
polymers

Review

Tuning Power Ultrasound for Enhanced Performance
of Thermoplastic Micro-Injection Molding: Principles,
Methods, and Performances

Baishun Zhao 1,2 , Yuanbao Qiang 1,2, Wangqing Wu 1,2,* and Bingyan Jiang 1,2

����������
�������

Citation: Zhao, B.; Qiang, Y.; Wu, W.;

Jiang, B. Tuning Power Ultrasound

for Enhanced Performance of

Thermoplastic Micro-Injection

Molding: Principles, Methods, and

Performances. Polymers 2021, 13, 2877.

https://doi.org/10.3390/

polym13172877

Academic Editors: Francesco Paolo

La Mantia, José António Covas and

Sabu Thomas

Received: 5 August 2021

Accepted: 21 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Lushan South
Road 932, Changsha 410083, China; qustzbs@163.com (B.Z.); yuanbaoqiang@csu.edu.cn (Y.Q.);
jby@csu.edu.cn (B.J.)

2 School of Mechanical and Electrical Engineering, Central South University, Lushan South Road 932,
Changsha 410083, China

* Correspondence: csuwwq@csu.edu.cn; Tel.: +86-158-7429-5500

Abstract: With the wide application of Micro-Electro-Mechanical Systems (MEMSs), especially the
rapid development of wearable flexible electronics technology, the efficient production of micro-parts
with thermoplastic polymers will be the core technology of the harvesting market. However, it is
significantly restrained by the limitations of the traditional micro-injection-molding (MIM) process,
such as replication fidelity, material utilization, and energy consumption. Currently, the increas-
ing investigation has been focused on the ultrasonic-assisted micro-injection molding (UAMIM)
and ultrasonic plasticization micro-injection molding (UPMIM), which has the advantages of new
plasticization principle, high replication fidelity, and cost-effectiveness. The aim of this review is
to present the latest research activities on the action mechanism of power ultrasound in various
polymer micro-molding processes. At the beginning of this review, the physical changes, chemical
changes, and morphological evolution mechanism of various thermoplastic polymers under different
application modes of ultrasonic energy field are introduced. Subsequently, the process principles,
characteristics, and latest developments of UAMIM and UPMIM are scientifically summarized.
Particularly, some representative performance advantages of different polymers based on ultrasonic
plasticization are further exemplified with a deeper understanding of polymer–MIM relationships.
Finally, the challenges and opportunities of power ultrasound in MIM are prospected, such as the
mechanism understanding and commercial application.

Keywords: micro-injection molding; ultrasonic molding; ultrasonic injection molding; ultrasonic
micro-injection molding; power ultrasound; ultrasonic plasticization; ultrasonic vibration

1. Introduction

In the last decade and even in the future, some electromechanical systems with
special functions and personal electronic products will continue to maintain the trend
of miniaturization and precision. Therefore, the high-quality mass production of micro-
parts has attracted significant attention. From the perspective of polymer processing
technology, the advantages of thermoplastic micro-injection molding (MIM) are reflected
in the short production cycle, large scale, good dimensional accuracy, and low restrictions
on complex shapes and details [1]. Compared with other molding technologies, MIM
is more suitable for low-cost mass production. Especially with the molding precision
reaching nano-scale, MIM is believed to be the technology that could meet the needs of
most micro–nano products on the market [2]. For instance, the smallest part in the world
was fabricated by the MTD micro-molding company, weighing only 0.00313 mg, and then,
Holzer et al. [3] successfully fabricated a part with nano grooves of 18 nm width. Although
some researchers have shared their definitions of micro-molded products, which will be
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discussed later in this paper [1,4–8], the size of the micro-molded parts is expected to
exceed their definitions due to the continuous development of MIM. In fact, micro-molded
parts have been gradually extending to sub-micron [9–11] or even nano-scale [12–14].

Generally, micro-molded parts can be divided into two groups. One of them is macro-
parts with cross-scale features such as micro/nano structures on functional surfaces [15–17].
The other is small parts with weight in milligram scale. Due to the limitations of the process
characteristics and material properties, when the micro-molded parts comprise cross-scale
features or break through a certain volume/size boundary, MIM could be quite challenging
in terms of replication fidelity, materials utilization, and energy consumption. In this
context, power ultrasound was introduced to enhance the MIM performance. Specifically,
for the macro-parts with micro/nano features, the power ultrasound system has been
integrated into the injection mold to facilitate the polymer melt filling and the replication
of the micro structures [18]. For the small parts with milligram weight, power ultrasound
has been employed as the only energy source during MIM, [19–22] where a small quantity
of plastic raw materials can be injection molded directly after plasticization by ultrasonic
vibration, without screw shearing and external heating.

Many researchers have studied the application of power ultrasound in the MIM of
thermoplastic polymers in various aspects such as tooling, process modeling and sim-
ulation, and the micro-molded parts characterization. From the author’s point of view,
these contributions followed different processing strategies and evolved into two typical
MIM variants, i.e., ultrasound-assisted micro-injection molding (UAMIM) and ultrasonic
plasticization micro-injection molding (UPMIM). Among their many differences, the main
difference between them is whether to use the traditional screw unit or the power ultra-
sound to plasticize the plastic raw materials. Nevertheless, what they still have in common
is both of them focus on tuning power ultrasound for enhanced MIM performance.

The purpose of this work is to share a detailed overview of the application status
and development potential of tuning power ultrasound for the enhanced performance of
thermoplastic MIM. The physical changes, chemical changes, and morphological evolu-
tion mechanism of various thermoplastic polymers under different application modes of
ultrasonic energy field are introduced. Subsequently, the process principles, characteristics,
and latest developments of UAMIM and UPMIM are summarized, which have not been
found in the literature. Particularly, some representative performance advantages of dif-
ferent polymers based on ultrasonic plasticization are further exemplified with a deeper
understanding of polymer–MIM relationships. Presently, both of the two MIM variants are
in a critical period that requires rapid development and breakthrough results.

2. Ultrasound-Assisted Micro-Injection Molding
2.1. Scale Effect in MIM

High surface-to-volume ratios generally are the main feature of micro/nano-parts; thus,
the polymer melt solidifies particularly rapidly due to the significant heat diffusion effects in
the filling stage [22,23]. A formed solid layer can be a resistance to the melt injection, which is
the main reason why filling defects such as uncompleted features exist. In the experiment of
Sha et al. [24], the micro-needle cavities with a diameter of 100 µm and 150 µm could not be
completely filled with melt under the conditions of low temperature and low injection speed,
but when these parameters were set higher, the cavities could be completely filled (Figure 1a,d).
The filling can also be complex and unstable in a smaller scale; it can be an increasingly difficult
to fill into the cavity from the gate to the end of the mold insert. As shown in Figure 1e,f, filling
height quickly decreases as the distance from the gate increases [25]. Therefore, the size effect
poses a challenge to the high-quality forming of micro-scale features, which cannot be solved
perfectly by optimizing process parameters.
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Figure 1. Microstructures molding by MIM. (a–d): Micro pins of PP [24]. (a and b): Tb = 225 °C, Vi = 100 mm/s, (c,d): Tb = 
225 °C, Vi = 200 mm/s. Tb is the barrel temperature, Vi is the injection speed; Replicated micro features located at (e) 1.5 
mm and (f) 35 mm from the gate [25]. 

The complex filling field can affect the crystallization phase, which can be seen from 
the huge difference of the proportion of the skin and core layer in the “skin–core” struc-
ture for semi-crystalline materials [26]. For semi-crystalline materials, physical properties, 
such as mechanical, optical, electrical, and chemical properties, mainly depend on the 
crystalline morphology of the materials [27]. By analyzing the crystallinity effect of 
molded samples with different sizes along the flow direction, Liu et al. [28] studied the 
difference between macroscopic and microscopic morphology of isotactic polypropylene 
(iPP). The results show that there is also a “skin–core” structure with through-thickness 
morphology in micro-parts, which is similar to macro-parts, as shown in Figure 2a. At the 
same time, as far as the orientation area including surface layer and shear layer is con-
cerned, the micro-part (90%) is much larger than the macro-part (15%) [29]. Zhang et al. 
[30] also found that the volume ratio of the skin layer increased from 10% to 67% as the 
part thickness decreased from 500 to 100 μm, as shown in Figure 2b. In addition, it was 
found that the Young’s modulus, fracture strain, and yield stress usually increase with an 
increase of the skin ratio [31]. The different molding conditions of micro/nano scale and 
macro scale determine the physical and chemical properties of injection parts by affecting 
the crystal morphology and proportion. 

Figure 1. Microstructures molding by MIM. (a–d): Micro pins of PP [24]. (a and b): Tb = 225 ◦C, Vi = 100 mm/s,
(c,d) Tb = 225 ◦C, Vi = 200 mm/s. Tb is the barrel temperature, Vi is the injection speed; Replicated micro features located at
(e) 1.5 mm and (f) 35 mm from the gate [25].

The complex filling field can affect the crystallization phase, which can be seen from
the huge difference of the proportion of the skin and core layer in the “skin–core” structure
for semi-crystalline materials [26]. For semi-crystalline materials, physical properties, such
as mechanical, optical, electrical, and chemical properties, mainly depend on the crystalline
morphology of the materials [27]. By analyzing the crystallinity effect of molded samples
with different sizes along the flow direction, Liu et al. [28] studied the difference between
macroscopic and microscopic morphology of isotactic polypropylene (iPP). The results
show that there is also a “skin–core” structure with through-thickness morphology in
micro-parts, which is similar to macro-parts, as shown in Figure 2a. At the same time, as far
as the orientation area including surface layer and shear layer is concerned, the micro-part
(90%) is much larger than the macro-part (15%) [29]. Zhang et al. [30] also found that the
volume ratio of the skin layer increased from 10% to 67% as the part thickness decreased
from 500 to 100 µm, as shown in Figure 2b. In addition, it was found that the Young’s
modulus, fracture strain, and yield stress usually increase with an increase of the skin
ratio [31]. The different molding conditions of micro/nano scale and macro scale determine
the physical and chemical properties of injection parts by affecting the crystal morphology
and proportion.

The problems that micro-injection-molding technology is facing also have been discussed
in some related literature [1,32,33]. Generally, to achieve the better molding filling process
or morphology distribution, it is necessary to apply a faster injection speed [34,35], higher
mold temperature [36], higher injection pressure [24], or surface coating technology [37] during
the injection molding, as shown in Figure 3. In the injection-molding process, the influence
of operating conditions on the internal morphology distribution of semi-crystalline polymer
mold parts has been well summarized by Pantani et al. [27]. However, the introduction
of the ultrasonic energy field lowers the level of these parameters. The general choice of
researchers is to improve the parameter levels of certain factors in an attempt to associate the
factor with an easily available result. Most of the research work in the past focused on the
effect of crystallinity on viscosity, especially the description of the flow-induced crystallization
phenomenon. However, it is still a question of which variables or their combinations are the
most suitable for describing the evolution of crystal morphology.
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Figure 3. “Skin–core” structures at different conditions; T represents temperature, P represents
pressure, t represents the thickness of skin layers [27].

