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Abstract
The poor gas selectivity problem has been a long-standing issue for miniaturized chemical-resistor gas sensors.
The electronic nose (e-nose) was proposed in the 1980s to tackle the selectivity issue, but it required top-down
chemical functionalization processes to deposit multiple functional materials. Here, we report a novel gas-
sensing scheme using a single graphene field-effect transistor (GFET) and machine learning to realize gas
selectivity under particular conditions by combining the unique properties of the GFET and e-nose concept.
Instead of using multiple functional materials, the gas-sensing conductivity profiles of a GFET are recorded and
decoupled into four distinctive physical properties and projected onto a feature space as 4D output vectors and
classified to differentiated target gases by using machine-learning analyses. Our single-GFET approach coupled
with trained pattern recognition algorithms was able to classify water, methanol, and ethanol vapors with high
accuracy quantitatively when they were tested individually. Furthermore, the gas-sensing patterns of methanol
were qualitatively distinguished from those of water vapor in a binary mixture condition, suggesting that the
proposed scheme is capable of differentiating a gas from the realistic scenario of an ambient environment with
background humidity. As such, this work offers a new class of gas-sensing schemes using a single GFET without
multiple functional materials toward miniaturized e-noses.

Introduction
Miniaturized gas sensors are expected to witness a

high demand in the next decade in various sectors,
including industrial, consumer electronics, automotive,
medical, environmental, and petrochemical fields, due
to the small footprint, low power consumption, and
low cost1–3. The major driving factors of the growing
demand include continuous and real-time indoor and
outdoor air quality monitoring4,5, increasing enforce-
ment of occupational health and safety regulations by

governments6, and potential consumer electronics
applications7. By taking advantage of several unique
features, miniaturized gas sensors could offer both
mobile gas-sensing platforms and spatially distributed
usages. These highly desirable platforms can stimulate
emerging gas-sensing applications such as preventive
health care and air quality monitoring with mobile
devices, including smart phones. For example, some of
the volatile organic compounds (VOCs) in human
breath are known as biomarkers for clinical diag-
nostics, whereas NH3 and NO are related to Helico-
bacter pylori infections of the stomach and asthma,
respectively8. The detection of VOCs such as methanol
and ethanol has drawn great attention, as the former is
extensively used in various industries as an important
solvent and raw material9,10 and the latter has been
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studied for breath analysis and food industries11. On
the other hand, spatially distributed gas-sensing plat-
forms are suitable to monitor air pollution (e.g., CO,
NO2, and SO2) with high spatial resolution5.
Different gas sensors have been demonstrated by

combining key sensing principles/materials and micro/
nanofabrication technologies12,13. Metal oxide semi-
conductor (MOS) gas sensors have been widely used
since their emergence in the 1970s due to their high
sensitivity and low cost14,15, and they have been further
miniaturized in recent years with <10 mm2 or smaller
footprints15,16; however, poor gas-sensing selectivity
has been a long-standing issue12. In addition, the gas-
sensing principle has relied on the reactive oxygen
species on the MOS surface such that the sensor has to
operate at high temperature (typically >200 °C)17 with
relatively high power consumption (typically on the
order of 10 mW). In contrast, optical-type gas sensors
generally have high selectivity owing to the
wavelength-specific gas-sensing principle. However,
the relatively large size, complexity of the engineering
configuration, and production cost are several limiting
factors for widespread applications of optical-type gas
sensors12.
Artificial olfactory systems (electronic noses or e-noses)

have been promising tools to tackle the gas selectivity
issue for MOS-based gas sensors18–20. The biological
olfactory organ in nature has the capability for gas dis-
crimination by using the combination of (1) cross-
sensitive olfactory receptor arrays, (2) olfactory codes,
and (3) the recognition system (brain). The gas selectivity
is achieved by the uniqueness of the generated olfactory
codes. An e-nose system may comprise similar artificial
components, including (1) an array of gas sensors, (2)
output vectors, and (3) a pattern recognition algorithm.
The generated output vectors can be projected to an
abstract space called the feature space for subsequent
analyses. Although the concept of e-nose appeared in the
late 1980s21–23 and intensive studies followed in the
1990s24–28, e-nose systems are not commercially suc-
cessful today except for some minor usage in specialized
industries29,30.
Previously, a graphene field-effect transistor (GFET)

was demonstrated as a gas sensor with unique features,
including ultralow power consumption (typically on the
order of 10 μW) at room temperature with V-shaped
conductivity profiles31,32; however, it suffered from poor
gas-sensing selectivity33. Here, we propose a novel gas-
sensing scheme by combining the e-nose concept and
decoupled electrical signals of a single GFET to achieve
selectivity, miniaturization, low cost, and low power
consumption without using multiple functional mate-
rials. In the proposed scheme, the measured V-shaped
conductivity profiles are decoupled into four distinctive

physical properties combined with other parameters34:

μe ¼
1
cG

Δσe
ΔVG

ð1Þ

ne=h ¼ cG
e
jVNPj ð2Þ

μh ¼
1
cG

jΔσhj
ΔVG

ð3Þ

n�

nimp
¼ 1

20
h
e2
σ0 ð4Þ

where μe is the electron mobility; μh is the hole mobility;
cG is the gate capacitance per unit area; Δσe is the change
in electron conductivity; Δσh is the change in hole
conductivity; ΔVG is the change in gate voltage; ne is the
electron concentration; nh is the hole concentration; e is
the elementary charge; VG is the gate voltage; VNP is the
gate voltage at the neutrality point (NP); n* is the residual
carrier concentration; nimp is the charged impurity
concentration; h is Planck’s constant; and σ0 is the
minimum conductivity at the NP. These physical proper-
ties are influenced by the gas molecules on the surface of
graphene32,34–36 to hold gas-specific information, such as
the charge magnitude and/or dipole moment of gas
molecules35,36. Figure 1 illustrates the measurable quan-
tities in a conductivity profile versus gate voltage of a
GFET and the corresponding physical phenomena for a
graphene channel. When gas molecules approach gra-
phene, positive or negative charge transfer can occur
between the gas molecules and graphene depending on
the relationship of the electron energy level, which shifts
the lateral position of the NP (Fig. 1a). After the event, gas
molecules can generate the Coulomb potential to cause
hole–gas interactions and a modulated hole field-effect
mobility to induce a slope change in the hole branch of
the conductivity profile (Fig. 1b). Similarly, the electron
field-effect mobility may be modulated by the attractive
Coulomb force to induce a slope change in the electron
branch of the conductivity profile (Fig. 1c). Near the NP
(Dirac point in the electron band structure), the residual
carriers and/or charged impurities can be influenced by
charged gas molecules such that the ratio, n*/nimp, may be
modulated to change the minimum conductivity at the
NP (Fig. 1d). Therefore, it is possible to construct 4-
dimensional (4D) output vectors as follows: q1—the
electron mobility (μe); q2—the carrier concentration (n);
q3—the hole mobility (μh); and q4—the ratio of the
residual carrier concentration to the charged impurity
concentration (n*/nimp). As such, the gas-specific infor-
mation can be characterized within a feature space similar
to that of an e-nose and resolved with pattern recognition
algorithms for selective gas sensing without multiple
functional materials. In fact, the four physical properties
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have been previously studied for gas sensing32 without
using the 4D concept and machine-learning scheme37.
We experimentally investigated the 4D vectors for

