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Abstract: Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research
domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last
decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive
review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive
overview of the BCI domain is presented in this study. This study covers several applications of
BCI and upholds the significance of this domain. Then, each element of BCI systems, including
techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI
algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or
hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved
challenges of the BCI and explains them with possible solutions.
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1. Introduction

The quest for direct communication between a person and a computer has always
been an attractive topic for scientists and researchers. The Brain-Computer Interface (BCI)
system has directly connected the human brain and the outside environment. The BCl is a
real-time brain-machine interface that interacts with external parameters. The BCI system
employs the user’s brain activity signals as a medium for communication between the
person and the computer, translated into the required output. It enables users to operate
external devices that are not controlled by peripheral nerves or muscles via brain activity.

BCI has always been a fascinating domain for researchers. Recently, it has become a
charming area of scientific inquiry and has become a possible means of proving a direct
connection between the brain and technology. Many research and development projects
have implemented this concept, and it has also become one of the fastest expanding fields
of scientific inquiry. Many scientists tried and applied various communication methods
between humans and computers in different BCI forms. However, it has progressed from
a simple concept in the early days of digital technology to extremely complex signal
recognition, recording, and analysis techniques today. In 1929, Hans Berger [1] became
the first person to record an Electroencephalogram (EEG) [2], which shows the electrical
activity of the brain that is measured through the scalp of a human brain. The author tried
it on a boy with a brain tumor; since then, EEG signals have been used clinically to identify
brain disorders. Vidal [3] made the first effort to communicate between a human and a
computer using EEG in 1973, coining the phrase “Brain-Computer Interface”. The author
listed all of the components required to construct a functional BCI. He made an experiment
room that was separated from the control and computer rooms. In the experiment room,
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three screens were required; the subject’s EEG was to be sent to an amplifier the size of an
entire desk in the control area, including two more screens and a printer.

The concept of combining brains and technology has constantly stimulated people’s
interest, and it has become a reality because of recent advancements in neurology and
engineering, which have opened the pathway to repairing and possibly enhancing human
physical and mental capacities. The sector flourishing the most based on BCI is considered
the medical application sector. Cochlear implants [4] for the deaf and deep brain stimulation
for Parkinson’s illness are examples of medical uses becoming more prevalent. In addition
to these medical applications, security, lie detection, alertness monitoring, telepresence,
gaming, education, art, and human enhancement are just a few uses for brain-computer
interfaces (BCls), also known as brain-machine interfaces or BMIs [5]. Every application
based on BCI follows different approaches and methods. Each method has its own set of
benefits and drawbacks. The degree to which a performance can be enhanced while minute-
to-minute and day-to-day volatility are reduced is crucial for the future of BCI technology.
Such advancements rely on the capacity to systematically evaluate and contrast different
BCI techniques, allowing for the most promising approaches to be discovered. In addition,
this versatility around BCI technologies in different sectors and their applications can seem
so complex yet so structured. Most of the BCI applications follow a standard structure and
system. This basic structure of BCI consists of signal acquisition, pre-processing, feature
extraction, classification, and control of the devices. The signal acquisition paves the way
to connecting a brain and a computer and to gathering knowledge from signals. The three
parts of pre-processing, feature extraction, and classification are responsible for making
the associated signal more usable. Lastly, control of the devices points out the primary
motivation: to use the signals in an application, prosthetic, etc.

The outstanding compatibility of various methods and procedures in BCI systems
demands extensive research. A few research studies on specific features of BCI have also
been conducted. Given all of the excellent BCI research, a comprehensive survey is now
necessary. Therefore, an extensive survey analysis was attempted and focused on nine
review papers featured in this study. Most surveys, however, do not address contemporary
trends and application as well as the purpose and limits of BCI methods. Now, an overview
and comparisons of the known reviews of the literature on BCI are shown in Table 1.

Table 1. A summary of recent surveys/reviews on various BCI technologies, signals, algorithms, classifiers, etc.

Ref. Purposes

Challenges

[6]

Advantages, disadvantages, decoding algorithms, and
classification methods of EEG-based BCI paradigm are
evaluated.

Training time and fatigue, signal processing, and novel decoders,
shared control to supervisory control in closed-loop.

[7]

A comprehensive review on the structure of the brain and on
the phases, signal extraction methods, and classifiers of BCI

Human-generated thoughts are non-stationary, and generated
signals are nonlinear.

[8]

A systematic review on the challenges in BCI and current
studies on BCI games using EEG devices

Biased within the process of search and classification.

[9]

A well-structured review on sensors used on BCI applications
that can detect patterns of the brain

The sensors are placed in the human brain when neurosurgery is
needed, which is a precarious process.

[10]

A brief review on standard invasive and noninvasive
techniques of BCL, and on existing features and classifiers

To build brain signal capture systems with low-density electrodes
and higher resolution.

[11]

This paper briefly describes the application of BCI and
neurofeedback related to haptic technologies

This study only covers a small domain of BCI (haptic technology)

This survey mainly focuses on identifying emotion with

There are no real-life event datasets, and the literature could not

[12] EEG-based BCI, with a brief discussion on feature extraction, . . .
selection, and classifiers sense the mixed feelings simultaneously.
[13] 1BﬂkCuIsalzfg);i-é?éf;;iiﬁﬂf;%e?;leydn]; gllr;‘tljslllz techniques on This study exclusively covers noninvasive brain signals.
) is review focused on popular techniques such as dee opular feature extraction processes, methods, and classifiers are
[14] Thi iew f d on popul hniq h as deep Popular fi ion p hod d classifi

learning models and advances in signal sensing technologies

not mentioned or reviewed.
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Abiri, R. et al. [6] evaluated the current review on EEG-based various experimen-
tal paradigms used by BCI systems. For each experimental paradigm, the researchers
experimented with different EEG decoding algorithms and classification methods. The
researchers overviewed the paradigms such as Motor imagery paradigms, Body kinemat-
ics, Visual P300, Evoked potential, and Error related potential and the hybrid paradigms
analyzed with the classification methods and their applications. Researchers have already
faced some severe issues while exploring BCI paradigms, including training time and
fatigue, signal processing, and novel decoders; shared control to supervisory control in
closed-loop; etc. Tiwari, N. et al. [7] provided a complete assessment of the evolution of
BCI and a fundamental introduction to brain functioning. An extensive comprehensive
revision of the anatomy of the human brain, BCI, and its phases; the methods for extracting
signals; and the algorithms for putting the extracted information to use was offered. The
authors explained the steps of BCI, which consisted of signal acquisition, feature extraction,
and signal classification. As the human brain is complex, human-generated thoughts are
non-stationary, and generated signals are nonlinear. Thus, the challenging aspect is to
develop a system to find deeper insights from the human brain; then, BCI application
will perform better with these deeper insights. Vasiljevic, G.A.M. et al. [8] presented a
Systematic Literature Review (SLR) conclusion of BCI games employing consumer-grade
gadgets. The authors analyzed the collected data to provide a comprehensive picture of
the existing reality and obstacles for HCI of BCI-based games utilizing consumer-grade
equipment. According to the observations, numerous games with more straightforward
commands were designed for research objectives, and there was a growing amount of more
user-friendly BCI games, particularly for recreation. However, this study is limited to the
process of search and classification. Martini, M.L. et al. [9] investigated existing BCI sensory
modalities to convey perspectives as technology improves. The sensor element of a BCI
circuit determines the quality of brain pattern recognition, and numerous sensor modalities
are presently used for system applications, which are generally either electrode-based or
functional neuroimaging-based. Sensors differed significantly in their inherent spatial and
temporal capabilities along with practical considerations such as invasiveness, mobility,
and maintenance. Bablani, A. et al. [10] examined brain reactions utilizing invasive and
noninvasive acquisition techniques, which included electrocorticography (ECoG), elec-
troencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance
imaging (MRI). For operating any application, such responses must be interpreted utilizing
machine learning and pattern recognition technologies. A short analysis of the existing
feature extraction techniques and classification algorithms applicable to brain data has
been presented in this study.