2.2. Principles and Methods
2.2.1. Process Principle

Due to the filling problem that reduced scale brings, the ultrasonic vibration was
introduced to the MIM system to improve the filling capability by improving the fluid-
ity of polymer melt. Since the application of ultrasound technology in polymer micro-
injection molding has not been systematically reviewed, the names of similar technologies
have not yet been unified: ultrasonic injection molding (UIM) [18], ultrasonic vibration
micro-injection mold (UVMIM) technology [38], ultrasonic-assisted injection molding
(UAIM) [39], but the common point of this technology is that the ultrasonic action is aimed
at the polymer melt, improving its fluidity and achieving high replication and quality re-
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quirement of parts. Polymer plasticization, metering, injection, and other processes rely on
existing micro-injection-molding machines (ARBURG [31,40], FANUC [14,41,42], BOY [43],
Wittmann-Battenfeld [44]). Considering the difference between micro-injection molding
and injection molding and the auxiliary effect of ultrasound, this kind of technology can be
classified as ultrasound-assisted micro-injection molding (UAMIM). Although the internal
morphology of micron-sized parts made of ordinary pure polymer materials has been
widely studied and well understood, few papers have studied the morphology evolution
of molded parts under the action of ultrasonic field: this problem has not been solved.

UAMIM is a manufacturing process in which polymer pellets are plasticized by the
conventional heating and screw shear heating in an MIM machine, and then, the polymer
melt is injected into the mold cavity with the help of ultrasonic vibration, which is accom-
panied by energy exchange. Figure 4 shows the schematic diagram of UAMIM. The very
high frequency of ultrasonic waves makes it possible to ensure the propagation direction in
a very narrow space, which is not available for audible sound [45]. Ultrasonic energy exerts
great acceleration on medium particles during transmission, which significantly affects
the energy of medium materials [18]. Therefore, when the ultrasonic waves are applied
to polymer melt, the fluidity of the polymer melt and molding quality of micro-parts are
enhanced by the propagation of ultrasonic vibration energy in the polymer [45].
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2.2.2. Configuration Design

As the auxiliary force field of ultrasound, the most important point is to transmit the
vibration energy to the polymer melt during the filling process as much as possible. There
are multiple options for the choice of the ultrasonic vibration point for this. Table 1 lists
some common ultrasonic vibration point arrangements. Figure 5 shows different setting
points of ultrasonic vibration. In terms of contact with the melt, it can be divided into
direct ultrasonic vibration and indirect ultrasonic vibration. In indirect ultrasonic vibration,
the ultrasonic sonotrode is not in direct contact with the polymer melt, and the ultrasonic
transmission is indirectly transmitted to the polymer melt in the micro-cavity through the
mold itself. As a result, a high-power ultrasonic energy field is applied to the mold, and
high energy consumption and low effective utilization of ultrasonic energy have become
the biggest challenges for the popularization of this process. In direct ultrasonic vibration
(point c in Figure 5), the ultrasonic waves directly contact the polymer melt and apply high
frequency vibration. This process requires a special ultrasonic sonotrode as a part of the
cavity, which may cause problems such as its wear of and leakage of the rubber material.

When the molten polymer flows through the ultrasonic vibration application area,
it will follow the vibration and absorb ultrasonic energy. However, when the melt flow
direction is perpendicular to the ultrasonic vibration direction, there will be slight flow re-
sistance in the melt, as shown by point b in Figure 5. If the vibration point is at the entrance
(point a), the resistance will fill the melt into the cavity from the vibration point; therefore,
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the weight of molded parts will increase [18], and the vibration part of the ultrasonic waves
will produce a sinking mark. If the vibration point is at the mold cavity (point b) or in direct
contact with the melt (point a), the shear flow resistance will be weakened by ultrasonic
vibration, the melt flow length will increase [39], and the filling percentage will also be
improved [18,46]. The way the vibration direction is parallel to the melt flow direction
(point d) can force more of the melt to maintain a straight flow over a longer distance [43].
To change the direction of ultrasonic action, the directional converter of ultrasonic waves is
often used by researchers [39,47]. Hence, the vibration point should be set according to the
structural characteristics of the injection part. Finally, since the flow viscosity of the poly-
mer melt is affected by the application direction and transmission mode of the ultrasonic
energy field, the vibration point should be set according to the structural characteristics of
the injection part. However, the instructive suggestions for setting vibration points still
need to be further studied and standardized more systematically.
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Table 1. List of the current schemes of ultrasound action. In this table, only the basic setting is listed;
for detailed configurations and process parameters, please refer to the source.

Vibration Point/Region Direction Indirect/Direct Reference

Gate Vertical Direct [18,48]

Middle of mold insert Vertical
Indirect [45,49]
Direct [31,38,46]

Integrated with mold Parallel Indirect [40,43,50]
Whole of the mold Vertical Direct [51]

2.3. Engineering Characteristics
2.3.1. Improved Flow Properties

For UAMIM technology, the plasticization is completed by a traditional micro-injection-
molding machine, and the ultrasonic force field is applied to the subsequent injection filling
process. Numerous experiments and simulations have confirmed the positive effect of
ultrasound on the filling rate [52,53]. The introduction of an ultrasonic field can slow
down the cooling rate of molten polymer, prevent adhesion, reduce the thickness of the
condensate layer, and prevent excessive shear forces and flow resistance, which leads
to longer flow length and molding weight [39,45,54,55]. The decrease of flow resistance
makes injection pressure reach the end of the cavity successfully, thus reducing the pres-
sure loss between the proximal and distal ends of the gate. The pressure loss before and
after the vibration area was measured by Yang et al., and it was found that the pressure
loss is more obvious in thinner parts, and the pressure loss value of UAMIM is close
to 27% compared with MIM [31]. Later research showed that a short shot can also be
reduced with an increased ultrasound power, and a higher mold temperature is good for
slowing the cooling rate and reducing the shear stress [46]. More intuitively, the filling
process can be visualized with a high-speed camera [56–58]. In order to understand the
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flow behavior of molten polymer in the ultrasonic vibration injection-molding process,
Jiang et al. [43] developed a new visualization device for analyzing the filling velocity field
in the injection-molding process. The results showed that when the ultrasonic power is
200 W, the filling front velocity can be increased by 27% by ultrasonic vibration. In addition,
during ultrasonic vibration, the velocity gradient of the melt decreases, and the velocity
distribution became more uniform. The simulation results of Gao et al. [59] show that the
ultrasonic vibration can obtain higher speed, lower viscosity, a more uniform viscosity field as
shown in Figure 6, and better mold-filling performance, which makes the mold-filling quality
of micro-plastic parts better, which is consistent with the experimental result before Qiu [45].
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2.3.2. Improved Replication Fidelity

The replication degree of molded plastic parts is an important criterion for judging
the molding quality. The improvement of the melt quality under the effect of ultrasound
vibration has a positive effect on the improvement of the replication of the molded part.
Sato et al. [18,48] studied the effect of ultrasonic vibration on the quality of plastic parts.
The results show that the replication performance of lenses is improved from 84% to 95%
and the surface accuracy is improved by nearly 25%. The same result was obtained in
a forming experiment involving a linear microchannel product. Qiu et al. [45] applied
ultrasonic vibration to the mold-filling process of Fresnel lenses. The results were that the
filling area of the plastic parts was improved by about 6.91% and symmetric deviation
was improved 15.62% on average because of ultrasonic vibration. Lateral experiment and
simulation proved it again [49,59]. The improvement of the mass or the filling length of
molded parts is related to the temperature change under the action of ultrasonic vibration
field. The temperature increases of the oscillation part of the ultrasonic wave (∆T) is shown
as Equation (1).

∆T = It
(

1− e−2αX
)

/(XρH) (1)

where I denotes the sound intensity, t is the oscillation time, α is the coefficient of ultrasonic
energy absorption, X is the distance, ρ is the density, and H is the heat capacity.

Due to the absorption of ultrasonic energy, local heating occurs in the resin, which
leads to the formation of oscillating flow in the packing and holding stages. The defor-
mation resistance of the skin layer is reduced by the local heating occurring between the
molten and skin layer. Therefore, as shown in Figure 7, surface replication, which mainly
occurs in the packing and holding stages, is enhanced in the UAMIM process. Therefore,
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when producing micro-parts, especially with a functional surface microstructure, such as a
microlens array, it is a feasible choice to apply an ultrasonic energy field to enhance the
replication ability.
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2.3.3. Reduced Energy Consumption

In UAMIM technology, the enhancement of fluidity and the improvement of repli-
cation do not mean higher parameter settings. On the contrary, the auxiliary effect of
ultrasound can reduce the parameter level required for material molding.

To achieve a molded part of higher quality, other assistive variotherm molding tech-
nology was used, including Rapid Heat Cycle Molding (RHCM) [60], Induction Heating
Molding (IHM), and Electricity Heating Mold (E-mold). However, a higher process pa-
rameter setting, higher energy demand, and longer time are the cost. Chen et al. [61]
systematic studied the electromagnetic induction heating system with a power of 30 kW
to heat the mold plate. On the premise of low cost and practicability, Chang et al. [62]
designed and investigated an infrared rapid surface heating system, which was used in the
injection-molding process. In this system, the surface heat of a mold insert is provided by
four 1 kW infrared halogen lamps as radiation sources. The former is almost 15 times the
power of ultrasound and the latter is two times (the maximum power applied in UAMIM in
the experiment is 2 kW, and even it is not more than 1 kW in practical applications). Using
this kind of external heating technology, time to heat and cool was increased subsequently,
increasing the whole cycle time. Figure 8 shows the time sequence of each cycle of the
different processes.

Since ultrasonic energy dissipates energy more quickly than heat conduction, the cycle
time can be reduced. Liu et al. [38] compared two technologies in molding a high aspect
ratio microstructured surface. One is micro-injection compression molding equipped with
RHCM and vacuum mold venting (VMV), and another is micro-injection molding with
ultrasonic technology (UAMIM). The results showed that all the process parameters in the
latter one are lower, while a higher molding height was obtained, as shown in Table 2. In
UAMIM, ultrasonic vibration only works on the microchannel, and the heat storage is little.
Therefore, the cooling time required is only 10 s. Excluding injection time and demolding
time, the production cycle in ultrasonic vibration micro-injection molding (µUVIM i.e.,
UAMIM) is only 10 + 1.86 = 11.86 s, while micro-injection compression molding (µICM)
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needs to consider vacuuming time, with the production cycle of 20 + 25 = 45 s. Therefore,
using ultrasonic technology, the production efficiency has increased nearly three times.
Additionally, there is no need to equip RHCM and VMV in the UAMIM process; hence, the
manufacturing cost of the mold is relatively low. Ultrasound in previous rheological tests
has also shown that it can reduce the mold temperature parameter settings during polymer
processing as well as the obvious viscosity drop and pressure reduction, which means
that the molding cost is smaller. This has been confirmed in the injection experiments of
Yang et al. [39,46], Jiang et al. [43], and Masato et al. [44] Although the ultrasonic energy
field can reduce the energy consumption of molding, it is difficult to quantitatively judge
its advantages only by the reduced parameter level. The quantitative work of related
indicators such as power consumption and its reduction rate still need to be clarified.