water, methanol, and ethanol to validate the proposed
scheme under particular conditions. These particular
target gases were chosen because methanol and ethanol
are important VOCs, as mentioned earlier, and humidity
can be a problem for GFET-based gas sensors operated at
room temperature38–41. By using a large amount of data,
our machine-learning algorithm was able to classify the
4D vectors for different gases with high consistency when
they are tested individually. The gas-sensing patterns in
binary mixture conditions of water and methanol vapors
were qualitatively distinguished. The feasibility of identi-
fying specific gas from the background ambient air typi-
cally mixed with various humidity levels is an important
step for gas sensing toward high selectivity, miniaturiza-
tion, low cost, and low power consumption.

Results
Measurement setup and experimental conditions
We prepared two different GFETs (details about the fab-

rication process can be found in Methods), namely, a pristine
GFET and an atomic layer deposition (ALD) RuO2-functio-
nalized GFET (ALD-RuO2-GFET), for three different

experiments using three types of gases: water (H2O),
methanol (MeOH), and ethanol (EtOH). The two different
types of GFETs extend the dimension of the feature space
from 4D to 8D to illustrate that the accuracy of the gas
classification results can be further improved with higher
dimensions. Three experimental setups, A (Fig. 2a), B (Sup-
plementary Fig. 3a), and C (Fig. 4a), were configured to study
the repeatability of the classification algorithms for individual
target gases (for setups A and B) and the applicability of the
scheme to binary mixtures (setup C). Throughout the study,
we define the local repeatability as the repeatability within a
single experimental dataset and the global repeatability as
the repeatability within multiple experimental data sets. The
specific gas type can be used as the variable, whereas
the other parameters, e.g., the concentration and the way to
produce the vapors, are set to be the same. The same mea-
surement setup (Supplementary Fig. 2) and other common
parameters were the same (Methods), such that the variables
are either the tested devices and/or the gas types. We
maintained the operation temperature at room temperature
such that the electrical output signals are not affected by
temperature variations. In the main text, we focus on the
results obtained from setup A using a pristine GFET,
whereas the results from all the experimental setups can be
found in Supplementary Information.
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Fig. 1 Schematic illustrations of the conductivity profiles versus the applied gate voltage and the corresponding physical phenomena
over a graphene field-effect transistor (FET). a (Top) A gas molecule can cause the lateral movement of the conductivity profile and the
movement of the charge neutral point; (bottom) the physical phenomenon of the charge transfer between a gas molecule and graphene and the
carrier concentration change in the band diagram. b (Top) The slope in the hole branch can be altered due to the gas molecule; (bottom) the
Coulomb interactions between the gas molecule and the holes. c (Top) The slope in the electron branch can be altered due to the gas molecule;
(bottom) the Coulomb interactions between the gas molecule and the electrons. d (Top) The height of the charge neutral point is changed due to
the gas molecule; (bottom) the modulated residual carrier concentration in the graphene
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Measurement results and the converted 4D and 3D vectors
The conductivity profiles versus the gate voltage with

respect to time on a pristine GFET are recorded as shown
in Fig. 2b–d for H2O, MeOH, and EtOH, respectively. It is
observed that the responses of the sensor to EtOH are
small, whereas the responses to H2O and MeOH are
relatively large and clear. These conductivity profiles were
converted to 4D and 3D vectors (Fig. 2e–j) based on the
proposed scheme and the relevant equations (Eqs. 1–4),
and the vectors are normalized such that one can focus on
the relative changes. Specifically, the 3D vectors (Fig.
2h–j) excluded the carrier concentration change in the 4D
vectors in order to visualize the results in 3D feature
space. Furthermore, it is useful to define the sensitivity
vector, i.e., the gas-sensing pattern, qs(t)= 100 × (q(t)−
q0)/q0 (%), where q(t) is a 4D or 3D vector and q0 is an

initial or reference vector by using the conductivity pro-
files at the time right before the first gas exposure cycle
starts. This definition is similar to that used in conven-
tional gas sensors, 100 × (R(t)− R0)/R0 (%), where R is the
resistance.
Two different 3D gas-sensing patterns were generated

and characterized as follows: (1) gas-sensing patterns
representing only the ascending cycles in which the gas
concentration increases from 10 to 90%; (2) gas-sensing
patterns enclosed by triangulated boundaries representing
both the ascending and descending (from 80 to 10%)
cycles. The first pattern is utilized to examine and validate
the raw data points, and the second pattern is utilized to
visualize the distinctive regions for different gases. The 3D
movies (Supplementary Movies 1 and 2) allow us to
examine the 3D gas-sensing patterns from different angles
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Fig. 2 Measurement results and the converted transient 4D and 3D vectors using setup A with the pristine GFET. a Gas-concentration profile
in test setup A. b–d Transient conductivity profiles versus the gate voltage with respect to time for water (H2O), methanol (MeOH), and ethanol
(EtOH). e–g Relative magnitude of the converted 4D vectors versus time; h–j and relative magnitude of the 3D vectors by removing the carrier
concentration vector from the 4D vectors
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in the 3D feature space. The representative 2D planes are
shown in Fig. 3a–c for the first patterns and Fig. 3d–f for
the second patterns. Figure 3a–c shows that the gas-
sensing patterns have consistent trends with good local
repeatability. Figure 3d–f indicates that the gas-sensing
patterns are distinctive in terms of their distributions in
the 3D feature space. These qualitative analyses agree with
the results from experiment set B (Supplementary Fig. 3
and Supplementary Movie 3) and the results using the
ALD-RuO2-GFET (Supplementary Figs. 5, 6, and Sup-
plementary Movies 5–7) and thus imply the high global
repeatability and validity of the proposed scheme. These
results suggest that the tested gas types can be classified
qualitatively by using the gas-sensing patterns.
The gas-concentration dependence on each physical