Fleury, M. et al. [11] described various haptic interface paradigms, including SMR,
P300, and SSSEP, and approaches for designing relevant haptic systems. The researchers
found significant trends in utilizing haptics in BCIs and NF and evaluated various solutions.
Haptic interfaces could improve productivity and could improve the relevance of feedback
delivered, especially in motor restoration using the SMR paradigm. Torres, E.P. et al. [12]
conducted an overview of relevant research literature from 2015 to 2020. It provides trends
and a comparison of methods used in new implementations from a BCI perspective. An
explanation of datasets, emotion elicitation methods, feature extraction and selection, classi-
fication algorithms, and performance evaluation is presented. Zhang, X. et al. [13] discussed
the classification of noninvasive brain signals and the fundamentals of deep learning al-
gorithms. This study significantly gives an overview of brain signals and deep learning
approaches to enable users to understand BCI research. The prominent deep learning tech-
niques and cutting-edge models for brain signals are presented in this paper, together with
specific ideas for selecting the best deep learning models. Gu, X. et al. [14] investigated the
most current research on EEG signal detection technologies and computational intelligence
methodologies in BCI systems that filled in the loopholes in the five-year systematic review
(2015-2019). The authors demonstrated sophisticated signal detecting and augmentation
technologies for collecting and cleaning EEG signals. The researchers also exhibited compu-
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tational intelligence techniques, such as interpretable fuzzy models, transfer learning, deep
learning, and combinations for monitoring, maintaining, or tracking human cognitive states
and the results of operations in typical applications.

The study necessitated a compendium of scholarly studies covering 1970 to 2021 since
we analyze BCI in detail in this literature review. We specialized in the empirical literature
on BCI from 2000 to 2021. For historical purposes, such as the invention of BCI systems
and their techniques, we selected some publications before 2000. Kitchenham [15,16]
established the Systematic Literature Review (SLR) method, which is applied in the research
and comprises three phases: organizing, executing, and documenting the review. The SLR
methodologies attempted to address all possible questions that could arise as the current
research progresses. The recent study’s purpose is to examine the findings of numerous
key research areas. The PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines were used to put together the essential materials for this study;,
which consists of four parts: identification, scanning, eligibility testing, and inclusion. We
gathered 577 papers from a variety of sources and weeded out duplicates and similar
articles. Finally, we carefully chose 361 articles and sources for monitoring and review. The
PRISMA process is presented in Figure 1.

Identification > 577 papers are collected from various sources
J
Y Y
Y
Scanning > Duplicate and similar papers are removed
Q J
Y Y
o
Eligibility - . .
testing » Inappropriate and low-grade papers are filtered
J
Y Y
Inclusion »Finally, 361 articles and sources are selected for review

J

Figure 1. The PRISMA process that is followed in this article.

However, this research looks at the present challenges and difficulties in this BCI field.
Furthermore, this study generates ideas and suggestions for future research subjects. The
following are the research’s total contributions:

¢ The paper explicitly illustrates Brain-Computer Interface’s (BCI) present, past, and
future trends and technologies.

¢ The paper presents a taxonomy of BCI and elaborates on the few traditional BCI
systems with workflow and architectural concepts.

e The paper investigates some BCI tools and datasets. The datasets are also classified
on different BCI research domains.

¢ In addition, the paper demonstrates the application of BCI, explores a few unsolved
challenges, and analyzes the opportunities.

After reading this section, one should understand BCI and how to get started with it.
Our motivation to work with BCI started from a desire to learn more about this domain.
Furthermore, the BCI has a bright future ahead of it, as it has a lot to offer in the medical
field and in everyday life. BCI can change one’s incapability and can make life and work
easy, as detailed in the following section. The applications, problems, future, and social
consequences of BCI have also fueled our enthusiasm for this research.

The remainder of the paper is constructed as follows. The motivation of this work
and diverse applications of BCI systems are illustrated in Section 2. Section 3 describes
the structure of BCI and briefly reviews the most popular techniques of BCI. In Section 5,
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different categories of datasets available publicly are displayed. In Section 7, the most
widely used methods for signal enhancement and feature extraction of BCI are discussed.
The most commonly known classifiers are reviewed in Section 8. A broad discussion on
the evaluation metrics for BCl is given in Section 9. The challenges faced most commonly
during the BCI process are reviewed in Section 10. Lastly, this paper provides a conclusion
in Section 11.

2. Applications of BCI

BCls may be used for various purposes and the application determines the design of a
BCI. According to Nijholt [17], applications based on BCI have two methods of usability.
One can command whether the other one can be observed or monitored. The majority of
command applications concentrate on manipulating brain impulses using electrodes to
control an external device. On the other hand, applications that involve observation focus
on recognizing a subject’s mental and emotional state to behave appropriately depending on
their surroundings. Some applications of BCI [18] based on usability are described below:

2.1. Biomedical Applications

The majority of BCI integrations and research have been focused on medical ap-
plications, with many BCls aiming to replace or restore Central Nervous System (CNS)
functioning lost with sickness or by accident. Other BCIs are more narrowly targeted. In
diagnostic applications, on treatment and motor rehabilitation following CNS disease or
trauma, BCls for biological purposes are also employed in affective application domains.
Biomedical technologies and applications can minimize extended periods of sickness, can
provide supervision and protection by empowering persons with mobility difficulties,
and can support their rehabilitation. The necessity to build accurate technology that can
cope with potentially abnormal brain responses that might occur due to diseases such as
brain stroke is a significant challenge in developing such platforms [19]. The following
subsections go through each of these applications in further detail.

2.1.1. Substitute to CNS

These substitution means that it can repair or replace CNS functioning lost due to
diseases such as paralysis and spinal cord injury due to stroke or trauma. In addition, due
to changed brain functions, individuals with such illnesses might suffer and developing
such technology can be difficult. Myoelectrics, known as a motor action potential, which
captures electrical impulses in muscles, is now used in several robotic prosthetics. Bousseta,
R. etal. [20] provided an experimental technology for controlling the movement of a robotic
prosthetic arm with mental imagery and using cognitive tasks, which can move in four
directions like left, right, up, and down.