In the process of injection molding, low-frequency vibration is also used to improve
the mechanical properties of high-density polyethylene (HDPE) and iPP, such as reducing
warpage [63,64], reducing residual stress [39], and improving welding strength [40,51,65,66].
This technology can also be used in the ejection stage and reduce the friction force
during ejection [44]. Table 3 provides some successful cases in the ultrasound-assisted
microinjection-molding process and their main characteristics.
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Table 2. Comparison of the best reproduction quality and process parameters between Muvim (UAMIM) and µICM [38].

Processes Mold Temperature
[◦C]

Injection Speed
[mm/s]

Packing
Pressure [MPa]

Production
Cycle [s]

Height
[µm]

Standard
Deviation

µUVIM
(UAMIM) 70 102 123 11.86 36.46 0.75

µICM (VMV +
RHCM) 108 131 150 45 31.12 0.73
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Table 3. Examples processed by UAMIM.

Molded Parts Material
Trade Name

MIM Machine
and Parameter Ultrasound Parameter Results Ref.

Polymers 2021, 13, x FOR PEER REVIEW 11 of 43 
 

 

Table 3. Examples processed by UAMIM. 

Molded Parts 
Material 

Trade Name 
MIM Machine 
and Parameter 

Ultrasound Parameter Results Ref. 

 

Concave Lens 
Polycarbonate (PC) 
TARFLON A2200 

AZ700 
Compression force: 980 kN 

Cooling time: 120 s 

f = 19 kHz 
Amplitude: 0–11 μm 

Oscillation: 0–60 s 

Replication properties ↑ 
Residual optical strain ↓ 

[18] 

 

Micro-Tensile 
Sample 

Polypropylene (PP) 
PPH 734-52 RNA 

ARBURG Allrounder 320C 
Clamping force:600 kN 

f: 20 kHz 
Max. power: 800 W 

Max. amplitude: 11 μm 
Weld line strength ↑ [40] 

 
A Flat Sample 

Polycarbonate (PC) 
Teijin AD5503 

ARBURG Allrounder 320C 
Clamping force:600 kN 

f: 19 kHz 
Max. power: 2 kW 

Max. amplitude: 15 μm 

Pressure loss ↓ 
Residual stress ↓ 

Filling efficiency ↑ 
Thickness of the frozen 

layer ↓ 

[31,3
9] 

 

Fresnel Lenses 
COC 

Zeonex 480R 
FANUC ROBOT S-2000i 50B f: 27 kHz 

Filling performance ↑ 
Symmetric deviation ↑ 

[45] 

 

Microchannel 
Array 

PMMA 
HT50Y 

DQ-1500T-A 
Clamping force: 15,000 kN 

f: 28 kHz 
Max. amplitude: 10 μm 

Average weight/height ↑ 
standard deviation ↑ 

replication rate ↑ 
[38] 

Micro-Needle 
Array 

Polymethylmethacry
late (PMMA) 

JPC Novatec BC06N 
FANUC ROBOT S-2000i 50B 

f: 55 kHz 
Max. amplitude: 28 μm 

Filling rate ↑ 
Material properties ↑ 

[49] 

2.4. Theoretical Interpretations 
As an important link in the so-called “chain of knowledge” reaching from the 

production of polymers to their end-use properties, rheology plays an important role in 
polymer research [67], which seems to be more important in the micro/nano scale during 
MIM [68]. The improvement of the melt properties mentioned above under the ultrasonic 
field is ultimately the improvement of the polymer rheological properties. It is worth 
mentioning that when the channel size is less than 10 μm, the micro viscosity and wall 
slip play a vital role [69]. 

2.4.1. Viscosity in Liquid 
The index that measures the deformation resistance of fluid at a given rate is called 

the viscosity of fluid. “The viscosity of syrup is higher than that of water” is a common 
statement, in which the concept of viscosity corresponds to the informal concept of 
“thickness” in terms of liquid [70]. Shear thinning is the most common type of non-
Newtonian behavior of fluids; as a kind of non-Newtonian behavior, the viscosity of 
polymer decreases with increasing shear rate or shear stress. The time-independent 
relationship between shear rate (𝛾ሶ) and shear stress (τ) of non-Newtonian fluids can be 
described by the general Equation (2) 𝛾ሶ = 𝑓(𝜏). (2)

The behavior of fluids in the shear-thinning regime can be described with the power-
law equation of Oswald and de Waele: 𝜏 = 𝐾(𝑇) ቂௗ௬ௗ௧ቃ = 𝐾(𝑇)𝛾ሶ . (3)

This equation may be written in logarithmic form: log(𝜏) = log(𝐾) + 𝑛 log(𝛾ሶ). (4)

Concave Lens Polycarbonate (PC)
TARFLON A2200

AZ700
Compression force:

980 kN
Cooling time: 120 s

f = 19 kHz
Amplitude: 0–11 µm

Oscillation: 0–60 s

Replication properties ↑
Residual optical strain ↓ [18]
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Micro-Tensile
Sample

Polypropylene (PP)
PPH 734-52 RNA

ARBURG
Allrounder 320C

Clamping force: 600
kN

f: 20 kHz
Max. power: 800 W

Max. amplitude: 11 µm
Weld line strength ↑ [40]
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A Flat Sample Polycarbonate (PC)
Teijin AD5503

ARBURG
Allrounder 320C

Clamping force: 600
kN

f: 19 kHz
Max. power: 2 kW

Max. amplitude: 15 µm

Pressure loss ↓
Residual stress ↓

Filling efficiency ↑
Thickness of the frozen

layer ↓

[31,
39]

Polymers 2021, 13, x FOR PEER REVIEW 11 of 43 
 

 

Table 3. Examples processed by UAMIM. 

Molded Parts 
Material 

Trade Name 
MIM Machine 
and Parameter 

Ultrasound Parameter Results Ref. 

 

Concave Lens 
Polycarbonate (PC) 
TARFLON A2200 

AZ700 
Compression force: 980 kN 

Cooling time: 120 s 

f = 19 kHz 
Amplitude: 0–11 μm 

Oscillation: 0–60 s 

Replication properties ↑ 
Residual optical strain ↓ 

[18] 

 

Micro-Tensile 
Sample 

Polypropylene (PP) 
PPH 734-52 RNA 

ARBURG Allrounder 320C 
Clamping force:600 kN 

f: 20 kHz 
Max. power: 800 W 

Max. amplitude: 11 μm 
Weld line strength ↑ [40] 

 
A Flat Sample 

Polycarbonate (PC) 
Teijin AD5503 

ARBURG Allrounder 320C 
Clamping force:600 kN 

f: 19 kHz 
Max. power: 2 kW 

Max. amplitude: 15 μm 

Pressure loss ↓ 
Residual stress ↓ 

Filling efficiency ↑ 
Thickness of the frozen 

layer ↓ 

[31,3
9] 

 

Fresnel Lenses 
COC 

Zeonex 480R 
FANUC ROBOT S-2000i 50B f: 27 kHz 

Filling performance ↑ 
Symmetric deviation ↑ 

[45] 

 

Microchannel 
Array 

PMMA 
HT50Y 

DQ-1500T-A 
Clamping force: 15,000 kN 

f: 28 kHz 
Max. amplitude: 10 μm 

Average weight/height ↑ 
standard deviation ↑ 

replication rate ↑ 
[38] 

Micro-Needle 
Array 

Polymethylmethacry
late (PMMA) 

JPC Novatec BC06N 
FANUC ROBOT S-2000i 50B 

f: 55 kHz 
Max. amplitude: 28 μm 

Filling rate ↑ 
Material properties ↑ 

[49] 

2.4. Theoretical Interpretations 
As an important link in the so-called “chain of knowledge” reaching from the 

production of polymers to their end-use properties, rheology plays an important role in 
polymer research [67], which seems to be more important in the micro/nano scale during 
MIM [68]. The improvement of the melt properties mentioned above under the ultrasonic 
field is ultimately the improvement of the polymer rheological properties. It is worth 
mentioning that when the channel size is less than 10 μm, the micro viscosity and wall 
slip play a vital role [69]. 

2.4.1. Viscosity in Liquid 
The index that measures the deformation resistance of fluid at a given rate is called 

the viscosity of fluid. “The viscosity of syrup is higher than that of water” is a common 
statement, in which the concept of viscosity corresponds to the informal concept of 
“thickness” in terms of liquid [70]. Shear thinning is the most common type of non-
Newtonian behavior of fluids; as a kind of non-Newtonian behavior, the viscosity of 
polymer decreases with increasing shear rate or shear stress. The time-independent 
relationship between shear rate (𝛾ሶ) and shear stress (τ) of non-Newtonian fluids can be 
described by the general Equation (2) 𝛾ሶ = 𝑓(𝜏). (2)

The behavior of fluids in the shear-thinning regime can be described with the power-
law equation of Oswald and de Waele: 𝜏 = 𝐾(𝑇) ቂௗ௬ௗ௧ቃ = 𝐾(𝑇)𝛾ሶ . (3)

This equation may be written in logarithmic form: log(𝜏) = log(𝐾) + 𝑛 log(𝛾ሶ). (4)

Fresnel Lenses COC
Zeonex 480R

FANUC ROBOT
S-2000i 50B f: 27 kHz Filling performance ↑

Symmetric deviation ↑ [45]
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Microchannel
Array

PMMA
HT50Y

DQ-1500T-A
Clamping force:

15,000 kN

f: 28 kHz
Max. amplitude: 10 µm

Average weight/height ↑
standard deviation ↑

replication rate ↑
[38]
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Micro-Needle
Array

Polymethylmethacrylate
(PMMA)

JPC Novatec BC06N

FANUC ROBOT
S-2000i 50B

f: 55 kHz
Max. amplitude: 28 µm

Filling rate ↑
Material properties ↑ [49]

2.4. Theoretical Interpretations

As an important link in the so-called “chain of knowledge” reaching from the produc-
tion of polymers to their end-use properties, rheology plays an important role in polymer
research [67], which seems to be more important in the micro/nano scale during MIM [68]. The
improvement of the melt properties mentioned above under the ultrasonic field is ultimately
the improvement of the polymer rheological properties. It is worth mentioning that when the
channel size is less than 10 µm, the micro viscosity and wall slip play a vital role [69].