property is summarized in Supplementary Fig. 8.
Although most results show nearly linear relationships,
some of them are nonlinear. Theoretically, the field-effect
mobility should be inversely proportional to the gas
concentration, whereas the carrier concentration should

have linear dependency. The nonlinear behavior of the
carrier concentration change, pronouncedly observed in
the EtOH results, may be related to the interactions
between EtOH and the pre-existing charged impurities.
Despite the nonlinearity of the gas-concentration depen-
dence, the gas-sensing patterns are qualitatively distin-
guishable, as they are sufficiently distinct from each other.
These results suggest that the gas concentration may be
better obtained by using another GFET to characterize the
gas patterns in parallel, while the selectivity can be readily
achieved. The gas classification capability is discussed
further in a later section.

Gas-sensing patterns of binary gas mixtures
We are interested in distinguishing the gas-sensing

patterns from those of ambient air with background
humidity, as humidity can be a problem for GFET-based
gas sensors operated at room temperature38–41. We used
setup C (Fig. 4a) by varying the relative humidity (R.H.)
level stepwise (red color bars), 0%, 20%, 40%, and 60%,
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with three purge-exposure cycles of the carrier gas,
MeOH, and EtOH as the target gases (blue color bars) for
each R.H. level (complete dataset in Supplementary Fig.
4). The carrier gas was used as a blank target gas, i.e., a
negative control, which may only cause non-gas-related
signals. Therefore, the corresponding gas-sensing patterns
are considered to represent the background humidity
level only. The 3D gas-sensing patterns of the three binary
gas mixtures of (1) H2O and the carrier gas (blank), (2)
H2O and MeOH, and (3) H2O and EtOH were generated
for each experiment and merged into a shared 3D feature
space represented by green, red and blue markers,
respectively (Fig. 4b for the 2D representation and Sup-
plementary Movie 4 for the 3D movies). In Fig. 4b, the
gas-sensing patterns are grouped by light blue regions
based on the corresponding background R.H. levels. To
obtain the gas-sensing patterns, the reference vector, q0,
was defined as the vector at 10 min, which is the time
right before the first gas exposure cycle starts. All q(t)
were taken from the gas exposure cycles (blue bars) such
that the obtained gas-sensing patterns reflect the infor-
mation of both the target gas and the background R.H.
level. The results show that the gas-sensing patterns,
especially for MeOH (red markers), can be distinguished
visually from those with background humidity only (green
markers) in Fig. 4b. In general, the gas-sensing patterns
for the background humidity shift from the center to the
bottom left as the R.H. level increases, whereas the gas-
sensing patterns for MeOH shift to the upper side.
Interestingly, the trends here qualitatively agree with the
results in Fig. 3a, suggesting that the gas-sensing patterns
in the binary gas mixture can be related to the

superposition of the individual gas-sensing patterns tested
separately. Similar trends can also be found for those
using the ALD-RuO2-GFET (Supplementary Fig. 7 and
Supplementary Movie 8).

Classification of the gas-sensing patterns by using
machine-learning analyses
A supervised machine-learning analysis was conducted

to classify the gas-sensing patterns empirically. In this
analysis, we examined both pristine and ALD-RuO2

GFETs with two setups, A and B, in which the target gases
were tested individually. The goal is to distinguish three
gas types, H2O, MeOH, and EtOH, by adopting a multi-
class classification model. A multilayer perceptron clas-
sifier with a feed-forward neural network architecture was
implemented and trained by using data from the two
GFETs42. To avoid the overfitting phenomenon, which
occurs when a machine-learning model undergoes too
much training and may even fit to random noise such that
the model fails to capture a generalized trend, a cross-
validation test was performed. In general, the entire
dataset was randomly shuffled in several ways and sepa-
rated via a stratified split, where 20% was reserved as the
testing set and the remainder constituted the training set.
A stratified split ensures that each target class is ade-
quately represented in either set. Data reserved as the
testing set during each shuffle were scored by their cor-
responding neural network model.
Once the machine-learning models were trained, the

confusion matrices (Fig. 5a for the pristine GFET and Fig.
5d for the ALD-RuO2-GFET) were used to compare the
predicted labels of the testing data to their true labels. The
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numbers in the matrices convey the percentages of sam-
ples that were distributed among their associated label of
prediction. The accuracies of the pristine GFET device
and ALD-RuO2-GFET device were 96.2% and 100%,
respectively. The cross-validation results indicated that
the pristine GFET device had a mean accuracy of 95.4%
and a standard deviation of 2.5%, whereas the ALD-RuO2-
GFET device had a mean accuracy of 99.6% and a stan-
dard deviation of 0.8%. Figure 5b, e shows the accuracy
and cross entropy loss history as the neural networks
underwent epochs of training to minimize the loss func-
tion. A visible asymptotic state after 40 epochs implies
that the model had approached convergence and that
further training would not significantly improve the per-
formance. The learning curves in Supplementary Fig. 9
compares the machine-learning models’ performance and
the training set size. Both devices experienced saturation
in testing accuracy as the number of training samples
increases, which means that more training samples will
not improve the accuracy. The narrow gap between the
training and testing accuracies implies that the neural
network models have low variance when exposed to
unforeseen data. The ALD-RuO2-GFET device demon-
strated a higher training accuracy than that of the pristine
GFET device, which echoes their difference in classifica-
tion capability mentioned above. After merely 40 epochs

of training, the neural network model trained for samples
measured by the ALD-RuO2-GFET device was able to
predict 99.1% of the training data, and the time required
for 40 epochs of training was 0.0519 s.
The dimensional impact on the accuracy of the model