2.1.2. Assessment and Diagnosis

The usage of BCIs in a clinical context can also help with assessment and diagnosis.
Perales [21] suggested a BCI for assessing the attention of youngsters with cerebral palsy
while playing games. Another research [22] looked into using BCI to capture EEG character-
istics as a tool for diagnosing schizophrenia. There are also various diagnostic methods such
as the detection of brain tumors [23], the identification of breast cancer [24], parkinson’s
disease [25] etc. Diagnoses of several diseases in children including epilepsy, neurodegen-
erative disorders, motor disabilities, inattentiveness, or different types of ADHD [26] are
possible. Assessment and diagnosis technologies are essential to patient well-being. Their
functioning must be fine-tuned to guarantee that they are safe, acceptable, and accurate to
industry standards.

2.1.3. Therapy or Rehabilitation

BCI is being used in therapeutic applications besides neurological application and
prosthetics nowadays. Among the many applications, post-stroke motor rehabilitation
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shows promising results using BCL. Stroke is a disease that causes long-term disability to
the human body and hampers all kinds of motor or vigorous activity due to an impediment
of blood flow. Stroke rehabilitation application has promised to aid these activities or user
imaginations through a robot or other types of machinery [27-29]. Some other applications
treat neurological disorders such as Parkinson’s disease (PD), cluster headaches, tinnitus,
etc. Deep Brain Stimulation (DBS) is an established treatment for PD as it delivers electrical
impulses to a targeted area of the brain responsible for the symptoms [30]. Some stimulation
BCI devices are used to process calmness during migraine attacks and cluster headaches.
Lastly, a CNS disorder known as tinnitus is also in development to provide treatment
by identifying brain patterns that are changed due to the disease [31]. Lastly, treatment
for auditory verbal hallucinations (AVHs), best known as schizophrenia, is a possibility
besides diagnosis [32,33].

2.1.4. Affective Computing

Users’ emotions and state of mind are observed in affective computing BCls, with the
possibility of altering their surrounding environment to improve or change that emotion.
Ehrlich, S. et al. [34] created a closed-loop system in which music is generated and then
replayed to listeners based on their emotional state. Human emotional states and sensory
connections can be studied with a device that is related to BCI system. Patients suffering
neurological diseases also can benefit from affective computing to help them convey their
feelings to others [35].

2.2. Non-Biomedical Applications

BCI technologies have shown economic promise in recent years, notably in the field of
non-biomedical applications. Most of these applications consist of entertaining applications,
games, and emotional computation. In comparison, researchers focus on robustness and
high efficiency in medical and military applications, and innovations targeted at leisure
or lifestyle demand a greater emphasis on enjoyment and social elements. The most
challenging aspect of this entertainment application is that it must be a user favorite to be
commercially successful. As an example, some of the most popular forms of amusement
are as follows:

2.2.1. Gaming

BClIs focused mainly on the gaming sector have grown in importance as a research
topic. However, gaming BCls are currently a poor substitute for standard game control
methods [36]. BCI in gaming is an area where further research is needed to make games
more user-friendly. In some cases, EEG data make BCI games more utilizable and increase
engagement, and the system tracks each player’s enthusiasm level and activates dynamic
difficulty adjustment (DDA) when the players’ excitement drops [37]. When developing
such systems, fine-tuning the algorithms that regulate the game’s behavior is a big challenge.
Some other games are based on BClI, as it is not visually intense and the graphics are not
compatible with the recent generation. With setbacks, there is an engaging future for an
Adaptation of P300 based Brain-Computer Interface for Gaming [38], which is gaining
more popularity as these are very flexible to play.

2.2.2. Industry

EEG-based BClIs can also be used in industrial robotics, increasing worker safety
by keeping people away from potentially demanding jobs. These technologies could
substitute the time-consuming button and joystick systems used to teach robots in industrial
applications; can detect when a person is too tired or ill to operate the machinery; and can
take the necessary precautions to avoid injury, such as stopping the machinery [38].
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2.2.3. Artistic Application

The four types of artistic applications recognized by BCls are passive, selective, direct,
and collaborative. Passive artistic BCIs need not require active user input to use the user’s
brain activity to determine which pre-programmed responses to produce. Every user has
had some limited control over the process within selective systems. Still, they will never be
in charge of the creative product. Direct artistic BCIs provide users with far more flexibility,
generally allowing them to choose items from extensive menus, such as brush type and
managing brush stroke movements [39]. Lastly, the collaborative system is controlled by
different users [40].

2.2.4. Transport

BCI is used in transportation monitoring which tracks awareness to assess driver
weariness and to enhance airline pilot performances. In the BCI system, mistakes can
be costly regarding lives and monetary obligations on the entities involved when such
technologies are utilized in critical applications [41,42].

3. Structure of BCI

The BCI system operates with a closed-loop system. Every action taken by the user
is met with some feedback. For example, an imagined hand movement might result in a
command that causes a robotic arm to move. This simple movement of this arm needs a lot
of processes inside it. It starts from the brain, which is one of our body’s most extensive and
most complicated organs. It is made up of billions of nerves that link billions of synapses
to communicate. The processes from taking signals from the human brain to transforming
into a workable command are shown in Figure 2 and described below:

e  Signal acquisition: In the case of BC], it is a process of taking samples of signals that
measure the brain activity and turning them into commands that can control a virtual
or real-world application. The various techniques of BCI for signal acquisition are
described later.

e  Pre-processing: After the signal acquisition, the pre-processing of signals is needed. In
most cases, the collected signals from the brain are noisy and impaired with artifacts.
This step helps to clean this noise and artifacts with different methods and filtering.
That is why it is named signal enhancement.

¢  Peature extraction: The next stage is feature extraction, which involves analyzing
the signal and extracting data. As the brain activity signal is complicated, it is hard
to extract useful information just by analyzing it. It is thus necessary to employ
processing algorithms that enable the extraction of features of a brain, such as a
person’s purpose.

®  C(lassification: The next step is to apply classification techniques to the signal, free of
artifacts. The classification aids in determining the type of mental task the person is
performing or the person’s command.

*  Control of devices: The classification step sends a command to the feedback device or
application. It may be a computer, for example, where the signal is used to move a
cursor, or a robotic arm, where the signal is utilized to move the arm.

The basic architecture of the BCI system was explained in the preceding section. It
prompts us to investigate the classification of BCI system. Based upon various techniques,
BClI system is classified. The BCI techniques are discussed in following parts.
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Signal Processing

Pre-processing Classification
Feature Extraction (Pattern Recognition)

T ,

[ Signal Acquisition ‘ Control of Devices

l

Feedback o

Brain Application

Figure 2. Basic architecture of a BCI system.

From the above Figure 3, we can classify BCI from different aspects such as depend-

ability, invasiveness, and autonomy.

Dependability: BCI can be classified as dependent or independent. Dependent BCls
necessitate certain types of motor control from the operator or healthy subjects, such
as gaze control. On the other hand, independent BCIs do not enable the individual to
exert any form of motor control; this type of BCI is appropriate for stroke patients or
seriously disabled patients.