2.4.1. Viscosity in Liquid

The index that measures the deformation resistance of fluid at a given rate is called
the viscosity of fluid. “The viscosity of syrup is higher than that of water” is a common
statement, in which the concept of viscosity corresponds to the informal concept of “thick-
ness” in terms of liquid [70]. Shear thinning is the most common type of non-Newtonian
behavior of fluids; as a kind of non-Newtonian behavior, the viscosity of polymer decreases
with increasing shear rate or shear stress. The time-independent relationship between
shear rate (

.
γ) and shear stress (τ) of non-Newtonian fluids can be described by the general

Equation (2)
.
γ = f (τ). (2)

The behavior of fluids in the shear-thinning regime can be described with the power-
law equation of Oswald and de Waele:

τ = K(T)
[

dy
dt

]n
= K(T)

.
γ. (3)

This equation may be written in logarithmic form:

log(τ) = log(K) + n log
( .
γ
)
. (4)
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A log–log plot of shear stress (τ) versus shear strain (dy/dt) should yield a straight line
if the polymer solution or melt behaves as a pseudoplastic liquid. The apparent viscosity is
defined by the following Equation (5).

η =
τ
.
γ

(5)

A second power-law equation for the apparent viscosity is obtained by combining
this expression with the Oswald Equation (6):

η = K(T)
.
γ

n−1 (6)

where K is the flow consistency index, n is the flow behavior index, for shear thinning or
pseudoplastic flow, and n < 1.

As far as viscosity measurement is concerned, capillary viscometer and slit viscome-
ter are two commonly used technologies for measuring melt viscosity [71]. By using a
slit/capillary die embedded in a nozzle or mold, some work has been done to test the rheo-
logical properties of material with an injection-molding machine or an extruder [72–75].

The rheological test under ultrasonic field is more focused on the field of extrusion
molding, but its influence mechanism is also of great significance for the application of
ultrasound in the injection-molding process. The mechanism and influence of ultrasonic
energy field on viscosity in the process of micro-injection molding need to be further studied.

Under different ultrasonic power levels, a linear relationship between log ηa (logarith-
mic viscosity) and log γw (logarithmic shear rate) was detected in the ultrasonic-assisted
extrusion process, which obeys the equation. Based on the power-law model, Guo et al.
have done a lot of work about the effect of ultrasound on rheology improvement using
the specially designed ultrasonic oscillation extrusion system, as shown in Figure 9. The
results showed that when ultrasonic vibration is introduced into PS melt, n increases with
the increase of ultrasonic intensity, which indicates that ultrasonic vibration reduces shear
sensitivity. With the increase of ultrasonic intensity, the consistency index of polystyrene
decreases, indicating that the melt viscosity of polystyrene decreases under the action
of ultrasonic oscillations [76]. The same trend is obtained in LLDPE [77], as shown in
Figure 10, and HDPE [78]. The most intuitive conclusion is that at different temperatures,
the apparent viscosity of the melt decreases with increasing ultrasonic density. In other
words, when the apparent viscosity is maintained at the same level, ultrasonic vibration
will lower the processing temperature of LLDPE. Later studies on other polymer materials
show the similar trend via ultrasonic processing.

However, ultrasonic energy field can transform vibration energy into heat energy to
increase the melt temperature. It is difficult to rule out the possibility that the decreased
viscosity is caused by the increased melt temperature. The different application methods
(direct or indirect) of the ultrasonic energy field, the setting of the vibration point (parallel
or perpendicular), and the energy utilization efficiency are still unresolved.
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The orientation of molecular chain flow is the main reason for the elasticity and
non-Newtonian property of polymer melts. It is said that entanglement of molecular
chains decreases the possibility of molecular chain orientation and slows down relaxation,
while ultrasonic vibration can shorten relaxation time, obviously [79]. Chen et al. [79]
found that the apparent relaxation time dropped sharply by increasing the ultrasonic
intensity from 0 to 50 W. Molecular chain disentanglement, which orients molecules, can
be attributed to the strong vibration, crushing, and cavitation of power ultrasound, which
is helpful to excite and activate molecular chains [80,81]. In fact, at a sufficiently high
shear rate, highly anisotropic polymer chains can be disentangled and aligned along the
shear direction [82]. Therefore, the viscosity of polymer melt can be reduced by fewer
molecule/particle interactions and larger free space [83]. Additionally, the influence of
power ultrasound on the physical and chemical properties of polymer melts is also one of
the important research contents. The research shows that under most research intensity,
the influence of chemical effect on the apparent viscosity of polypropylene accounts for
35–40% of the total ultrasonic effect [84].

The above reports sufficiently explain why ultrasonic vibration can improve the quality
of molded parts, increase the replication fidelity, and even reduce the viscosity. Interpretation
at the molecular level is conducive to the design and optimization of process parameters. At
the same time, this may be the most significant advantage of the UAMIM process.

2.4.2. Wall Slip in Cavity

Generally, viscous fluid means adhering to the boundary and reaching the boundary
velocity in the process of flow. However, the so-called “wall slip” here means that there is a
relative velocity on the contact line between the fluid and the solid boundary during the
flow process [85].
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There are two slip regions in the flow of molten polymer. When the wall shear
stress exceeds a critical value, molten polymers slip macroscopically over wall surfaces,
which is known as weak slip or adhesion-detachment wall slip [86–89]. Then, for the
characteristics of linear polymers, especially those with relatively narrow molecular weight
distribution [90], when a second critical value is exceeded, another slip will occur, which is
called strong slip or entanglement-disentanglement wall slip [42,90–92]. Deng et al. [93]
found that with the decrease of channel size (the increase of shear stress), the destruction
speed of the entanglement points was faster than the reconstruction speed, as shown in
Figure 11. When the diameter of the channel decreases further and the shear rate increases
to a certain value, there is not enough time to reconstruct the entanglement points. Hence,
the free chains can be easily oriented along the velocity field, but those in the attachment
area remain entangled and attached to the wall.
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Slip plays an important role in correctly determining the rheological properties of
polymers [94], which can correct the slip effect data and explain the reasons for the mis-
match of rheological data obtained from various rheometers with different geometries [95].
In micro-injection molding, the no-slip boundary condition is not valid due to the high
velocity, high pressure, and micro-scale flow conditions; hence, the melt flow will exhibit
uneven and complex changes in the micro-cavity. Especially in the micro-sized cavity,
because the shear stress is greater than that of the conventional cavity, the occurrence rate
of wall slip is higher in the filling process [96,97].

The molding quality of micro-polymer parts is largely controlled by the melt flow field
in the micro-cavity, in which the influence of wall slip is complex and cannot be ignored [98].
The influence includes significantly reducing the wall shear stress and the melt apparent
viscosity, reducing the velocity gradient, improving the uniformity of flow rate distribution
and viscosity distribution, and thus promoting the mold filling in micro-cavity, or further
transforming the flow field into a piston flow, which is good for filling [99,100].

Although UAMIM has been proved the ability to improve the rheological properties
of polymer melt and promote melt flow, there are few related research studies on the
mechanism of wall slip under an ultrasound field. Gao et al. [42] established both adhesion–
detachment and entanglement–disentanglement wall slip models by combing the effect
of ultrasonic vibration. The results measured in the home-made equipment show that
both weak and strong wall slip of melt in a micro-cavity can be enhanced by ultrasonic
vibration, which agrees with the built theoretical models, as shown in Figure 12. Ultrasonic
vibration can reduce the apparent viscosity of polymer melt, release shear stress, and
improve the filling ability of melt in the micro-cavity, thus improving the molding quality
of micro-polymer parts [45]. With the introduction of a new physical field, it is necessary
to customize viscosity testing equipment for polymer rheology, and there are few reports
in this field. At the same time, the test standards and test conditions of viscosity and wall
slip should not be excluded from the discussion.
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3. Ultrasonic Plasticization Micro-Injection Molding
3.1. Size Effect in MIM

The size effect is mainly reflected in the situation in which the volume and the injection
volume of the final molded part are seriously mismatched. Almost all micro-injection-
molding machines cannot avoid material waste caused by miniaturization.

Three-section screws are used to plasticize polymers commonly in the processing. The
screw diameter is limited due to the size of standard granules and large shear force in
processing, making the smallest diameter about 14 mm, and the screw moves just 1 mm.
About 0.185 g of plastic material are injected [19], while a part can only be 0.024 g or less,
which means 0.185–0.024 g of material is wasted. In the production of medical devices, it is
extremely important to avoid wasting raw materials that directly affect the price of parts,
because the cost per gram of bio-absorbable polymers may be 5–10 dollars [21].

In order to achieve a small injection volume (<1 mg), IKV (Institute für KunststoffVer-
arbeitung, Aachen, Germany) has prepared a small desktop-level micro-injection-molding
machine that is only the size of a shoe box, in which 2 mm injection plungers, 5 mm me-
tering plungers, TOOLVAC technologyTM-have been used [101]. However, plasticization
time has become a large proportion of the entire molding cycle due to the electric heating
plasticization; hence, ultrasonic plasticization of trace polymers was investigated in order
to improve the efficiency by Michaeli et al. [19], and the molding process based on this
kind of plasticization method is called UPMIM. It is reported that the injection volume can
be distributed between 5 and 300 mg. The optimization of the structure, although fully
electrified to some extent, alleviates the problems caused by miniaturization, but it is still
far from enough. UPMIM technology with a simple plasticization and molding principle
has generally demonstrated its characteristics and advantages since its introduction in 2002.
Obviously, this technology provides a new choice for the injection molding of small batch
micro-parts.

3.2. Principles and Methods
3.2.1. Process Principle

Similar to conventional micro-injection molding, UPMIM has the same molding stage:
feeding, plasticization, injection and holding, and cooling and ejection. The schematic of
the UPMIM process is shown in Figure 13. Since UPMIM is designed to plasticize a small
amount of polymer in a single shot, only one molding cycle of raw materials is needed at
the feeding stage. During feeding, the sonotrode is displaced upward to leave the feeding
space. Then, it is displaced downward to provide sufficient pre-compression to plasticize
the polymer particles at high frequency. During the injection and holding stage, with the
downward movement of the sonotrode, the filling of the polymer melt is completed. After
the part is cooled down, the rod ejects the part, and a molding cycle is completed, and the
second molding can be performed by feeding. There are various names for this process,
such as ultrasonic molding [102,103], ultrasonic injection molding [21], ultrasonic micro
molding [104], ultrasound injection molding [105], and ultrasonic micro-injection mold-
ing [106]. In order to avoid confusion with ultrasound-assisted micro-injection molding
(UAMIM) and ultrasonic compression molding (UCM), ultrasonic plasticization micro-
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injection molding (UPMIM) is named after its most important process feature, that is,
power ultrasound is the only energy source for plasticizing polymers.

In terms of molding process, only a small amount of raw materials are plasticized and
injected in a single cycle of UPMIM. Therefore, it seems that reducing cycle time and mate-
rial waste, especially medical materials, is the main advantages of UPMIM. Furthermore,
the process can save production costs when producing small batches, and it is especially
suitable for the initial stage of product development. However, the micro-injection-molding
process still has irreplaceable advantages in mass production and automated production.
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3.2.2. Configuration Development

The UPMIM equipment currently used for molding can be divided into the following:
(1) an independently developed ultrasonic plasticizing experimental platform, including
an upgrade by an ultrasonic welding machine [19,102,107–109], completely home-made
equipment [20,110,111]; (2) commercial equipment: Sonorus 1 G has a maximum single
injection weight of 2 g, but for the needs of the industry, this machine can accommodate a
slightly larger shot size [106,112–115]. Subsequently, the second version of the equipment
(the Sonorus S210 machine) came out in 2016, with a maximum injection weight of 5 g. As
for the driving method, the ultrasonic plasticizing experimental device was driven by the
previously unstable air pressure [108,112] and replaced with a servo drive with precise
displacement and pressure control [20].