was evaluated as shown in Fig. 5c, f. For 2D and 3D
models, one can choose any two out of the four features
and any three out of four features for analyses, respec-
tively. The 1D model is excluded because the scalar value
cannot generate any characteristic feature. For the pristine
GFET (Fig. 5c) device, different combinations of features
could yield high accuracies in either 2D or 3D models
compared with that of the 4D model. For the ALD-RuO2-
GFET (Fig. 5f) results, three out of the four possible
combinations in the 3D model yield 100% accuracy. By
combining the features of the pristine GFET and ALD-
RuO2-GFET devices, an 8D model can be constructed.
Since the accuracy of the ALD-RuO2-GFET device can
reach close to 100% with four features, the pristine GFET
device’s 4D feature array was set as the starting point as
more features from the ALD-RuO2-GFET device were
added. As shown in Fig. 5c (red markers), adding more
dimensions can result in higher accuracies than that of the
4D model. These results validate the classification cap-
ability of the multidimensional gas-sensing patterns of
GFETs and suggest that an improved accuracy can be
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achieved by expanding the feature space to higher
dimensions.
The accuracy variations in the lower-dimension (2D and

3D) models imply that some features have stronger
influences on the classification study. Here, the impor-
tance of the eight features (for the two GFETs) is inves-
tigated by employing the “one-way analysis of variance
(ANOVA) F-test” scheme, which can rank the importance
of features43. The F-statistic is defined as the ratio of the
treatment sum of squares (SST) to the sum of squares
error (SSE), scaled by their respective degrees of freedom.
For a feature matrix of q rows by m columns, the F-
statistic is expressed as:

F ¼
Pm

i¼1
ni Y i�Y
� �2

m�1

Pm
i¼1

Pni
j¼1

Y ij�Y ið Þ2
mðq�1Þ

ð5Þ

where ni represents the number of observations within
feature i; Y i represents the mean of feature I; Y represents
the grand mean of the entire matrix; and Yij represents the
jth entry of feature i. Converting the F-statistic to a p-
value by referring to the F-distribution, one either accepts
or rejects the null hypothesis, which is that any variation
observed between features is likely due to randomness.
Typically, for p-values less than a significance level of α=
0.05, the null hypothesis is rejected, and the correspond-
ing feature is considered informative. The feature with the
smallest p-value was considered most important. Table 1
ranks the eight collective features of both sensor devices
from best to worst according to the calculated p-values.
Figure 5g qualitatively compares feature importance by
taking the negative log on the p-value column in Table 1
and then normalizing by the most important feature.
According to Table 1, all eight features had p-values <
0.05, which suggested that all features were in fact
statistically informative to the outcome of the classifica-
tion study. It is evident that the electron field-effect

mobility (μe) of both GFETs is more important than
others, whereas the ratio of the residual carrier concen-
tration to the charged impurity concentration (n*/nimp) of
the pristine GFET is the least important. Therefore, the
variations in the dimension dependence on the accuracy
in the lower dimensions are indicative of the difference in
importance between the tested features.

Discussion
Compared with other approaches using nonscalable

device fabrication, special functional materials and bulky
peripheral optical systems44–47, this work presents a
practical approach to address selectivity, miniaturization,
low cost and low power consumption issues at the same
time. Here, we discuss the origin of the unique gas-
sensing patterns. Previous studies have suggested that the
electrical properties of GFETs can be dictated by the
charged impurity concentration, nimp, through the fol-
lowing relationship (together with Eq. 4)32,34:

σðnÞ ¼ Ce
n

nimp

�
�
�
�

�
�
�
�þ σres ð6Þ

μ ¼ C
nimp

ð7Þ

where C is a constant; e is the elementary charge; and σres
is the residual conductivity. The relationship of linear
conductivity with respect to carrier concentration (Eq. 6)
has been validated with experimental results32, whereas
there have been some discrepancies in terms of the
minimum conductivity (Eq. 4) and the field-effect
mobility (Eq. 7)32,36. For example, inconsistent results
have been observed in previous studies between the
mobility and the charged impurity concentration (Eq. 7),
and the possible reason has been explained as the
compensation of the pre-existing charged impurities on
the substrate by the incoming charged functional groups

Table 1 Summary of one-way ANOVA F-test, ranked in descending order of feature importance.

Importance rank Feature name F-statistic p-value

1 Electron mobility (μe) of the ALD-RuO2-GFET 1480.34 1.08 × 10−183

2 Electron mobility (μe) of the pristine GFET 831.58 6.07 × 10−142

3 Hole mobility (μh) of the ALD-RuO2-GFET 325.78 3.78 × 10−84

4 Carrier concentration (n) of the pristine GFET 127.35 2.31 × 10−43

5 Hole mobility (μh) of the pristine GFET 117.56 9.59 × 10−41

6 The ratio (n*/nimp) of the ALD-RuO2-GFET 108.68 2.69 × 10−38

7 Carrier concentration (n) of the ALD-RuO2-GFET 96.44 8.37 × 10−35

8 The ratio (n*/nimp) of the pristine GFET 13.38 2.39 × 10−6
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and dipolar molecules on the surface of graphene36. Other
studies have also suggested that the dipole moment of the
H2O molecules on graphene may have a crucial influence
on the energy shift of the impurity bands with an
underlying (SiO2) substrate48. With intensive studies in
the last decade, it is still challenging to precisely model the
impacts of gas-GFET interactions on electrical properties.
Nevertheless, several measurable quantities are confirmed
to be associated with gas-GFET interactions. For example,
the asymmetric field-effect mobility in this study, i.e.,
μe/μh ≠ 1 (e.g., Fig. 2e–j), can be explained by the
difference in the scattering cross sections due to the
attractive and repulsive Coulomb forces between the free
carriers and the charged impurities, which may exist on
the bottom (i.e., pre-existing charged impurities) and/or
top (i.e., gas molecules) of the graphene35,49,50. As the
Coulomb potential depends on the magnitude of the
charge and/or dipole moment of gas molecules, the ratio
of the carrier mobility, μe/μh, may provide gas-specific
information. Indeed, previous studies suggest that the

ratio, μe/μh, may be related to the impurity strength
(strength of scattering due to charged impurities), α, via
the following equation35,49,50:

μe
μh

¼ nþi Cð�αÞ þ n�i CðþαÞ
nþi CðþαÞ þ n�i Cð�αÞ ; 0< α<

1
2

ð8Þ

where n±
i represents the concentration of the positively/

negatively charged impurities, and C(±α) represents the
transport cross section35,49,50. Equation 8 allows us to
estimate the impurity strength α in our experimental
results. The numerically estimated impurity strengths are
plotted in Fig. 6a, b, in which the trend of impurity
strength for MeOH and EtOH are qualitatively consistent.
The impurity strength of MeOH tends to increase as the
gas concentration increases, while that of EtOH barely
changes. Histograms for a particular condition (the gas
concentration is 60% for all the gases) are provided in Fig.
6c, d from five data points for each gas, implying the
uniqueness of this quantity for unique gas-sensing

a b

Concentration Concentration
200

–0.3
60 8040

–0.1

–0.2

0

0.1

0.2

0.3

200
–0.3

60 8040

–0.1

–0.2

0

0.1

0.2

0.3
B Pristine GFETPristine GFET

H2O
MeOH
EtOH

H2O
MeOH
EtOH

ALD-RuO2-GFETB

±� ± �

c d

H2O
MeOH
EtOH

H2O
MeOH
EtOH

0.050

F
re

qu
en

cy

60% 60%

�
0.15 0.20.1

0

1

2

3

4

0.050

F
re

qu
en

cy

�
0.15 0.20.1

0

1

2

3

4
B Pristine GFETPristine GFET ALD-RuO2-GFETB

Fig. 6 The impurity strength for H2O, MeOH, and EtOH. a, b The impurity strength with respect to gas concentration for the pristine GFET and the
ALD-RuO2-GFET in setup B. c, d The histogram of the impurity strength for 60% of H2O, MeOH, and EtOH

Hayasaka et al. Microsystems & Nanoengineering            (2020) 6:50 Page 9 of 13



patterns, which qualitatively agree with the visually
distinguishable gas-sensing patterns in the qs1− qs3 plane
(e.g., Fig. 3a, d) in which H2O and MeOH vapors can be
easily distinguished. In addition, as previously suggested,
the term Δne/hΔμe/h may be related to gas-specific
information32,37. We speculate that qs4 (~n*/nimp) reflects
the interactions between the gas molecules and the pre-
existing charge impurities on the substrates. As such, we
attribute the origins of the unique gas-sensing patterns to
the charge and/or dipole moment of the gas molecules
and the interactions between the gas molecules and the
pre-existing charged impurities on the substrate.
The machine-learning analyses allow us to classify the

gas-sensing patterns in a systematic manner with impor-
tant statistical information related to the physical prop-
erties of the tested GFETs. The testing accuracy
represents a fair metric to assess the model’s ability to
analyze new data, so long as the sample count repre-
senting each target gas is kept approximately equivalent to
prevent a skew in prediction. The one-way ANOVA F-test
results indicate that the electron field-effect mobility has
the highest influence on the gas classification in this study.
In addition, the results suggest that the importance of the
features can be modulated by chemical functionalization.
This information may be useful to improve the reliability
of the proposed scheme further.
The potential limitations of the proposed approach are

the inevitably time-consuming data collection processes
and the intensive computations for the machine-learning
analyses. The variations in the physical properties of
GFET devices warrant a unique machine-learning model
and training process for each device. From the char-
acterization results of the prototype devices, the accuracy
and cross entropy loss history (Fig. 5b, e) suggest that ~40
epochs of training are enough for a robust neural network
model based on the 4D gas-sensing patterns. The total
time requirement for the training process can be
approximately estimated based on the number of epochs,
which is almost instantaneous in this study. On the other
hand, the time requirement for acquiring one piece of
data during the prototype test is 1 min, which is domi-
nated by the specifications of the peripheral measurement
system and can be significantly reduced with better
instruments. Another key variation is the amount of
charged impurities on the substrates (boundary between
graphene and SiO2), which can affect the charged
impurity states on the substrates. Nonetheless, this issue
may be alleviated by improving the quality control of the
manufacturing process. Another potential issue is the
influence of the various factors in the ambient environ-
ment41. The e-nose system based on GFET could use a
temperature compensation algorithm and/or a tempera-
ture controller to eliminate the influence of temperature
variations, whereas the signals from humidity could

potentially be decoupled by the proposed approach. To
realize an e-nose using a single GFET with the proposed
scheme, other target gases should also be tested with
complex backgrounds, whereas three vapors (H2O,
MeOH, and EtOH) were evaluated with binary gas mix-
tures in this study.
The proposed scheme can be applied to other FET-

based gas sensors, such as Si-based FETs, where the
threshold voltage and the transconductance may be uti-
lized as key parameters for multidimensional vectors. The
machine-learning approach can be further extended to
start with a multiclass model that distinguishes the gas
mixture group, followed by a multioutput regression
model of each group for the prediction of concentrations
of both the target gas and common humidity values in
ambient air. As long as there are sufficiently large training
samples with characteristic features, the machine-learning
scheme should be able to differentiate specific signatures
of gas patterns and predict relevant properties. In con-
clusion, we have proposed and demonstrated a multi-
dimensional gas-sensing scheme with a single GFET by
utilizing distinctive 4D vectors from the results of three
tested target gases and machine-learning analysis for gas
classifications. As such, by decoupling the electrical sig-
nals from a single GFET, rather than adding multiple
functional materials, miniaturization, low power con-
sumption, low cost, and selectivity can be accomplished
for the tested gases under particular conditions, which is a
promising step toward a miniaturized e-nose.

Materials and methods
Fabrication and characterization of GFETs
Commercially available graphene substrates (monolayer

graphene on SiO2/Si (300 nm/500 μm), 10 mm× 10mm
in area, Graphenea, San Sebastián, Spain) prepared by
chemical vapor deposition (CVD) were used to fabricate
the pristine GFETs. Metal contacts, Au/Pd (50 nm/
25 nm), were patterned on the graphene substrate by a
lift-off process. Subsequently, graphene channels (100 μm
in width and 500 μm in length) were defined by an oxygen
plasma etching process (50W for 7–10 s). The fabricated
GFETs were generally p-type (in which the majority car-
riers are holes); ~20 wt% polyethylenimine (PEI) solution
was applied to the graphene and left for 2 h for the n-type
counterdoping process. The PEI solution was then washed
away by soaking in DI water, resulting in a charge neutral
point that was shifted to close to 0 V. The fabrication
process of the ALD-RuO2-GFET can be found else-
where51. A scanning electron microscope (SEM) image of
the fabricated graphene FET is shown in Supplementary
Fig. 1a. The fabricated GFETs were fixed onto a ceramic
package by using conductive silver paste. A typical elec-
trical configuration of a GFET is shown in Supplementary
Fig. 1b. A constant source-drain current of 100 μA is
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supplied between the source (S) and drain (D), and the
voltage across the graphene channel is measured via two
inner contacts (A) and (B) to establish the four-probe
configuration. The gate voltage is applied through the Si
substrate as the back gate. A conductivity profile versus
gate voltage is obtained by sweeping the gate voltage from
−40 to +40 V with a ramp rate of 2 V/s, as shown in
Supplementary Fig. 1c. The conductivity profiles of
GFETs can be decoupled into four distinctive physical
properties of GFETs through Eqs. (1–4) for 4D vectors. A
computed 4D vector example is shown in Supplementary
Fig. 1d.