Invasiveness: BCl is also classified into three types according to invasiveness: invasive,
partially invasive, and non-invasive. Invasive BCls are by far the most accurate as they
are implanted directly into the cortex, allowing researchers to monitor the activity of
every neuron. Invasive varieties of BCI are inserted directly into the brain throughout
neurosurgery. There are two types of invasive BClIs: single unit BClIs, which detect
signals from a single place of brain cells, and multi-unit BCIs, which detect signals
from several areas. Semi-invasive BCIs use Electrocorticography (ECoG), a kind of
signal platform that enables electrodes to be placed on the attainable edge of the
brain to detect electrical impulses originating from the cerebral cortex. Although this
procedure is less intrusive, it still necessitates a surgical opening in the brain. Nonin-
vasive BCls use external sensing rather than brain implants. Electroencephalography
(EEG), Magnetoencephalography (MEG), Positron emission tomography (PET), Func-
tional magnetic resonance imaging (fMRI), and Functional near-infrared spectroscopy
(fNIRS) are all noninvasive techniques used it to analyze the brain. However, because
of the low cost and portability of the gear, EEG is the most commonly used.
Autonomy: BCI can operate either in a synchronous or asynchronous manner. Time-
dependent or time-independent interactions between the user and system are possible.
The system is known as synchronous BCI if the interaction is carried out within a par-
ticular amount of time in response to a cue supplied by the system. In asynchronous
BCI, the subject can create a mental task at a certain time to engage with the system.
Synchronous BClIs are less user-friendly than asynchronous BCls; however, designing
one is substantially easier than developing an asynchronous BCI.

As the motive of this research work is to focus on advancements of BCI, the most

advanced and mostly used techniques that is based on invasiveness are described in
the following part. Based on invasiveness, BCl is classified into three categories that are
more familiar. In the consequent section, we address these three categories and describe
them elaborately.
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Figure 3. The classification/taxonomy of the BCI system.

3.1. Invasive

The types of BCI that are invasive are inserted directly into the brain with neurosurgery.
Invasive BCls seem to be the most accurate even though they are implanted directly into the
cortex as it is allowed to track every neuron’s action. Invasive BCI also has two units rather
than parts. The first unit is single-unit BCIs that detect signals from a single location of brain
cells, whereas multi-unit BCIs detect numerous areas, the second unit [43]. However, the
neurosurgery treatment has various flaws, such as the possibility of scar tissue formation.
The body responds to the foreign object by forming a scar around the electrodes, leading
the signal to deteriorate. Since neurosurgery is a dangerous and costly procedure, invasive
BClI is mainly used on blind and paralyzed patients.

3.2. Partially Invasive

Although this approach is not as intrusive, it still involves brain surgery. Electro-
corticography (ECoG) is a sort of partially invasive BCI monitoring system that places
electrodes in the cortex surface of the brain to produce signals with electrical activity. For
example, blinking allows your brain to discharge electrical activity. When investigating
signals, though, these involuntary actions are generally not of interest since they are in the
way of what we search for. It is a form of noise. ECoGs are less considered with noise than
non-invasive BCI, making interpretation easier [44].

Electrocorticography (ECoG)

Electrocorticography (ECoG) [45] is an partially invasive method that measures the
brain’s electrical activity. In another sense, the participant’s skull must be evacuated, and
the electrodes must be placed right at the brain’s service. Consequently, this electrode
is located on the skull. The particular resolution of the recorded signals is considerably
better than EEG. The signal-to-noise ratio is superior compared with the closer proximity
to cerebral activity. Furthermore, motion artifacts such as blinks and eye movement have a
significantly lower impact on ECoG signals. However, ECoG would only be helpful in the
accessible brain area and is close to impossible to utilize outside of a surgical setting [46].

3.3. Noninvasive

Noninvasive neuroimaging technologies have also been used as interfaces in human
research. Noninvasive EEG-based BClIs account for the vast bulk of published BCI re-
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search. EEG-based noninvasive technologies and interfaces have been employed in a
considerably more comprehensive range of applications. Noninvasive apps and technolo-
gies are becoming increasingly popular in recent years since they do not require any brain
surgery. In the noninvasive mode, a headpiece or helmet-like electrode is utilized outside
the skull to measure the signal by causing electrical activity in the brain. There are some
well-known and widely used ways for measuring these electrical activity or potentials,
such as Electroencephalography (EEG), Magnetoencephalography (MEG), Functional Mag-
netic Resonance Imaging (fMRI), Facial Near Infrared Spectroscopy (fNIRS), and Positron
Emission Tomography (PET). An elaborate description of BCI techniques is given below:

3.3.1. Electroencephalography (EEG)

EG monitors electrical activity in the scalp generated by activating a few of the brain’s
neurons. Several electrodes implanted on the scalp directly, mainly on the cortex, are
often used to record these electrical activities quickly. For its excellent temporal resolution,
ease of use, safety, and affordability, EEG is the most used technology for capturing brain
activity. Active electrodes and passive electrodes are indeed the two types of electrodes
that can be utilized. Active electrodes usually feature an integrated amplifier, whereas
passive electrodes require an external amplifier to magnify the detected signals. The
prime objective of implementing either embedded or external amplifiers is to lessen the
impact of background noise and other signal weaknesses caused by cable movement. One
of the issues with EEG is that it necessitates the use of gel or saline solutions to lower
the resistance of skin-electrode contact. Furthermore, the signal quality is poor, and it is
altered by background noise. The International 10-20 system [47] is often used to implant
electrodes over the scalp surface for recording purposes. The electrical activities across
various frequency bands are used to describe EEG in general.

3.3.2. Magnetoencephalography (MEG)

The magnetic fields created by current flow in the brain are measured using MEG
(Magnetoencephalography). Electric fields have significantly more interrupted travel via
the skull than magnetic fields, therefore it has superior spatial resolution than EEG. A
functional neuroimaging technique is applied to measure and evaluate the brain’s magnetic
field. MEG operates on the outside of the head and is now a part of the clinical treatment
regularly. David Choen [48,49] was the first to invent it in 1968 by utilizing a conduction
copper detector inside a shielded chamber to reduce background noise. Improved MEG
signals have recently been produced using more sensitive sensors such as superconducting
quantum interference devices (SQUID) [50]. MEG has become significant, especially for
patients with epilepsy and brain tumors. It may aid in detecting regions of the brain with
average function in individuals with epilepsy, tumors, or other mass lesions. MEG operates
with magnetic waves rather than electrical waves so that it could contribute additional
information to EEG. MEG is also capable of capturing signals with high temporal and
spatial resolution. Therefore, to detect cerebral activity that creates tiny magnetic fields the
scanners must be closer to the brain’s surface. As a result, specific sensors are required for
MEG, such as superconducting quantum interference (SQUID) sensors [51].