In terms of UPMIM processing modes, they can be divided into two categories. The
first type is “injection while plasticizing”. Another type is “injection after plasticization”.
For the former, the plasticizing cavity and the cavity are connected. Ultrasonic plasticization
is accompanied by injection filling of the melt. At present, almost all related equipment
operations adopt “injection while plasticizing” mode. Under this mode, the structure
of the equipment can be divided into two configurations, as shown in Figure 14. In
Configuration 1, the lower plunger is fixed during the molding process, and the ultrasonic
sonotrode performs ultrasonic vibration while completing the injection-filling operation.
In Configuration 2, the ultrasonic sonotrode has no displacement during the molding
process, and it is only responsible for ultrasonically plasticizing the polymer. The injection
and filling behavior are completed from the bottom to the plunger. The most intuitive
performance of the two frame structures is that the end face of the sonotrode of the latter is
always flush with the surface of the cavity, and the position of the sonotrode of the former
has been dynamically changed, which is one of the reasons for the surface wear of the
sonotrode. The polymer on the surface of the sonotrode in Configuration 1 is plasticized
first, and the energy is transferred from the top to the bottom. During the injection filling,
the unplasticized impurities easily enter the cavity, and Configuration 2 can reduce the
wear and uneven filling to a certain extent. Reports in recent years have shown that
Configuration 1 is being replaced by Configuration 2 with obvious advantages. However,
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no matter which configuration it is, more profound basic theoretical research is needed.
Only in this way can the process stability be improved. On the other hand, the “injection
after plasticization” mode is superior in process stability. Compared with the former, the
latter not only uses an ultrasonic energy field to plasticize raw materials but also includes
metering and injection devices. In fact, almost no current equipment adopts this mode.
However, well-designed equipment according to this model still has a chance to be one of
the potential development directions.
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3.3. Engineering Characteristics
3.3.1. Increased Material Utilization

There is still a runner and sprue in molded parts, which made it appear particularly
large in micro molding. However, compared with traditional MIM, UPMIM can save 40%
to 70% of the equivalent cold runner. The volume of the cylindrical gate depends on the
diameter of the sonotrode and plunger, and the commonly used size is 8 mm [108,112]
and 10 mm [20,111]. In the experiment of Sacristán et al. [112], polylactide (PLA) was
used to mold eight test specimens of small dimensions, each weighting 10 mg, where a
shot weight of 250 mg is required. Finally, nearly 70% of the loaded materials became
waste (170 mg), which were wasted on the sprue and runners, saving 20% of the mate-
rials compared with the traditional injection-molding system [19]. In another UPMIM
equipment, Grabalosa et al. [108] reduced the waste to 45% according to calculations of
Heredia et al. [21]. Figure 15 shows the quantitative comparison of waste materials
among the feeding subsystems in different micro-part production systems. For some
high-performance polymer, such as polyetheretherketone (PEEK), the polymer itself is not
only expensive but also requires processing at high temperatures and employing addi-
tional special equipment which, in turn, further increases the cost of production, which
renders the PEEK injection micro-molding process uneconomic for low volume series and
customized micro-parts [116]. Dorf et al. [117] analyzed the influence that the main process
parameters have when processing the PEEK polymer via UPMIM successfully; the results
demonstrated the fact that UPMIM technology is capable of producing parts with competitive
properties. In terms of a material utilization ratio, the smaller the molded part, the more obvious
the advantages of UPMIM, especially when the performance of some medical materials will be
affected after secondary plasticization.
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3.3.2. Reduced Energy Consumption

An all-electric molding machine (Battenfeld Microsystem 50) was designed for precise,
small micro-parts by splitting plasticizing, dosing, and injecting unit. Its injection system
consists of a screw plasticizing barrel, a plunger injection system, and a melt dosage control
barrel, as shown in Figure 16a.

In the MIM system, nearly 20% of the total energy in the injection process is used to
heat the plasticizing unit [6]. According to the research of Spiering et al., about 40% of
the total energy consumption is concentrated in the injection-molding process, including
mold heating, mold moving, and melt injection [7]. In different types of energy generators
such as electric, hydraulic, or hybrid, in fact, the most effective one should be the electric.
The power requirements of hybrid and all-electric machines are shown in Figure 16b,
both of which run the same components with a cycle time of 14 s. The results show that
using all-electric hybrid technology can save substantial energy when the efficiency of the
hydraulic machine is even lower than that of hybrid technology [118].
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The plasticizing stage is the main energy-consuming stage in the UPMIM process. Com-
pared with the relatively energy-saving full-electric micro-injection molding, the plasticizing
stage also has greater energy savings. The plasticizing phase is performed by the sonotrode,
and energy is provided by an ultrasonic power source. The rate power of most ultrasonic
generators used now in UPMIM are 1 kW [112] and 1.5 kW [108]. In fact, under normal
conditions, the required power is between 400 and 500 W. If the pressure of the end face of
the sonotrode is overloaded, the power will exceed 1000 W, and the whole system will be
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unstable. Jiang et al. [120] showed that the ultrasonic power increases with the pressure at
the first two minutes. The maximum plasticizing power does not exceed 290 W, as shown in
Figure 17a. Grabalosa et al. [108] pointed out that the higher the pressure, the better the energy
utilization ratio for melting the polymer (under the condition that the ultrasonic generator
is not overloaded). Therefore, with the increase of pressure, the efficiency of the ultrasonic
sonotrode plasticizing process will increase from about 10% to 50%. In any case, the maximum
power of the generator can reach 150 W, as shown in Figure 17b.
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On the other hand, molding a micro-part or structures requires less pressure and
lower energy consumption in UPMIM. In traditional precision injection-molding machines,
typically, 1600–3500 bar was used [1,108]. However, in the UPMIM process, these pressures
drop to the range of 300 to 500 bar. For example, Sonorus 1 G is technically rated with
a clamping force of 3 m.t., while 1.5 to 2.2 m.t. of clamping force is needed. In addition,
the energy consumption of Sonorus 1 G is directly reduced by 85% to 90% compared with
that of the standard injection-molding machine due to the elimination of the heater bands,
hydraulic pumps, and motors, which are usually used to keep the clamp shut under high
pressure. Grabalosa et al. [108] adopted an electro-pneumatic ultrasonic molding machine,
which reduces the waste of micro-parts by nearly 10%. For the UPMIM equipment, all-
electricalization is also a developmental trend.

Many reports have proved that the UPMIM process has lower energy consumption
than the traditional injection process. However, in the process of mass production, the
advantages of UPMIM are limited by its production capacity. It is difficult to explain how
obvious this advantage is only through one or several cycles. The cost of manpower and
time needs to be considered, and more research needs to be carried out.

3.3.3. Reduced Residence Time

In the field of precision molding, material degradation may be the key issue that
plastic parts manufacturers pay the most attention to. The residence time directly affects
the degradation of materials, which is an inevitable problem in the configuration of a screw
barrel and heater band in all traditional molding techniques.

The innovative plasticizing unit, a so-called “inverse screw”, was designed by the
German research institute IKV and Arburg company, which is applied in a new electric
Allrounder 270A injection moulding machine, as shown in Figure 18 [5]. Therefore, the
appearance of an inverse screw is an improvement to the processing of thermally sensitive
and medically relevant materials such as polylactic acid.
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Compared with traditional MIM, UPMIM has no plasticizing screw, screw barrel, heater
band (not necessarily), etc. In terms of process, it only plasticizes the amount of material needed
for each injection, and it melts in situ in the mold near the gate. This reduces the thermal history
of plastics to several milliseconds, reduces the waste of raw materials, avoids degradation as
much as possible, and even eliminates the need for material purging. UPMIM has been already
proved able to mold parts made of PLA [112,121]. However, in the traditional micro-molding
process, when the injection amount of a micro-part may only be 0.1 g, the machine has a 100 g
capacity barrel, which indicates that the barrel must be emptied after nearly 1000 injections.
Therefore, UPMIM provides a feasible solution for heat-sensitive and poorly stable materials.
On the other hand, short residence time brings challenges to plasticization uniformity and
stability, which is related to process maturity and stability. The synergistic principle and
mechanism of some process parameters such as injection speed, ultrasonic amplitude, and
power are conducive to enhancing process stability.

3.3.4. Improved Filling and Molding Ability

The fact that the viscosity of the polymer melt will decrease under the action of ultra-
sound has been confirmed by many scholars [76,84,122–124], which means that UPMIM
can apply lower pressure at the same melting temperatures and can make the material flow
into thinner, tinier geometries, which could not be filled previously. Although there are
almost no reports about the UPMIM process used to produce industrial microfluidic de-
vices, many researchers have explored its feasibility. In terms of filling capacity in UPMIM,
Jiang et al. [125] used a spiral flow test based on an Archimedes spiral mold with mi-
crochannels (depth from 250 to 750 µm) to test the fluidity of molten polymer plasticized
by ultrasonic vibration. The results show that with an increase of the ultrasonic amplitude,
ultrasonic action time, plasticizing pressure, and mold temperature, the fluidity and filling
length of polymer melt (PA66, PP, PMMA) can also be effectively increased. On the other
hand, Ferrer et al. [126] proved the repeatability and reproducibility of processing a mi-
crochannel thin-walled plate in polystyrene polymer. The results show that the thickness
deviation of the final part is less than 7%, and the reproduction depth of the microchan-
nel is greater than the width, with average deviation of 4% and 11%, respectively. The
authors also demonstrated the process feasibility to ratio parts of polylactide acid (PLA) by
an ultrasonic molding process and discussed the feasibility of producing PLA products
with a low aspect ratio [127]. Additionally, UPMIM was proved to mold another kind of
micro-piece that requires high precision to replicate its details [112]. Among them, parts
with small size details such as guitar strings, the width of which is 70 µm, can be molded
well, which is difficult to produce by conventional micro-injection due to the high pressure
requirements of machines [128].

The reduced melt viscosity and injection pressure seem to illustrate the improved
injection-molding ability. However, due to the different plasticizing process, the UPMIM
process can hardly control the melt temperature strictly at present. Hence, the same process
parameter level cannot be strictly guaranteed, and the performance improvement caused
by the miniaturization of equipment cannot be excluded. Furthermore, rapid thermal
cycling technology can also improve the molding ability of micro-injection molding. In the
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end, UPMIM may have certain advantages in molding ability, but it is not enough to be a
reason to completely replace MIM.