Experimental setup for gas sensing
The gas control system consists of a dry air gas cylinder,

three mass flow controllers (MFC1, MFC2, and MFC3),
two vapor sources, a gas chamber, power sources, and a
control and data acquisition system (Supplementary Fig.
2a). The gas concentration is determined by the ratio of
two mass flow controllers, and the ratio is controlled over
time based on a designated profile (e.g., Figs. 2a, 4a and
Supplementary Fig. 3a) through LabVIEW (National
Instruments). The gas chamber consists of a cap chamber,
a GFET test chip, an IC socket, a casing, and BNC con-
nector ports (Supplementary Fig. 2b). When the cap
chamber is tightened with screws, the GFET test chip is
sealed via an O-ring, and a dome-shaped space with a
volume of 1 ml is formed. A schematic illustration of the
cross section of the cap chamber and the GFET test chip
is shown in Supplementary Fig. 2c. Throughout all the
experiments, the total mass flow rate was fixed at
200 sccm such that the pressure-dependent false signal
was minimized, and dry air was used as the carrier gas.
The gas control profiles consist of multiple purge cycles
(where only dry air is injected) and gas exposure cycles of
10 min for each test. The conductivity profiles of GFETs
were acquired every minute; therefore, one gas exposure
cycle contained 10 conductivity profiles. In experimental
setup C, the background R.H. level was controlled by
MFC1 and MFC2, and the target gas concentration was
controlled by MFC3.

Data preprocessing workflow
A supervised classification study was conducted to

substantiate the selectivity of our gas sensor. The task was
to train the machine-learning (ML) model for each sensor
device to distinguish specific target gases with good
selectivity. Data preprocessing was performed once raw
data were imported to a Jupyter Notebook. During each
alternation from a purge cycle to an exposure cycle and
vice versa, we removed the first few samples to avoid
possibly unstable data between the cycles. Afterwards, a
new “label” column was created to denote the target gas
species representing each sample’s feature vector. Entries

in the label column were numerically coded. For a three-
class study such as the three different gases tested in this
work, each gas type was represented as a digit: 0, 1, or 2.
The next step was to separate the entire data into a
training and testing set according to an 80/20 split. The
training set was reserved for the ML model to “learn”
about the data and iteratively optimize the classification
model, whereas the testing set was served to evaluate the
algorithm’s performance by giving unforeseen data. All
numeric feature values were subsequently normalized by
the StandardScaler function in the Scikit-learn Python
library by deducting each numeric entry by their corre-
sponding feature’s mean and then dividing by said fea-
ture’s standard deviation52,53. The purpose of
normalization was to prevent features that were numeri-
cally greater in value to dictate the outcome of the clas-
sification study. To prevent the distribution of the testing
set from leaking into the ML model, the mean and stan-
dard deviation represented those of the training set only.

Multilayer perceptron model
The ML model supported multiclass classification to

enforce the classification of a sample to one and only one
gas type. Various contemporary gas sensor applications,
such as the e-nose, adopt the artificial neural network
model because of its ability to model and predict complex
data26,28,42,54,55. The multilayer perceptron (MLP) classi-
fier, which adopts a feed-forward neural network archi-
tecture, was implemented for this study. The MLP neural
network model contains three components: an input
layer, an hidden layer, and an output layer. The hidden
layer comprises a set of neurons, which take in a weighted
linear combination of the normalized feature values from
the input layer plus a bias term, and then pass through an
activation function such as a rectified linear unit
(RELU)54. The weight factor (wi,j) connects the ith entry
of the input layer to the jth neuron of the hidden layer.
Their outputs are fed to the next hidden layer(s) (should
they exist) as the input until reaching the output layer,
where the value of each entry correlates to the likelihood
of each possible target class. The presence of the hidden
layer(s) allows the neural network model to model non-
linear data, and the activation function acts as a means to
buffer the noise in the data54. The neural network model
realizes the underlying pattern in data by executing the
backpropagation algorithm, which iteratively searches for
the optimal weights and biases to minimize the error
between the predicted label and the true label. The
number of hidden layers and the number of neurons to
place within each hidden layer are determined from lit-
erature research without yielding a definitive rule of
thumb. However, it is ideal to keep the number of hidden
layers to 2 and select the number of neurons such that the
trained model does not overfit or underfit the data54.
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Scikit-learn library’s API for an MLP classifier object
offers a suitably large number of hyperparameters for
programmers to modulate52,53. The classifier object was
fitted against the training set of each sensor device. Once
a stopping criterion of the training process was met, the
testing set was then fed to the trained classifier to evaluate
the accuracy as well as other pertinent performance
metrics.

Overfitting and the cross-validation test
Machine-learning models face the problem of over-

fitting when a model undergoes too much training such
that it fits random noise and fails to capture a generalized
trend, thus producing a significant drop in testing accu-
racy. Although a testing dataset was explicitly put aside at
the onset to evaluate the model’s robustness against new
data, the concern over whether the testing set constituted
a fair representation of all unforeseen likelihoods cannot
be ruled out. A cross-validation test is conducted to
ensure that the neural network model’s generalization
performance is not too high or low by coincidence. The
entire dataset was randomly shuffled several ways and
separated via a stratified split, of which 20% were reserved
as the testing set and the remaining constituted the
training set. A stratified split ensures that each target class
is adequately represented in either set. Data reserved for
testing during each shuffle were scored by their corre-
sponding neural network model. By recording the mean
and standard deviation of the performance metric, such as
accuracy, one can interpret whether the ML model is
robust against unseen data.