3.3.3. Functional Magnetic Resonance Imaging (fMRI)

Noninvasive functional magnetic resonance imaging (fMRI) is used to evaluate the
fluctuation in blood oxygen levels throughout brain activities. f{MRI has an excellent spatial
resolution, which makes it ideal for identifying active areas of the brain [52]. The time
resolution of fMRI is comparatively low, ranging from 1 to 2 s [53]. It also has low resolution
when it comes to head movements, which could result in artifacts. In the 1990s, functional
magnetic resonance imaging (fMRI) was created. It is a noninvasive and safe technology
that does not include the use of radiation, is simple to use, and has great spatial and
temporal resolution. Hemoglobin in capillary red blood cells in the brain transports oxygen
to the neurons. As a result of the increased demand for oxygen, blood flow increases. If
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haemoglobin is oxygenated, its magnetic properties vary. The MRI equipment, which
is a cylindrical tube with a strong electromagnet, can determine which regions of the
brain are activated because of this difference. That is how fMRI works. There is also a
specific application or software known as diffusion MRI, which generates images from
the data or results that use water molecules’ diffusion. Diffusion-weighted and diffusion
tensor imaging (DWI/DTI) facilitates this exploration of the microarchitecture of the brain.
Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) imaging renders
picture variation depending on variances in the degree of diffusion of water particles inside
the brain. Diffusion depicts the stochastic thermic mobility of particles. Diffusion inside
the brain is defined by several agents, including representing particles beneath study, the
temperature, and the microenvironmental structure in which the diffusion occurs [54].
Diffusion tensor imaging (DTI) investigates the three-dimensional form of the diffusion,
also recognized as diffusion tensor. It is a powerful MRI modality that produces directional
knowledge about the water motion in a voxel. It exhibits noninvasively microscopic tissue
features that surpass the ability of any other imaging methods [55].

3.3.4. Functional Near-Infrared Spectroscopy (fNIRS)

The infrared radiation is projected into the brain using f{NIRS equipment [53,56] to
monitor improvements in specific wavelengths as the light is reflected. fNIRS often detects
changes in regional blood volume and oxygenation. When a particular area of the brain
works, it requires additional oxygen, which is given to the neurons via capillary red blood
cells—the increased blood flow in the brain areas that would be most active at a given
time. fMRI is a technique that monitors variations in oxygen levels caused by various
activities. As a result, images with a high spatial resolution (1 cm) but lower temporal
resolution (>2-5s) could be obtained, comparable with standard functional magnetic
resonance imaging.

3.3.5. Positron Emission Tomography (PET)

PET (positron emission tomography) is a sophisticated imaging tool for examining
brain activities in real-time. It enables noninvasive measurement of cerebral blood flow,
metabolism, and receptor binding in the brain. Due to the relatively high prices and
complexity of the accompanying infrastructure, including cyclotrons, PET scanners, and
radio chemistry laboratories, PET was previously only used in research. PET has been
widely employed in clinical neurology in recent years due to technological improvements
and the proliferation of PET scanners to better our understanding of disease etiology,
to help in diagnosis, and to monitor disease progression and response to therapy [57].
PET medications such as radiolabeled choline, fluciclovine (18F-FACBC), and compounds
targeting prostate-specific membrane antigen are now being researched and explored to
improve noninvasive prostate cancer localization diagnostic performance [58].

4. Brain Control Signals

The brain-computer interface (BCI) is based on signal amplification that comes directly
from the brain. Several of these signals are simple to extract, while others are more difficult
and require additional preprocessing [53]. These control signals can be classified into one
of three groups: (1) evoked signals, (2) spontaneous signals, and (3) hybrid signals. A
detailed overview of the three categories is given below. The control signals classification
is shown in Figure 4.
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Figure 4. The basic architecture of BCI control signals.

4.1. Visual Evoked Potentials

Electrical potentials evoked by short visual stimuli are known as VEPs. The visual
cortex’s potentials are monitored, and the waveforms are derived from the EEG. VEPs
are generally used to assess the visual pathways from the eye to the brain’s visual cortex.
Middendorf et al. published a procedure for measuring the position of the user’s gaze
using VEPs in 2000 [59]. The user is confronted with a screen that displays several virtual
buttons that flash at varied rates. The frequency of the photic driving reflex over the user’s
visual brain is determined after the user focuses their gaze on a button. Whenever the
frequency of a shown button equals the frequency of the user, the system concludes that
the user wants to pick it. Steady-State Evoked Potentials (SSEP) and P300 are two of the
most well-evoked signals. External stimulation is required for evoked signals that can be
unpleasant, awkward, and exhausting for the individual.

4.1.1. Steady-State Evoked Potential (SSEP)

SSEP signals are produced when a patient experiences periodic stimuli such as a
flickering picture, modulated sound, or even vibrations [60,61]. The strength of the EEG
signal in the brain must grow to meet the stimulus frequency. Signals in many brain
locations are observed in terms of the sensory process. SSEP signals of different forms,
such as steady-state visual potentials (SSVEPs), somatosensory SSEP, and auditory SSEP,
are found. SSVEP is widely used in a variety of applications. These are normal brain
reactions to repeating stimuli, which vary depending on the frequency with which they are
presented. Although there are instances of BCI paradigms utilizing somatosensory (SSSEP)
or auditory (SSAEP) stimuli, they are generally induced using visual stimuli (steady-state
visually evoked potentials, SSVEP) [62].

4.1.2. P300 Evoked Potentials (P300)

The peaks in an EEG generated by infrequent visual, auditory, or somatosensory inputs
are known as P300 evoked potentials. Without the need for training to use P300-based BCI
systems. A matrix of symbols, in which selection is dependent on the participant’s gaze,
is a prominent use of P300-based BCI systems. Such a signal is typically produced using
an “odd-ball” paradigm. The user is asked to respond to a random succession of stimuli,
which is less frequent than others [63]. The P300-based EEG waves are triggered when this
unusual stimulus is significant to the person. P300 does not reasonably require any subject
training, although, it does need repetitive stimulation, which may tire the subject and may
cause inconsistencies.

4.2. Spontaneous Signals

With no external cues, the person produces random signals willingly. These signals
are produced without any external stimuli (somatosensory, aural, or visual). Motor and
sensorimotor rhythms, Slow Cortical Potentials (SCPs), and non-motor cognitive signals
are some of the most prominent spontaneous signals [53].
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4.2.1. Motor and Sensorimotor Rhythms

Motor activities are linked to motor and sensorimotor rhythms. Sensorimotor rhythms
are rhythmic oscillations in electrophysiological brain activity in the mu (Rolandic band,
7-13 Hz) and beta (13-30 Hz) frequencies. Motor imagery is the process of converting a
participant’s motor intentions into control signals employing motor imagery conditions [64].
The left-hand motion, in an instance, may result in EEG signals in the and rhythms and a
decrease in certain motor cortex areas (8-12 Hz) and (18-26 Hz). Depending on the motor
imagery rhythms, various applications can be used such as controlling a mouse or playing
a game.