3.3.5. Wear of Sonotrode

Regardless of whether it is Configuration 1 or Configuration 2, it is necessary to
consider the axial positioning accuracy of the sonotrode and the plasticizing chamber
as well as the tolerance (clearance fit) and other issues during assembly. Although the
sonotrode is subject to longitudinal high-frequency vibration, lateral vibration will occur
during the work process. Once the amplitude is greater than the amount of the fit gap,
it will dynamically contact and wear with the side wall of the plasticizing cavity. This
phenomenon is particularly obvious in Configuration 1. During the packing phase of
Configuration 1, the sonotrode is displaced upward to leave space for particle feeding.
After adding the required particles, it is downwardly displaced to pre-press the particles.
Ultrasonic vibration is turned on for high-frequency vibration while accompanying with
slight radial vibration. Pressing down the polymer particles will cause a sharp frictional
heat generation in the plasticization chamber, as shown in Figure 19a, and the ultrasonic
power will increase sharply, which will cause the frequency of the ultrasonic generator to
exceed the vibration frequency range of the power supply. Wear also occurs after working,
which can be classified into two types: longitudinal and lateral/diametrical wear, as shown
in Figure 19b [102].

The mass variation at the tip of the sonotrode is reflected in the uneven wear, which
will lead to the change of longitudinal vibration mode frequency. In addition, due to the
inhomogeneity at the worn surface, stress concentration regions will appear, which will
threaten the stability of the system and plasticizing process. In some experiments, the tip of
the horn should be cleaned before action to ensure uniform contact with the sample [129].

Polymers 2021, 13, x FOR PEER REVIEW 22 of 43 
 

 

 

 
Figure 19. (a) Intense flash; (b) Wear observed in different sonotrodes used in UPMIM machines [102]; (c) A nodal point 
sonotrode (left) and a conventional one (right); (d) Nodal point ultrasonic micro-injection-molding configuration [130]. 

3.3.6. Instability of System 
Configuration 1 and Configuration 2 have one thing in common: that is, a single 

direct gate is used to connect the mold cavity and plasticizing chamber. Communication 
between the plasticizing unit and the injection unit also directly causes the ultrasonic 
sonotrode to bear excess injection pressure during the plasticizing process, which in turn 
causes the process to be unstable. In the case of pressure applied in the experiment 
designed by Grabalosa et al. [108], when the injection pressure is higher than 2 bar (one 
bar measured by the manometer represents 311 N of force at the tip of the sonotrode), the 
forming rate of the part is 90%, while the injection pressure lower than 2 bar cannot even 
mold a complete part. However, the injection pressure higher than 5 bar will overload the 
ultrasonic equipment, because the excessive interaction force between the ultrasonic 
sonotrode and the material will make the vibration frequency exceed the rated value, thus 
interrupting the molding cycle. In reference to the molding force, it takes more than 300 
N injection pressure to fully mold eight samples. However, the above situation does not 
mean that there is no upper limit on the applied pressure, because in some cases, the force 
of about 500–600 N means that the ultrasonic electrode will be overloaded (unable to 
vibrate) due to the high compression of PLA, that is, the system will be unstable [129]. 

In this regard, the author has done a test with a small lifting force (<300 N), loading 
on an ultrasonic sonotrode of 10 mm diameter and 40 kHz vibration frequency. A short 
glass fiber-reinforced PA6 plate can be easily plasticized and perforated, as shown in 
Figure 20. In other words, from the perspective of protecting the sonotrode and the power 
supply system, the working load of the ultrasonic sonotrode should be minimized while 
ensuring the plasticized state of the polymer. In the patent of Wu et al. [131], a solenoid 
valve was used to isolate the plasticizing cavity from the cavity. When the solenoid valve 
is open, the plasticizing cavity is separated from the cavity. After a certain period of 
ultrasonic action, the solenoid valve is closed, the plasticizing cavity and the cavity are 
connected, and the displacement of the sonotrode fills the polymer melt into the micro-

Figure 19. (a) Intense flash; (b) Wear observed in different sonotrodes used in UPMIM machines [102]; (c) A nodal point
sonotrode (left) and a conventional one (right); (d) Nodal point ultrasonic micro-injection-molding configuration [130].



Polymers 2021, 13, 2877 21 of 41

According to the working principle and characteristics of ultrasonic probe,
Janer et al. [130] solved the problems of sonotrode wear and flash by introducing the
concept of a “nodal point” (position of the sonotrode for which its vibration is “zero”) and
improving the structure and cooperation of ultrasonic sonotrodes, as shown in Figure 19c,d.
At the same time, the quality of injection parts and the stability of quality have been im-
proved to varying degrees. However, the utilization rate of materials decreased from 20%
to 9% compared with that before upgrading. At present, it may be the best choice by
sacrificing some other capabilities to extend the service life of the sonotrode.

3.3.6. Instability of System

Configuration 1 and Configuration 2 have one thing in common: that is, a single direct
gate is used to connect the mold cavity and plasticizing chamber. Communication between
the plasticizing unit and the injection unit also directly causes the ultrasonic sonotrode
to bear excess injection pressure during the plasticizing process, which in turn causes the
process to be unstable. In the case of pressure applied in the experiment designed by
Grabalosa et al. [108], when the injection pressure is higher than 2 bar (one bar measured by
the manometer represents 311 N of force at the tip of the sonotrode), the forming rate of the
part is 90%, while the injection pressure lower than 2 bar cannot even mold a complete part.
However, the injection pressure higher than 5 bar will overload the ultrasonic equipment,
because the excessive interaction force between the ultrasonic sonotrode and the material
will make the vibration frequency exceed the rated value, thus interrupting the molding
cycle. In reference to the molding force, it takes more than 300 N injection pressure to
fully mold eight samples. However, the above situation does not mean that there is no
upper limit on the applied pressure, because in some cases, the force of about 500–600 N
means that the ultrasonic electrode will be overloaded (unable to vibrate) due to the high
compression of PLA, that is, the system will be unstable [129].

In this regard, the author has done a test with a small lifting force (<300 N), loading
on an ultrasonic sonotrode of 10 mm diameter and 40 kHz vibration frequency. A short
glass fiber-reinforced PA6 plate can be easily plasticized and perforated, as shown in
Figure 20. In other words, from the perspective of protecting the sonotrode and the power
supply system, the working load of the ultrasonic sonotrode should be minimized while
ensuring the plasticized state of the polymer. In the patent of Wu et al. [131], a solenoid
valve was used to isolate the plasticizing cavity from the cavity. When the solenoid valve
is open, the plasticizing cavity is separated from the cavity. After a certain period of
ultrasonic action, the solenoid valve is closed, the plasticizing cavity and the cavity are
connected, and the displacement of the sonotrode fills the polymer melt into the micro-
cavity. Wu further imitated the three-stage injection-molding model of Microsystem 50 to
form a three-stage ultrasonic plasticization molding process of plasticization, metering,
and injection [132,133].

The instability of the plasticizing stage will directly affect the subsequent injection
filling. Through tracking of the flow front, Masato et al. [105] found that compared with
the MIM process, the filling time of the UPMIM process is longer and more dispersed,
as shown in Figure 21, which indicates that the process is less consistent and stable. The
filling time in UPMIM is mainly controlled by the melting rate, which depends on the
ultrasound vibration characteristics, while are difficult to control now. In the experiment of
Dorf et al. [113], from the 196 combinations of parameters setting, only 47 sets allowed the
cavity to be completely filled, which indicates the unstable parameter setting.
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Gülçür et al. [134] evaluated the stability of UPMIM by an in-line monitoring method,
which consists of a series of sensor technologies, including data recorded by the machine
controller, a high-speed thermal camera, and a cavity pressure sensor. The results show
that the data obtained from machine sensors is essential for understanding each stage
of the ultrasonic micro-molding cycle, as shown in Figure 22. The plunger position is
highly correlated to the characteristics of each molding stage, as shown in Figure 22a.
Therefore, the different stages of the process can be easily tracked by analyzing the position
of the plunger in detail. Figure 22b also shows that although each channel of machine
data may change significantly with different cycles, the main features of the process plots
are still displayed in each molding cycle. When the dynamic process environment of the
UPMIM process is clearly described, the mechanical data captured in-line have a high
accuracy. This technology can not only directly reflect the relationship between process
parameters and the quality of molded parts but also meet the indicators of stabilizing part
quality and tracing part defects. Wu et al. [135] proposed a new method to quantitatively
characterize the efficiency of simultaneous plasticization and filling by redefining the
injection rate as the mass flow during melt filling. The results show that without damaging
the mechanical properties of the micro-molded samples, increasing the injection rate is
beneficial to simultaneously increasing the efficiency of plasticization and filling. At the
same time, Janer et al. [130] improved the quality of injection parts and the stability of
quality to varying degrees by introducing the concept of a “nodal point” and improving
the structure and cooperation of an ultrasonic sonotrode. In view of the results obtained
in the above reports, deepening the understanding of UPMIM principles and forming
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mechanisms, especially the synergistic effects of various parameters, is the best choice to
improve process stability, and there is still much work to be done.
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3.3.7. Uniformity of Molded Part

Whether it is MIM or UPMIM, the uniformity of polymer melt in the plasticizing
process is an issue that attracts much attention. Molding quality and system stability are
still the biggest challenges facing UPMIM. Unlike MIM processing, there is no screw in
the UPMIM technology, meaning that it is necessary to test the mixing effects in UPMIM.
Michaeli et al. [107] firstly tested the mixing effect of UPMIM; blue and yellow PP-powder
was plasticized under ultrasonic vibration. Under the same pressure, a small amplitude
(29.4 µm) will cause uneven plasticizaed morphology, and a large amplitude (49.0 µm)
setting can obtain a more uniform melt, as shown in Figure 23. Michaeli et al. [136] have
recorded and evaluated the homogenization and plasticization results of molten materials
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with a microscope, which showed that the materials had a regular and homogeneous
crystalline structure.

It can be seen that the ultrasonic amplitude, as one of the important process parameters,
has a significant impact on the plasticizing ability and quality. However, due to the lack of
strong shear force field caused by the traditional screw plasticizing process, UPMIM does
not have good material mixing ability.
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In the developed Configuration 2 later, the sonotrode is flush with the gate, the con-
centrated energy is used to plasticize the polymer, and then injection filling is performed. A
new application mode of ultrasonic waves, including continuous ultrasound and intermit-
tent ultrasound, is considered as one of the parameters [106]. Optimal plasticizing results
are achieved using a medium setting. However, results showed the different molecular
weight distribution in three regions. In the first few seconds of ultrasonic processing, the
material closer to the sonotrode is exposed to ultrasonic energy and generates heat earlier,
which is the first and most easily degradable. However, the polymer far away from the
probe can only receive attenuated ultrasonic energy during the same exposure time, which
is a challenge to the plasticization uniformity. At the same time, the limited plasticizing
capacity has become one of the factors restricting its large-scale mass production.

Grabalosa et al. [108] found that due to the application of ultrasonic energy, the
polymer sample realized linear flow from the middle to the end, resulting in a better
appearance, as shown in Figure 24a. The short distance (2 mm) from the plasticizing
chamber to the mold cavity is insufficient to make the melt flow uniform. The chain
arrangement is mainly due to the formability of polymer at the exit of the mold during the
injection. The arrangement of PA12 chains causes the end sample region to be different from
the injection and center regions, and the SWAXS measurements show different absorption,
as shown in Figure 24b.