Acknowledgements
This work was supported in part by PCARI (Philippine-California Advanced
Research Institutes), an NSF grant—ECCS-1711227, BSAC (Berkeley Sensor and
Actuator Center), and the Leading Graduate School Program R03 of MEXT.
These devices were fabricated at the UC Berkeley Marvell Nanofabrication Lab.

Author details
1Berkeley Sensor and Actuator Center & Department of Mechanical
Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
2Materials Science and Engineering Program, College of Science, University of
the Philippines Diliman, 1101 Quezon City, Philippines. 3National Institute of
Physics, College of Science, University of the Philippines Diliman, 1101 Quezon
City, Philippines

Author contributions
T.H. conceived the core idea of this study. T.H. and Y.L. designed the devices.
T.H., V.C.C. and L.P.L. fabricated the devices. T.H., L.P.L., Y.K. and Y.L. designed
and configured the experimental setup. Y.K. designed and wrote the LabVIEW
program. T.H., R.A.L. and L.I.M.B. conducted the experiments. T.H. wrote the
MATLAB codes for data processing. A.L. designed and conducted the machine-
learning analysis. T.H., A.L. and L.L. prepared the manuscript. A.A.S. and L.L.
guided the research. All authors contributed to the interpretation of the results
and discussions.

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary information accompanies this paper at https://doi.org/
10.1038/s41378-020-0161-3.

Received: 14 June 2019 Revised: 20 February 2020 Accepted: 7 March 2020

References
1. Gas sensor market size & share. Industry analysis report, 2018–2025. https://

www.grandviewresearch.com/industry-analysis/gas-sensors-market.
2. Inc, G. M. I. Gas Sensor Market worth over $3bn by 2024: Global Market

Insights, Inc. GlobeNewswire News Room. http://www.globenewswire.com/
news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-
by-2024-Global-Market-Insights-Inc.html (2018).

3. Gas Sensors Market worth 1,297.6 Million USD by 2023. https://www.
marketsandmarkets.com/PressReleases/gas-sensor.asp.

4. Zampolli, S. et al. An electronic nose based on solid state sensor arrays for
low-cost indoor air quality monitoring applications. Sens. Actuators B 101,
39–46 (2004).

5. Yi, W. Y. et al. A survey of wireless sensor network based air pollution mon-
itoring systems. Sensors 15, 31392–31427 (2015).

6. OSHA Annotated PELs. Occupational safety and health administration. https://
www.osha.gov/dsg/annotated-pels/index.html.

7. Rüffer, D., Hoehne, F. & Bühler, J. New digital metal-oxide (MOx) sensor plat-
form. Sensors 18, E1052 (2018).

8. Tricoli, A., Nasiri, N. & De, S. Wearable and miniaturized sensor tech-
nologies for personalized and preventive medicine. Adv. Funct. Mater.
27, 1605271 (2017).

9. Rahman, M. M., Khan, S. B., Jamal, A., Faisal, M. & Asiri, A. M. Highly sensitive
methanol chemical sensor based on undoped silver oxide nanoparticles
prepared by a solution method. Microchim. Acta 178, 99–106 (2012).

10. Kanungo, J. et al. Development of SiC-FET methanol sensor. Sens. Actuators B
Chem. 160, 72–78 (2011).

11. Tang, H. et al. An ethanol sensor based on cataluminescence on ZnO
nanoparticles. Talanta 72, 1593–1597 (2007).

12. Liu, X. et al. A survey on gas sensing technology. Sensors 12, 9635–9665 (2012).
13. Aleixandre, M. & Gerboles, M. Review of small commercial sensors for indi-

cative monitoring of ambient gas. Chem. Engi. Trans. 30, 169–174 (2012).
14. Taguchi, N. Gas detecting device. US patent 3, 695, 848 (1972).
15. Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 3,

1–20 (2015).
16. Yamazoe, N. & Shimanoe, K. New perspectives of gas sensor technology. Sens.

Actuators B Chem. 138, 100–107 (2009).
17. Barsan, N., Koziej, D. & Weimar, U. Metal oxide-based gas sensor research: how

to. Sens. Actuators B Chem. 121, 18–35 (2007).
18. Röck, F., Barsan, N. & Weimar, U. Electronic nose: current status and future

trends. Chem. Rev. 108, 705–725 (2008).
19. Gardner, J. W. & Bartlett, P. N. A brief history of electronic noses. Sens. Actuators

B Chem. 18, 210–211 (1994).
20. Fitzgerald, J. E., Bui, E. T. H., Simon, N. M. & Fenniri, H. Artificial nose technology:

status and prospects in diagnostics. Trends Biotechnol. 35, 33–42 (2017).
21. Persaud, K. & Dodd, G. Analysis of discrimination mechanisms in the mam-

malian olfactory system using a model nose. Nature 299, 352–355 (1982).
22. Abe, H. et al. Automated odor-sensing system based on plural semi-

conductor gas sensors and computerized pattern recognition tech-
niques. Anal. Chim. Acta 194, 1–9 (1987).

23. Ballantine, D. S., Rose, S. L., Grate, J. W. & Wohltjen, H. Correlation of
surface acoustic wave device coating responses with solubility
properties and chemical structure using pattern recognition. Anal.
Chem. 58, 3058–3066 (1986).

24. Aishima, T. Aroma discrimination by pattern recognition analysis of responses
from semiconductor gas sensor array. J. Agric. Food Chem. 39, 752–756 (1991).

25. Shurmer, H. V., Gardner, J. W. & Corcoran, P. Intelligent vapour discrimination
using a composite 12-element sensor array. Sens. Actuators B Chem. 1,
256–260 (1990).

26. Nakamoto, T., Fukuda, A. & Moriizumi, T. Perfume and flavour identification by
odour-sensing system using quartz-resonator sensor array and neural-network
pattern recognition. Sens. Actuators B Chem. 10, 85–90 (1993).

27. Pearce, T. C., Gardner, J. W., Friel, S., Bartlett, P. N. & Blair, N. Electronic nose for
monitoring the flavour of beers. Analyst 118, 371 (1993).