4.2.2. Slow Cortical Potentials (SCP)

SCP is indeed an EEG signal with a frequency less than 1 Hz [65]. It is a low-frequency
potential observed in the frontal and central portions of the cortex and depolarization
level variations throughout the cortical dendrites. SCP is a highly gradual change in brain
activity, either positive or negative, that can only last milliseconds to several seconds.
Through operant conditioning, the subject can control the movement of such signals. As a
result, extensive training may be required in addition to that needed for motor rhythms.
Many studies no longer choose SCP, and motor and sensorimotor rthythms have taken
their place.

4.2.3. Non-Motor Cognitive Tasks

Cognitive objectives are utilized to drive the BCI in non-motor cognitive tasks.
Several tasks, such as musical imagination, visual counting, mental rotation, and math-
ematical computation, might be completed [66]. Penny, W.D. et al. [67] used a pattern
classifier with unclear parameters. The individual performed simple subtraction in one
of their non-motor cognitive activities.

4.3. Hybrid Signals

The term “hybrid signals” refers to the utilization of a mixture of brain-generated
signals for control. As a result, instead of measuring and using only one signal in the BCI
system, a mix of signals is used. The fundamental goal of using two or more types of brain
signals as input to a BCI system is to increase dependability while avoiding the drawbacks
of each signal type [68].

Some research is addressed that the types of brain signals are classified into two
categories [10]. These are event-related potentials and evoked brain potential. Three
varieties are organized for evoked brain potential: Visual Evoked Potential (VEP), Tactile
Evoked Potential (TEP), and Auditory Evoked Potential (AEP) [69].

5. Dataset

While analyzing the literature on BCI systems, we discovered various often used
datasets that researchers used while implementing these techniques. In terms of the
research, EEG is now the most frequent method for collecting brain data in BCI. As this is
a noninvasive method and has convenient handling for most datasets, an EEG signal is
used. However, for a variety of reasons, EEG does not provide a comprehensive method
of data collection. It needs a variety of fixed things to acquire the data. Firstly, the signal
must be acquired and stored by some subject, participants, or patients. It is unsuitable
when only one subject requires the same arrangement as multiple subjects to obtain data.
After the subjects are prepared, the electrodes (a gear mounted on the scalp) are attached
to the individuals to capture and measure data. This data collection method lasted for
several sessions, with a particular recording period determined by the work’s purpose.
The saved data in these sessions and recordings are primarily brain signals measured by
a brain’s action on a sure thing, such as a video or a picture. EEG signals differ from one
participant to the next and from one session to the next. In this section, the datasets as well
as the subjects and electrodes, channels, and sessions are described. The explanation is
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tabulated in Tables 2-8. In Table 2, some popular motor imagery datasets are illustrated.
The most beneficial option for creating BCls is motor imagery (MI) impulses captured via
EEG, which offers a great degree of mobility. It enables people with motor disabilities
to communicate with the device by envisioning motor movements without any external
stimuli generated from the motor cortex. A few datasets based on error-related potentials
(ErrPs) are exhibited in Table 3. ErrPs is an EEG dataset that utilizes a P300-based BCI speller
to boost the performance of BCIs. Detecting and fixing errors of the neuronal signature of
a user’s knowledge linked to a brain pattern is known as error-related potentials (ErrPs).
Affective computing improves human-machine communication by identifying human
emotions. Some mostly used emotion recognition datasets are shown in Table 4. Various
EEG-based BCI devices can detect the user’s emotional states to make contact effortless,
more useable, and practical. The emotions extracted in emotion-recognition datasets are
valence, arousal, calm, positive, exciting, happy, sad, neutral, and fear. In addition, it is
certainly clear by now that brain signals or memory are a mixed emotion. The part where all
of these mixed emotions are gathered from different body parts is known as a miscellaneous
part of the brain. Therefore, miscellaneous datasets include memory signals, brain images,
brain signals, etc. Some miscellaneous datasets are represented in Table 5. In EEG-based BCI,
the signals can detect eye movement such as eye blinks, eye states, etc. The BCI datasets
of eye blinks or movements include voluntary and involuntary eye states, blinks, and
activities are illustrated in Table 6. Subsequently, the electrical response in the brain to a
specific motor or cognitive event such as a stimulus is known as an event-related potential
(ERP). An unwanted sound, a sparking light, or a blinking eye can be an example of a
stimulus. BCI utilizing ERPs attempts to track attention, weariness, and the brain’s reaction
to this event-related stimulus. Table 7 is encapsulated with popular ERP datasets around.
Moreover, the visual information-processing mechanism in the brain is reflected in Visually
Evoked Potentials (VEPs). Flashing objects in the form of shifting colors or a reversing grid
are frequent visual stimulators. The CRT/LCD monitor or flash tube/infrared diode (LED)
is utilized for stimulus display in VEP-based BClIs. Frequently used VEP-based datasets
with these utilized objects are represented in Table 8.

However, the dataset covers information recorded from the beginning of BCI. To
extract information from datasets, feature extraction methods are necessary, which is
reviewed in the following section.

Table 2. A table of different types of motor imagery datasets of BCL

Subject (S)/Electrodes (E)

Dataset Name /Channels (C) Used in
Left or Right Hand MI [70] S:52 [71-75]
Motor Movement or Imagery Dataset S: 109 E: 64 [76-79]
Grasp and Lift EEG [80] S:12 [81-85]

SCP data of Motor-Imagery [86] S: 13 Recordings: 60 h [87-92]

BCI Competition IIT [93] S:3C: 60 [94-96]

BCI Competition IV-1 S:7C:64 [97-101]
BCI Competition IV-2a S:9E: 22 [102-106]
BCI Competition IV-2b S:9E: 3 [107-112]
High-Gamma Dataset [113] S: 14 E: 128 [114-120]
Left/Right Hand 1D /2D movements S:one E: 19 [86,121-123]
Imagination of Right-hand Thumb S one E: 8 [83,125-128]

Movement [124]
Mental-Imagery Dataset S:13 [129-135]
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Table 3. A table of different types of Error-Related Potentials (ErrP) dataset of BCI.

Subject (S)/Electrodes (E)

Dataset Name /Channels (C) Used in
BCI-NER Challenge [136] S:26 C: 56 [137]
ErrP in a target selection task S:E: 64 [138-144]
ErrPs during continuous feedback [145] S: 10 E: 28 [146-148]
Table 4. A table of different types emotion recognition dataset of BCI.
Dataset Name /SCul:) ajs:lte(li)(lgectrodes (E) Used in
DEAP [149] 5:32C:32 [150-157]
Enterface’06 [158] S:5C:54 NA
HeadIT S:31 [159]
NeuroMarketing [160] S:25E: 14 [161,162]
SEED [163] S:15C: 62 [12,164-169]
SEED-IV S:15C: 62 [170-175]
SEED-VIG [176] E: 18 [137,177-179]
HCI-Tagging S:30 [180-186]
Regulation of Arousal [187] S: 18 [52,130,188-190]
EEG Alpha Waves [191] S: 20 [192]

Table 5. A table of different types of miscellaneous datasets.