It can be seen that the molecular weight distribution is not uniform along the radial
direction centered on the plasticizing chamber; i.e., there are differences in the plasticizing
effect in the whole molding process. An uneven distribution of molecular weight may lead
to residual stress and then affect the precision of injection parts. Therefore, this defect can
be avoided by limiting the size of the molded part.
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3.3.8. Degradation Problem

Most polymer materials are suitable for mature conventional micro-injection-molding
processing, but there are no relevant standards for UPMIM. High-quality parts can only be
obtained under the coordination of various parameters. If the ultrasonic energy is relatively
low, only partial interfaces are welded together [137], and excessive ultrasonic energy can
cause polymer degradation; the most intuitive is the change in topography.

The morphology of specimens was evaluated by scanning electron microscope (SEM)
in many studies. Sacristán et al. [112] evaluated PLA samples under different processing
conditions. The SEM micrographs of the processed PLA sample under optimal parameters
are shown in Figure 25a, in which no obvious physical defects can be detected [115].
Numerous holes from 50 µm to 1 mm will occur in the samples when a higher molding
pressure (3 bar) and a lower ultrasonic amplitude (28.4 µm) are applied, as shown in
Figure 25b, which can be explained by the cavitation process. The rough morphology
of the material adhered to the surface of the sonotrode also indicates the occurrence of
degradation during plasticization, as shown in Figure 25c. The above reports illustrate that
various process parameters should be set according to different material characteristics in
UPMIM, because the incompatible parameters with material properties not only affect the
molding quality but also the physical and chemical properties of injection parts.

The experimental results of Dorf et al. [113] proved that the samples without pores
and visual dark marks (without degradation) show the highest tensile strength, while the
highly degraded samples have very low tensile strength in other sets of parameters, such
as low plunger speed and long ultrasonic exposure time. A high degradation of polymer
material can be observed on the sample shown in Figure 25d. Another manifestation of
degradation is a decrease in molecular weight. For example, under the condition that the
average molecular weight is only reduced by less than 6%, PLA and PBS can be molded in
powder form [54]. The main processing parameters in UPMIM are the amplitude of the
vibration, the sonicating time, and the applied force [105]. Therefore, there are significant
differences between MIM and UPMIM processes in parameter control, process control, and
parameter scale, which indicates that it is necessary to improve the understanding of the
process [138].

Table 4 lists some of the best parameters for ultra-high molecular weight polyethylene
(UPMIM) without degradation. Note that degradation always happened in parts molded
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by UHMWPE via ultrasonic processing, but the final thermal stability was not significantly
influenced by a decrease in the molecular weight [106], and the thermal stability of all the
UHMWPE/graphite composites was considerably better than that of pure UHMWPE [114]. The
prepared specimens showed considerably better mechanical properties than pure UHMWPE.
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Figure 25. (a) A PLA specimen molded at 24-300-1.2 condition (please refer to the original text for
detailed explanation) without any physical defects [115]; (b) Sprue with numerous holes from 50 µm
to 1 mm; (c) Molten material remained adhered to the sonotrode sufface [112]; (d) Highly degraded
sample with very low tensile strength [113].

Table 4. Optimized parameters for filling without degradation.

Material Geometry Tensile
Test [cm3] Standard Amplitude

[µm] Time [s] Pressure/Velocity Ref.

PLA 1.5 × 0.1 × 0.1 IRAM-IAS-
U500-102/3 48.1 3 3 bar [112]

PLA Poly
(nonamethylene

azelate)
(PE99)

1.5 × 0.1 × 0.1 IRAM-IAS-
U500-102/3 24 1.2 300 N [121]

PA12 33 × 2.5 × 1.25 ASTMD638 35 5 2 bar [108]
Poly (ε-caprolactone)
Graphistrength® C10

carbon nanotubes
1.5 × 0.1 × 0.1 IRAM-IAS-

U500-102/3 37 7 or 8 2500 N [139]

PEEK 30 × 2 × 2 ASTMD638 52.2/58 8/5 5/6 [117]
PPSU 30 × 2 × 2 ASTMD638 58/40.6 1.4/2.8 11/5 [113]

UHMWPE
30 × 2 × 1 ISO-527-4 50.6/56.2

— — [106]
UHMWPE + graphite — — [114]
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3.4. Theoretical Interpretations

Theoretical research about UPMIM is currently lacking, mainly focusing on ultrasonic
energy balance and heat generation mechanisms, including frictional heating [110,111,140]
and viscoelastic heating [20,55]. Up to now, although the heat mechanism of ultrasonic
welding has been reported [141–144], the research on the thermal mechanism of ultrasonic
plasticization of polymer still needs further improvement.

3.4.1. Ultrasonic Energy Balance

Grabalosa et al. [108] proposed a mathematical modeling method based on acous-
tic/ultrasonic energy balance, including theoretical dissipated energy, energy provided
by the process, and energy required for melting materials. According to Rienstra and
Hirschberg [145], Equation (7) describes the acoustic energy of a homentropic flow, which
is given as:

∂

∂t

(
ρe +

1
2

ρv2
)
+∇ ·

[
v
(

ρe +
1
2

ρv2 + p
)]

= −∇ · q +∇ · (τ · v) + f · v (7)

where ρ is the density of the material, e is the internal energy per unit mass, q is the heat flux
resulting from the heat conduction, v is the material’s flow velocity, f is the external force
density, p is the pressure, τ is the viscous stress tensor, and ∇ is the symbol representing
the gradient operator.

In terms of the process, it is considered the dissipated energy resulting from oscillation
movement and the movement of the sonotrode. The dissipated heat flux during the
ultrasound injection process could be found from the following expression (8):

.
Qavg = 4paω (8)

where ω is the ultrasonic frequency, and a is the oscillatory amplitude of the sonotrode tip.
Whereas, in terms of the material, the theoretical melting energy required is also

included. Considering the amount of material that is melted in each cycle (the heat capacity
of the material and the fusion heat) as well as the temperature increase required to reach
the material’s melting temperature, an approach of the minimum energy required can be
obtained using the following Equation (9):

Qm = mCp∆T + m∆H f (9)

where Cp is a heat constant, ∆T is the temperature difference, and ∆Hf represents the
enthalpy fusion.

Cp = 2.10 J/gK and ∆Hf = 245 J/g were chosen when processing 300 mg of polyamide
with different processing parameters. Results from the theoretical approach indicate that
the power delivered by the sonotrode is lower than the power required to melt the material
in 1 s, which explains why it was not possible to obtain completed parts with such vibration
time, in accordance with the experimental observation.

3.4.2. Heating in Solids
Friction Heating

One of the main heat sources in the initial stage of ultrasonic plasticizing polymer particles
is interfacial friction heating. According to our previous research referring to ultrasonic weld-
ing [146,147], interfacial friction heating has a significant influence on subsequent viscoelastic
heating [20,110,111]. Interfacial friction between polymer granulates is dry friction type, the
interfacial friction heating is mainly contributed by sliding friction [111], and the heating rate
at the interface between two granulates can be described as:

Q(t) =
→

τ(t)×
→

v(t) (10)
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where
→

τ(t) is the equivalent friction stress, and
→

v(t) is the relative sliding velocity.
The relative movement between polymer granulates causes frictional heating. The

relative sliding rate and equivalent friction stress, which are closely related to the heat flow
rate, increase with the increased ultrasonic amplitude [110]. The main parameters affecting
the friction properties of polymers include contact pressure, velocity, and temperature [148].

Most research papers are about the effect of parameters including processing parame-
ters and structural parameters on the heating mechanism during ultrasonic plasticizing.
In terms of processing parameters, studies of the ultrasonic amplitude, frequency, and
pressure on the heating rate of polymers have been carried out [20,55,107,110,111,149].

The process of the temperature curve is the typical process of all tested polymers up
to now, which is the same as the method proposed by Michael et al. [107], as shown in
Figure 26a,b. The first tenth of a second of the process cycle is the stage of rapid heating,
which can be explained as the effect of rapid friction heating. It has been demonstrated that
there is friction heating only at the initial stage of the plasticizing process in the study of
Wu et al. [110], where the interface could have a steep temperature increase up to polymers
flow temperature in 0.078 s in the case of PMMA granulates. The similar curve trends in
Figure 26c,e show that the heating rate decreases from a certain point until the melting
temperature level is reached. In Figure 26e, the ultrasonic amplitude was confirmed to have
more significant impact than the plasticizing pressure on the interfacial friction heating.
Since the energy of the ultrasonic wave is proportional to the square of the amplitude, it is
necessary to amplify the amplitude through the booster in order to obtain the ultrasonic
wave with a large energy. When ultrasonic amplitude is increased from 10 to 30 µm, the
average heating rate is increased from 460.4 to 1687.5 ◦C/s, which leads to the ultrasonic
plasticization of polymer particles from 30 to 160 ◦C.
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Figure 26. (a) Viscoelastic heating and (b) friction heating in UPMIM; (c) Example for temperature courses during
plasticizing for three runs at equal parameter settings [107]; (d) Schematic and experimental setup for interfacial friction
heating; (e) Interfacial friction heating under different plasticization pressure and amplitude [110]; (f) Longitudinal vibration
transducer structure; L1—rear cover length, L2—piezoelectric ceramic thickness, L3—front cover length, L4—horn length,
L5—ultrasonic sonotrode length, S1—large cross-section area of horn, S2—small cross-section area of horn, F1—rear cover
force, Vb—rear cover vibration velocity, F2—front cover force, Vf—front cover vibration velocity, amplification ratio N =
(S1/S2)−2; (g) Influence of the structural parameters on the heating rate [149].

For granular materials, ultrasonic amplitude is a more significant factor than plasticiz-
ing pressure on interfacial friction heating. However, many uncertain factors are introduced
due to the compressibility of granular materials, which make the plasticizing quality and
injection speed unstable: that is, it is not conducive to the process stability. However, it
seems that conventional rod materials can improve the process stability; hence, the heating
principle and mechanism need to be further developed.

However, in actual experiments, the temperature sensor may only be damaged after
several tests, resulting in no measurement curve in this case [110]. Based on the repeatability
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of the experiment, the heat generation rate detection can be determined using sapphire
windows [105,129,150] or high-speed infrared cameras [55,105]. Janer et al. [55] studied
the polypropylene heating when applying high-power mechanical ultrasound with a high-
velocity infrared camera. The results show that the heating of a polypropylene cylinder
caused by ultrasonic vibration is highly uneven, and there are different heating steps in this
process. The development of new thermal detection technology plays an important role
in understanding the plasticization process. Coordinating different plasticizing heating
stages and injection speeds will become an important step in process development.

