaged fibroblasts produce dysfunc-
tional collagen and impaired wound strength. Together, the
effects manifest as poorly healing skin.82

However, performing surgery on irradiated tissues is
sometimes unavoidable. Soft tissue sarcoma’s resection of-
ten presents this clinical situation. Sarcomas are relatively
rare malignant tumors that affect 1% of the population, often
presenting on the extremities.83 Historically, sarcomas were
treated with limb amputation. Similar to breast-conserving
therapy, limb-preserving therapy is reliant on RT and surgi-
cal tumor resection.84,85Major wound complications follow-
ing sarcoma resection and radiation treatment are estimated
at 30 to 46%.86,87

Timing of radiation significantly affects wound healing.
Patients who receive radiation prior to surgery experience
more wound healing difficulties, infection, seroma, hemato-
ma, and dehiscence.86,88 Other risk factors for wound com-
plications in irradiated sarcoma patients are diabetes, older
age, obesity, smoking, acute radiation dermatitis, and tumor
size >10 cm.86,89

Radiation-Induced Fibrosis Treatment
Options

Hyperbaric Oxygen Therapy
Hyperbaric oxygen (HBO) therapy involves inhalation of pure
oxygen in a closed chamber. HBO was used for decades as
adjuvant treatment of ORN and has been applied to radia-
tion-induced tissue complications of the head, neck, and
breast.90 HBO creates an oxygen gradient across hypoxic
tissue, stimulates anigiogenesis, and reduces necrosis.91

Other benefits include decreased production of inflammato-
ry cytokines and inhibition of fibroblast activity.92,93 HBO is
used for postradiation soft tissue necrosis both pre- and
postoperatively.94 Recently, debate of the efficacy of HBO
therapy for ORN has grown after studies provided under-
whelming evidence of clear benefits.91,95,96 However, more
robust prospective multicenter randomized controlled trials
are underway.97A recent case series of breast cancer patients
showed promising results of HBO treatment for radiation
tissue injury including decrease in pain, fibrosis, edema, and
increased shoulder movement.98

Autologous Fat Grafting and Adipose-Derived Stem
Cells
Autologous fat grafting (AFG) is a promising, minimally
invasive therapeutic approach for improving side effects of
radiation. AFGwas originally used to restore volume deficits
but is gaining attention in its ability to restore damaged
tissue.99 AFG has been shown to reduce pathologic dermal
thickness, collagen production, and increase healthy vascu-
larity in irradiated tissue,100 and the clinical result is im-
proved symptoms in RIF patients.98 In breast cancer patients,
AFG has been used to treat radiation-inducedwounds101 and
has been shown to improve esthetic outcomes, such as skin
quality in reconstructed patients.102–104

Themechanism inwhich AFG induces tissue regeneration
is debated. It is believed that adipose-derived stem cells
(ADSC) are responsible; however, this has not yet been
definitively proven.105 Adipose tissue contains ADSC, which
produce angiogenic and antiapoptotic paracrine signaling
factors,106 and have the ability to differentiate into multiple
mesenchymal cell lineages,107 including endothelial cells
that incorporate into vessels and promote new vessel
growth.108 However, the quantity of ADSC in lipoaspirate
is thought to be insufficient to be responsible for the regen-
erative affects. ADSCs can be concentrated through cell-
assisted lipotransfer which involves enzymatically digesting
the lipoaspirate with collagenase and subsequently
centrifuging it to extract the stromal vascular fraction.109,110

However, cell-assisted lipotransfer is considered stem-cell
therapy by the U.S. Food and Drug Administration and use is
currently limited to clinical trials overseen by the organiza-
tion. One of the reasons for strict regulation is that the
concern over the ability of stem cells to promote malignancy
and metastases, especially in cancer patients.111,112 In con-
trast, traditional fat grafting indicated for breast reconstruc-
tion and esthetics is considered safe in breast cancer patients
from an oncological perspective.113–115
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Pharmaceutical Agents

Anti-inflammatory and Antioxidant Treatment
A common pharmaceutical therapy for radiation fibrosis is
combined treatment with pentoxifylline and α-tocopherol
(vitamin E).40 Pentoxifylline is a methylxanthine deriva-
tive that induces vasodilation, increases erythrocyte mem-
brane flexibility, and decreases platelet aggregation to
enhance blood flow. Vitamin E has antioxidant properties
that can limit free radical damage and is also proposed to
inhibit TGF-β, collagen, and fibronectin production.116 The
combination of both agents’ works through multiple
mechanisms to reduce subcutaneous fibrosis. It is com-
monly used in HNC patients and has recently been intro-
duced to breast cancer patients.117–121 Currently, data are
limited but small clinical studies suggest pentoxifylline
and vitamin E therapy can treat and prevent RIF with low
rates of side effects.122

Fibrosis Inhibitors
Due to its crucial role in the pathogenesis of fibrosis, TGF-β
and its associated signaling molecules have been examined
as therapeutic targets. For example, the small molecule
inhibitor, LY2109761, and a natural derivative (halofugi-
none) have all been used to target various components of
the TGF-β pathway to mitigate inflammation, matrix depo-
sition, and fibrosis. These agents are currently in animal
model stages123–125 but preclinical data are promising. Effi-
cacy in humans has not yet been shown.126

Deferoxime
Deferoxime (DFO) is a well-studied iron chelator drug com-
monly used to treat iron overload.127 Over the past years,
attention has shifted to the therapeutic ability of DFO in the
treatment of wounds by reducing iron-catalyzed ROS pro-
duction and improving tissue vascularization through the
activation of proangiogenic genes.128 Previous animal mod-
els demonstrated the ability of DFO to improve tissue hyp-
oxia in skin flaps and irradiated bone and to prevent diabetic
ulcer formation.129–131 The potential role of DFO in the
treatment of RIF was demonstrated recently with evidence
that radiated mice treated with transdermal DFO had signif-
icantly improved skin perfusion and reduced dermal thick-
ness akin to nonirradiated tissue.132

Conclusion

In conclusion, RT has tremendous implications on wound
healing and surgical outcomes. As surgeons, it is important to
understand the pathophysiology of this changes, as well as
the surgical scenarios most effected by RIF. Future studies
will help hopefully elicit and demonstrate the effectiveness
of new therapeutics in the fight against radiation-induced
tissue changes.
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