Hayasaka et al. Microsystems & Nanoengineering            (2020) 6:50 Page 12 of 13

https://doi.org/10.1038/s41378-020-0161-3
https://doi.org/10.1038/s41378-020-0161-3
https://www.grandviewresearch.com/industry-analysis/gas-sensors-market
https://www.grandviewresearch.com/industry-analysis/gas-sensors-market
http://www.globenewswire.com/news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-by-2024-Global-Market-Insights-Inc.html
http://www.globenewswire.com/news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-by-2024-Global-Market-Insights-Inc.html
http://www.globenewswire.com/news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-by-2024-Global-Market-Insights-Inc.html
https://www.marketsandmarkets.com/PressReleases/gas-sensor.asp
https://www.marketsandmarkets.com/PressReleases/gas-sensor.asp
https://www.osha.gov/dsg/annotated-pels/index.html
https://www.osha.gov/dsg/annotated-pels/index.html


28. Winquist, F., Hornsten, E. G., Sundgren, H. & Lundstrom, I. Performance of an
electronic nose for quality estimation of ground meat. Meas. Sci. Technol. 4,
1493–1500 (1993).

29. Sensigent. http://www.sensigent.com/products/cyranose.html.
30. Portable Electronic Nose. AIRSENSE analytics. https://airsense.com/en/

products/portable-electronic-nose.
31. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene.

Nat. Mater. 6, 652–655 (2007).
32. Chen, J.-H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4,

377–381 (2008).
33. Joshi, N. et al. A review on chemiresistive room temperature gas sensors

based on metal oxide nanostructures, graphene and 2D transition metal
dichalcogenides. Microchim. Acta 185, 213 (2018).

34. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory
for graphene transport. Proc. Natl Acad. Sci. 104, 18392–18397 (2007).

35. Novikov, D. S. Numbers of donors and acceptors from transport measure-
ments in graphene. Appl. Phys. Lett. 91, 102102 (2007).

36. Liang, S.-Z., Chen, G., Harutyunyan, A. R. & Sofo, J. O. Screening of charged
impurities as a possible mechanism for conductance change in graphene gas
sensing. Phys. Rev. B 90, 115410 (2014).

37. Liu, Y., Lin, S. & Lin, L. A versatile gas sensor with selectivity using a single
graphene transistor. In 2015 Transducers—2015 18th International Conference
on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). https://doi.
org/10.1109/TRANSDUCERS.2015.7181084 (2015).

38. Kim, C. H., Yoo, S. W., Nam, D. W., Seo, S. & Lee, J. H. Effect of tem-
perature and humidity on NO2 and NH3 gas sensitivity of bottom-gate
graphene FETs prepared by ICP-CVD. IEEE Electron Device Lett. 33,
1084–1086 (2012).

39. Melios, C. et al. Effects of humidity on the electronic properties of
graphene prepared by chemical vapour deposition. Carbon 103,
273–280 (2016).

40. D. Smith, A. et al. Resistive graphene humidity sensors with rapid and direct
electrical readout. Nanoscale 7, 19099–19109 (2015).

41. Hayasaka, T., Kubota, Y., Liu, Y. & Lin, L. The influences of temperature,
humidity, and O2 on electrical properties of graphene FETs. Sens. Actuators B
Chem. 285, 116–122 (2019).

42. Hierlemann, A. & Gutierrez-Osuna, R. Higher-order chemical sensing. Chem.
Rev. 108, 563–613 (2008).

43. Elssied, N. O. F., Ibrahim, O. & Osman, A. H. A novel feature selection based on
one-way ANOVA F-test for e-mail spam classification. J. Appl. Sci. 7, 625–638
(2014).

44. Rumyantsev, S., Liu, G., Shur, M. S., Potyrailo, R. A. & Balandin, A. A. Selective gas
sensing with a single pristine graphene transistor. Nano Lett. 12, 2294–2298
(2012).

45. Potyrailo, R. A. et al. Towards outperforming conventional sensor arrays with
fabricated individual photonic vapour sensors inspired by Morpho butterflies.
Nat. Commun. 6, 7959 (2015).

46. Nallon, E. C., Schnee, V. P., Bright, C., Polcha, M. P. & Li, Q. Chemical dis-
crimination with an unmodified graphene chemical sensor. ACS Sensors 1,
26–31 (2016).

47. Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10,
1131 (2019).

48. Leenaerts, O., Partoens, B. & Peeters, F. M. Water on graphene: hydrophobicity
and dipole moment using density functional theory. Phys. Rev. B 79, 235440
(2009).

49. Srivastava, P. K., Arya, S., Kumar, S. & Ghosh, S. Relativistic nature of carriers:
Origin of electron-hole conduction asymmetry in monolayer graphene. Phys.
Rev. B 96, 241407 (2017).

50. Novikov, D. S. Elastic scattering theory and transport in graphene. Phys. Rev. B
76, 245435 (2007).

51. Hayasaka, T. et al. ALD-RuO2 Functionalized Graphene FET with Distinctive Gas
Sensing Patterns. In Proc. of 32th IEEE Micro Electro Mechanical Systems Con-
ference 149–152 (2019).

52. Buitinck, L. et al. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning (2013).

53. Pedregosa, F. et al. Scikit-learn: machine learning in Python. JMLR 12,
2825–2830 (2011).

54. Kirk, M. Thoughtful Machine Learning with Python: A Test-Driven Approach
(O’Reilly Media, Inc., 2017).

55. Scott, S. M., James, D. & Ali, Z. Data analysis for electronic nose systems.
Microchim. Acta 156, 183–207 (2006).

Hayasaka et al. Microsystems & Nanoengineering            (2020) 6:50 Page 13 of 13

http://www.sensigent.com/products/cyranose.html
https://airsense.com/en/products/portable-electronic-nose
https://airsense.com/en/products/portable-electronic-nose
https://doi.org/10.1109/TRANSDUCERS.2015.7181084
https://doi.org/10.1109/TRANSDUCERS.2015.7181084

	An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol
	Introduction
	Results
	Measurement setup and experimental conditions
	Measurement results and the converted 4D and 3D vectors
	Gas-sensing patterns of binary gas mixtures
	Classification of the gas-sensing patterns by using machine-learning analyses

	Discussion
	Materials and methods
	Fabrication and characterization of GFETs
	Experimental setup for gas sensing
	Data preprocessing workflow
	Multilayer perceptron model
	Overfitting and the cross-validation test

	Acknowledgements