In the aspect of structural parameters, the ultrasonic plasticization of polymer particles
was studied by introducing different combinations of structural parameters of transducers
and the interaction mechanism of friction heating and plasticization of polymer particles
under the longitudinal vibration excitation. The friction plasticizing heating equations
of the polymer granulates under the longitudinal vibration excitation were established
by Li et al. [149]. Figure 26f shows the longitudinal vibration transducer structure used
in UPMIM. The analysis results show that in the initial stage of ultrasonic plasticization,
among the structural parameters of the longitudinal vibration transducer, the magnification
of the horn has the greatest effect on the heating rate of frictional plasticization. In addition,
the front cover length, ultrasonic sonotrode length, and the horn length have little influence
on the heating rate, while the piezoelectric ceramic thickness of the piezoelectric ceramic
and the length of the rear cover have the least influence on the heating rate.

Additionally, Jiang et al. [140] characterized the contact angle of some plastic polymer
pellets (PMMA, PP, and PA66) with a super-high magnification lens zoom 3D microscope,
taking into account the random stack of materials and extremely short interfacial friction
heating time compared with the certain contact area of ultrasonic welding [151]. With the
increasing parameter level, the proportion of interfacial friction angle in the range of 0◦–10◦

and 80◦–90◦ increased, while the proportion in the range of 30◦–60◦ decreased accordingly,
as shown in Figure 27. In the actual production process, the distribution of the contact
angle is affected by factors such as particle size and shape. Therefore, the uncertain factors
introduced by the particle material are not conducive to the stability of the UPMIM. The
regularization of production materials may become one of the important development
directions of this process.
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Subsequently, Wu et al. [152] performed united-atom molecular dynamics simulations
to reveal the interfacial friction heating mechanism of amorphous polyethylene under
single sliding friction (SSF) and reciprocating sliding friction (RSF) modes. The results
show that RSF is a more efficient way of generating heat than SSF in terms of heating
as shown in Figure 28a; that is, ultrasonic plasticization is the one with higher heating
efficiency. Figure 28b shows the simulation results of the molecular chain orientation in
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the two friction models at the same time point. In terms of orientation, the molecular
chain in the RSF model is disordered due to the frictional form of high-frequency vibration
restricted in its region, as shown in Figure 28d. Therefore, the concentrated high-frequency
chain motion related to molecular rearrangement is considered as the main mechanism for
enhancing frictional heating at the RSF interface.

Secondly, as far as process parameters are concerned, the effect of sliding rate on
temperature rise is more critical than that of loading pressure, as shown in Figure 29. This
work illustrates the advantages of the ultrasonic plasticization principle compared to screw
plasticization. As a potential tool, molecular dynamics simulation is indispensable for
deepening process understanding.
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Viscoelastic Heating

The viscoelastic heat generation effect is a “self-heating process”. It is well known that
polymeric materials are sensitive to strain rate and temperature. When polymer particles
are subjected to a vibration pressure load, due to the hindrance of the internal macro-
molecular segments, the segments generate “internal friction” during the deformation and
recovery process. The mechanical work performed by external forces is converted into the
heat of the polymer itself, causing an increase in the local temperature of the polymer [153],
which is both strain and strain-rate dependent [154]; the compression and unloading curves
do not coincide, as shown in Figure 30d, forming a “hysteresis loop” whose area is equal to
the thermal energy increase of the polymer in a single vibration cycle. During continuous
loading, the polymer consumes mechanical energy in each cycle and is converted into the
thermal energy of the polymer. The thermal energy increase of the polymer in unit time
under vibration load is:

Q = f
∮

σ(t)dε(t) = f
∮

σ(t)
dε(t)

dt
dt. (11)

When the vibration load is a sinusoidal alternating load, the expression of stress and
strain is:

σ(t) = σ0 sin(ωt)

ε(t) = ε0 sin(ωt− δ)

where σ0 is the stress amplitude, ε0 is the corresponding strain amplitude, δ is the phase
angle of the strain hysteretic stress, and ω is the angular frequency of the vibration load.

Q = f
∮

σ(t)dε(t) = f σ0ε0ω

2π/ω∫
0

sin ωt cos(ωt− δ)dt = f πσ0ε0 sin δ (12)

For the ultrasonic plasticizing polymer process, the alternating load frequency of
polymer particles is in the kilo hertz range, and the amplitude is in the micron order. The
stress and strain of the polymer can reach a larger order of magnitude with a smaller
amount of plasticization. The viscoelastic heat generation effect is also an important heat
generation effect in the ultrasonic plasticization heat generation process.

Additionally, the irregular shape and random stacking of polymer materials are causes
of the uneven and complex stress field in UPMIM. Hence, in order to solve this problem, as
shown in Figure 30a, the loading conditions of micro-units in polymer pellets are simplified.
It is assumed that the micro-unit cell is loaded with ideal uniaxial normal stress σ(t), which
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is a sine function with the same frequency as the ultrasonic vibration. The diameter of the
polymer body cylinder is 10 mm, the height is 5 mm, and it is periodically loaded by the
sonotrode, as shown in Figure 30a [20].
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In order to illustrate the complex thermomechanical behavior of PP, Janer et al. [155]
applied cycles of loading and unloading in uniaxial compression and incremental levels of
loading on cylindrical specimens (diameter = 12 mm; height = 20 mm) of polypropylene.
The obtained curves, as shown in Figure 30d,e, were tested by a 5 kN MTS Landmark®

servohydraulic machine, with several combinations of temperature and strain rate.
Based on the generalized Maxwell model, Arrhenius model, and semi-empirical

Williams Landel Ferry (WLF) model, the literature has involved the study of the viscoelas-
tic heat generation mechanism in the process of ultrasonic welding through theoretical
modeling and experimental research [141,156–158]. In UPMIM, processing parameters
such as ultrasonic frequency, amplitude, and initial temperature were considered in the
viscoelastic heating study by Wu et al. [20], as shown in Figure 31. The results show that
ultrasonic amplitude is a more effective factor than ultrasonic frequency in affecting the
heat generation rate. As far as the initial temperature of the material is concerned, the initial
temperature of the PMMA cylinder has no significant effect on the viscoelastic heating rate
before reaching 105 ◦C.

In ultrasonic machining, the hammering phenomenon caused by periodic contact
loss caused by high-frequency vibration between an ultrasonic sonotrode and adherents
directly affects heating efficiency, but there is no relevant research in UPMIM.
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80 ◦C (d) [20].

Viscoelastic heating, which is maximized around the glass transition temperature of
the thermoplastic polymer, can be quantified based on the work by Tolunay et al. [159].

.
Qbulk = e

ωε2E′′

2
(13)

where e is called the hammering efficiency, i.e., the ratio between actual heat generation
(with hammering) and ideal heat generation (without hammering), ω = 2πf is the pulsation
of vibration, E′′ is the loss modulus of the material, and ε is the amplitude strain tensor.

In ultrasonic vibration processing, the sonotrode tip has a displacement that is sinu-
soidal as shown in:

usono = asono cos(ωt) (14)

where αsono is the amplitude, ω = 2πf is the pulsation, and f is the frequency.
As a result of the hammering effect and the loss of contact between the sonotrode and

the composite, the imposed displacement µimp on the top surface of the top adherend is
not equal to µsono. Rather, it is a truncated sine, as illustrated in Figure 32a. The contact
time ratio can be defined as:

αt = 1− tc

T
(15)

The tc is the loss of contact time during an ultrasonic period T = 2π/ω. αt ranges
between 0 and 1 and reaches 1 for a perfect contact with no hammering. Thus, the
viscoelastic efficiency e of the process is:

e = αt +
sin(2παt)

2π
(16)
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which can be expressed as a function of the amplitude transfer ratio αh using the following
Equation (15). Figure 32b shows the dependency of the efficiency e versus the amplitude
transfer ratio αh.

e ≈ αh (17)

In the UPMIM, Peng et al. [111] found that temperature increases occurred only in the
loading stage (NT~(2n + 1)T/2, N = 0, 1, 2, . . . ). In the unloading stage
((2N + 1)T/2~(N + 1)T, N = 0, 1, 2, . . . ), the temperature of the friction surface will
be transferred with the form of heat conduction in the polymer friction interface, as shown
in Figure 32c,d. In the unloading stage, the friction surface temperature is almost constant
due to the short heat transfer time and low heat transfer coefficient, which means that the
ultrasonic hammer effect directly has a significant impact on the heating rate.
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4. Conclusions and Remarks

In order to address the challenges confronted by the micro-injection-molding process,
the application of power ultrasound has proved to be a successful and promising attempt
for various polymeric micro-molded parts. In the case of the macro components with a
surface with micro/nano functional structures, ultrasonic-assisted micro-injection molding
(UAMIM) has been developed to facilitate the polymer melt flow in micro/nano cavities.
This could improve the replication fidelity, avoid the use of high injection speed/pressure,
and accordingly reduce the energy consumption. In addition, the ultrasonic vibration is
also beneficial for the movement of the macromolecules and therefore has the possibility to
tailor the micro morphologies (orientation, crystallization, etc.) and molding defects such as
weld line for improved molding quality. On the other hand, for the small components with
weight in milligram scale, ultrasonic plasticization micro-injection molding (UPMIM) has
been developed to address the challenge regarding the excessive plasticization. Ultrasonic
vibration energy could be used as the only source for the plasticization of the plastic raw
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materials with just the amount needed for the successive molding. Furthermore, with the
unique simultaneous plasticizing and injection, the polymer melt could be immediately
injected into the mold cavity after plasticization, which is essential to reduce the residence
time for thermally sensitive plastics. Therefore, the material utilization could be improved
via UPMIM besides the benefits of the power ultrasound demonstrated in the UAMIM.

This review provided a general and introductory overview of the application status
of power ultrasound in both UAMIM and UPMIM from the aspects of scale and size
effect, process principles, configuration design, engineering characteristics, and theoretical
interpretations. In the case of UAMIM, the power ultrasound is used as an external auxiliary
energy field. The research is focusing on the influence mechanism of the power ultrasound
on the polymer melt flow properties and the micro morphological evolution. However, in
UPMIM, the power ultrasound becomes the dominant energy source for the plasticization
and injection. The research focus is extended to the new plasticization concept via ultrasonic
vibration and to the mechanism of the possible change of the material properties. So far,
the tuning power ultrasound for enhanced MIM performance of thermoplastic polymers is
still challenged by several issues such as the melt flow behavior in the micro-cavity in the
presence of the ultrasonic vibration in UAMIM, the stability of the power ultrasound system
under the coupled loading conditions during the unique simultaneous plasticization and
injection in UPMIM, and the reproducibility of the molding quality in both technologies.

In summary, the instructive suggestions for ultrasonic energy field still need to be
further studied and standardized more systematically for UAMIM, including but not
limited to the different application methods (direct or indirect), the setting of the vibration
point (parallel or perpendicular), and the energy utilization efficiency. For UPMIM, the
prerequisites for reduced energy consumption and the significance of improved filling and
molding ability need to be further clarified. In addition, the stability improvement of the
system, process, and parts quality is still facing challenges. What may be predicted is that
the application of power ultrasound in the MIM will become even more reliable, accurate,
and versatile in the future.
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