Subject (S)/Electrodes (E)

Dataset Name /Channels (C) Used in
MNIST Brain Digits S: Single Recordings: 2 s [193,194]
Imagenet Brain S: Single Recordings: 3 s [195-200]
Working Memory [201] S:15E: 64 [202-205]
Deep Sleep Slow Oscillation [201] R: 10s [206]

Genetic Predisposition to Alcoholism S: 120 E: 64 [124,207-212]
Confusion during MOOC [213] S:10 [214,215]

Table 6. A table of different types of eye-blink or movement datasets in BCL

Subject (S)/Electrodes (E)

Dataset Name /Channels (C) Used in
Voluntary-Involuntary Eye-Blinks [216] S:20E: 14 [217]

EEG-eye state [124] Recordings: 117 s [218-221]

EEG-IO [222] S: 20 Blinks: 25 [222,223]

Eye blinks and movements [222] S: 12 [222,224]

Eye State Prediction [225] S: Single Recordings: 117s  [130,218,219,226-228]
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Table 7. A table of different types Event-Related Potential (ERP) datasets in BCI. These datasets are
collected from [229].

Subject (S)/Electrodes (E)

Dataset Name /Channels (C) Used in
Target Versus Non-Target (2012) S:25E: 16 NA

Target Versus Non-Target (2013) S:24 E: 16 [230]

Target Versus Non-Target (2014) S:71E: 16 [231]

Target Versus Non-Target (2015) S: 50 E: 32 [232-234]
Impedance Data S: 12 [86,94,235-238]
Face vs. House Discrimination [239] S:7 [240,241]

Table 8. A table of different types of Visually Evoked Potential (VEP) datasets in BCI. These datasets
are collected from [229].

Subject (S)/Electrodes (E)

Dataset Name /Channels (C) Used in
c-VEP BCI S$:9C: 32 [242-244]
c-VEP BCI with dry electrodes S:9C:15 [243,245-248]
SSVEP S:30E: 14 [249-253]
Synchronized Brainwave Dataset Video stimulus [254,255]

6. Signal Preprocessing and Signal Enhancement

In most situations, the signal or data measured or extracted from datasets are filled
with noise. With a natural human activity such as eye blinks and heartbeats, the collected
data might become noisy. These noises are eliminated during the pre-processing step to
produce clean data that may subsequently process the feature extraction and classification.
This pre-processing unit is also known as signal enhancement since it cleans the signal
in BCIL. Some methods are used for signal enhancement in the BCI system, and these are
explained elaborately in the following subsections.

6.1. Independent Component Analysis (ICA)

The noises and EEG signals are isolated in ICA by treating them as distinct entities.
Furthermore, the data are retained during the removal of noises. This method divides
the EEG data into spatially fixed and temporally independent components. In the case of
computing and noise demonstrable, the ICA shows more efficiency [256].

6.2. Common Average Reference (CAR)

It is most commonly employed as a basic dimensionality reduction technique. This
approach decreases noise across all recorded channels, but this does not address channel-
specific noise and may inject noise into an otherwise clean channel. It is a spatial filter that
can be thought of as the subtraction of shared EEG activity, retaining only the idle action of
each EEG particular electrode [256].

6.3. Adaptive Filters

The adaptive filter is a computational device for mathematical processes. It connects
the adaptive filter’s input/output signals iteratively. There are filter coefficients that are self-
adjusted utilizing an adaptive algorithm. It works by altering signal properties depending
on the characteristics of the signals under investigation [257].
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6.4. Principal Component Analysis (PCA)

PCA is a technique for detecting patterns in data represented by a rotation of the
coordinate axes. These axes are not aligned with single time points, but they depict a signal
pattern with linear combinations of sets of time points. PCA keeps the axes orthogonal
while rotating them to maximize variance along the first axis. It reduces feature dimensions
and aids in data classification by completing ranking. In comparison with ICA, PCA
compresses separate data better whether noise is eliminated with it or not [258].

6.5. Surface Laplacian (SL)

SL refers to a method of displaying EEG data with a high spatial resolution. SL can be
generated using any EEG recording reference scheme as their estimates are reference-free.
Based on the volume conductor’s exterior shape, it is a general estimate of the current
density entering or exiting the scalp through the skull, and it does not require volume
conduction details. The advantage of SL is that it improves the spatial resolution of the EEG
signal. However, SL seems not to demand additional operative neuroanatomy premises as
it is sensitive to spline patterns and artifacts [259].

6.6. Signal De-Noising

Artefacts frequently corrupt EEG signals taken from brain. These artifacts must
be removed from EEG data to obtain valuable information from it. The technique of
eliminating sounds or artefacts from EEG signals is known as de-noising [260]. Some
de-noising methods are given below:

¢  Wavelet de-noising and thresholding: The multi-resolution analysis is used to transfer
the EEG signal to the discrete wavelet domain. The contrasting or adaptive threshold
level is used to reduce particular coefficients associated with the noise signal [261].
Shorter coefficients would tend to define noise characteristics throughout time and
scale in a well-matched wavelet representation. In contrast, threshold selection is one
of the most critical aspects of successful wavelet de-noising. Thresholding can isolate
the signal from the noise in this case; hence, thresholding approaches come in several
shapes and sizes. All coefficients underneath a predetermined threshold value are set
to zero in hard thresholding. Soft thresholding is a method of reducing the value of
the remaining coefficients by a factor of two [262].

¢  Empirical mode decomposition (EMD): It is a signal analysis algorithm for multivari-
ate signals. It breaks the signal down into a series of frequency and amplitude-
regulated zero-mean signals, widely known as intrinsic mode functions (IMFs).
Wavelet decomposition, which decomposes a signal into multiple numbers of In-
trinsic Mode Functions (IMFs), is compared by EMD. It decomposes these IMFs using
a shifting method. An IMF is a function with a single maximum between zero cross-
ings and a mean value of zero. It produces a residue after degrading IMFs. These
IMFs are sufficient to characterize a signal [263].

Most of our datasets mentioned in the previous section are a part of various BCI
paradigms and follow these signal enhancement techniques as well. The motor imagery
datasets represent paradigms such as sensorimotor activity or rhythms. In addition,
error-related potentials datasets and datasets such as event-related potentials or visually
evoke potentials signify their own BCI paradigm. Some other paradigms, such as overt
attention, eye movement, miscellaneous, and emotion recognition, identify their datasets.
Indeed, these paradigms become bigger in number as the measurement of different brain
movements and emotions are attempted. More than 100 BCI designs are required to
use signal enhancement techniques to extract features from the signal. In comparison,
Reference [264] shows that 32% of BCI designs use surface Laplacian (SL) to extract features,
principal component analysis (PCA) or independent component analysis (ICA) was used
in 22%, and common spatial patterns (CSP) and common average referencing (CAR)
techniques are used in 14% and 11%, respectively.
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7. Feature Extraction

Now, it is necessary to understand what the features represent, their qualities, and
how to use them for a BCI system to select the best appropriate classifier. A classification
system’s accuracy or efficiency is primarily determined by the feature(s) of the samples
to be categorized [265]; therefore, feature extraction has been crucial stage in BCIL. The
majority of noninvasive BCI devices use neuroimaging techniques such as MEG and MRL
However, EEG is the most widely utilized method, owing to its high temporal resolution
and inexpensive cost [266]. The EEG signal feature extraction method is one of the essential
components of a BCI system because of its involvement in successfully executing the
classification stage at discriminating mental states. Nevertheless, the feature extraction
methods based on both EEG and ECoG are discussed elaborately in the subsequent section.

7.1. EEG-Based Feature Extraction

Typically, BCI focuses on identifying acquired events using various neuroimage tech-
niques, the most common of which is electroencephalography (EEG). Since its involvement
in successfully executing the classification stage at discriminating mental states, the EEG
signal feature extraction method is one of the essential components of a BCI system. Ac-
cording to [267] on EEG, three types of feature extraction are discussed in detail in the
following sections. These features are the time domain, the frequency domain, and the
time—frequency domain. The following subsection address the feature domains elaborately.

7.1.1. Time Domain

The time—frequency domain integrates analyses in the time and frequency domains. It
depicts the signal energy distribution in the Time—Frequency plane (t-f plane) [268]. When
it comes to deciphering rhythmic information in EEG data, a time—frequency analysis
comes in handy. EEG’s time-domain properties are straightforward to fix, but they have the
disadvantage of containing non-stationary signals that alter over time. Features are usually
derived using signal amplitude values in time-domain approaches that can be distorted by
interference as noise during EEG recording.

e Event related potentials: Event-related potentials (ERPs) are very low voltages gener-
ated in brain regions in reaction to specific events or stimuli. They are time-locked
EEG alterations that provide a safe and noninvasive way to research psychophysi-
ological aspects of mental activities. A wide range of sensory, cognitive, or motor
stimuli can trigger event-related potentials [269,270]. ERPs are useful to measure the
time to process a stimulus and a response to be produced. The temporal resolution of
event-related potentials is remarkable, but it has a low spatial resolution. ERPs were
used by Changoluisa, V. et al. [271] to build an adaptive strategy for identifying and
detecting changeable ERPs. Continuous monitoring of the curve in ERP components
takes account of their temporal and spatial information. Some limitations of ERPs
are that it shows poor spatial resolution, whether it is suitable with temporal resolu-
tion [272]. Furthermore, a significant drawback of ERP is the difficulty in determining
where the electrical activity originates in the brain.

*  Statistical features: Several statistical characteristics were employed by several schol-
ars [273-275] in their research:
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—  Standard deviation:
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- Root mean square (RMS):
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where x () is the pre-processed EEG signal with N number of samples; i, refers to
the meaning of the samples. Statistical features are useful at low computational cost.

¢ Hijorth features: Bo Hjorth introduced the Hjorth parameters in 1970 [276]; the three
statistical parameters employed in time-domain signal processing are activity, mobility,
and complexity. Dagdevir, E. et al. [277] proposed a motor imagery-based BCI system
where the features were extracted from the dataset using the Hjorth algorithm. The
Hjorth features have advantages in real-time analyses as it has a low computation
cost. However, it has a statistical bias over signal parameter calculation.

e Phase lag index (PLI): The functional connectivity is determined by calculating the
PLI for two pairs of channels. Since it depicts the actual interaction between sources,
this index may help estimate phase synchronization in EEG time series. PLI measures
the asymmetry of the distribution of phase differences between two signals. The ad-
vantage of PLI is that it is less affected by phase delays. It quantifies the nonzero phase
lag between the time series of two sources, making it less vulnerable to signals. The
effectiveness of functional connectivity features evaluated by phase lag index (PLI),
weighted phase lag index (wPLI), and phase-locking value (PLV) on MI classification
was studied by Feng, L.Z. et al. [278].

7.1.2. Frequency Domain

When analyzing any signal in terms of frequency instead of just time, the frequency
domain properties are considered. Any signal’s frequency domain representation displays
how much of it falls inside a specific frequency range. The frequency domain properties
are commonly acquired using power spectral density (PSD). The discussion about these
properties is presented below in the following section.

1.  Fast fourier transform (FFT): The Fourier transform is a mathematical transformation
that converts any time-domain signal into its frequency domain. Discrete Fourier
Transform (DFT) [279], Short Time Fourier Transform (STFT) [280,281], and Fast
Fourier Transform are the most common Fourier transform utilized for EEG-based
emotion identification (FFT) [282]. Djamal, E.C. et al. [283] developed a wireless
device that is used to record a player’s brain activity and extracts each action using
Fast Fourier Transform. FFT is faster than any other method available, allowing
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it to be employed in real-time applications. It is a valuable instrument for signal
processing at a fixed location. A limitation of FFT is that it can convert the limited
range of waveform data and the requirement to add a window weighting function to
the waveform to compensate for spectral leakage.

2. Common spatial patterns (CSP): It is a spatial filtering technique usually employed in

EEG and ECoG-based BClIs to extract classification-relevant data [284]. It optimizes
the ratio of their variances whenever two classes of data are utilized to increase the
separability of the two classes. In the case of dimensionality reduction, if a different
dimension reduction phase precedes CSP, it appears to be better and has more
essential generalization features. The basic structure of the CSP can be described by
the Figure 5.
In Figure 5, CSP provides spatial filters that minimize the variance of an individual
class while concurrently maximizing the variance of other classes. These filters
are mainly used to choose the frequency from the multichannel EEG signal. After
frequency filtering, spatial filtering is performed using spatial filters that are employed
to extract spatial information from the signal. Spatial information is significantly
necessary to differentiate intent patterns in multichannel EEG recordings for BCI. The
performance of this spatial filtering depends on the operational frequency band of
EEG. Therefore, CSP is categorized as a frequency domain feature. However, CSP
acts as signal enhancement while it requires no preceding excerpt or information of
sub-specific bands.

3.  Higher-order Spectral (HOS): Second-order signal measurements include the auto-
correlation function and the power spectrum. Second-order measures operate satisfac-
torily if the signal resembles a Gaussian probability distribution function. However,
most of the real-world signals are non-Gaussian. Therefore, Higher-Order Spectral
(HOS) [285] is an extended version of the second-order measure that works well
for non-Gaussian signals, when it comes into the equation. In addition, most of the
physiological signals are nonlinear and non-stationary. HOS are considered favorable
to detect these deviations from the signal’s linearity or stationarity. It is calculated
using the Fourier Transform at various frequencies.

HOS = X(K)X(1)X* (k + 1) ®)

where X(K) is the Fourier transform of the raw EEG signal x(n) and [ is a shifting
parameter.

A A 3 Frt.aqut?ncy
Filtering |

EEG signal ) v

( Spatial ) Spatial
| Filtering | Filters
2

Feature
Selection

\

Figure 5. The basic structure of CSP [286].

7.1.3. Time-Frequency Domain

In the time-frequency domain, the signal is evaluated both in the time and frequency
domains simultaneously. The wavelet transform is one of many advanced approaches for
analyzing the time-frequency representation. There are some other widely used models
for utilizing the time-frequency domain. These models are addressed with a proper
explanation in the subsequent section.
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1.  Autoregressive model: For EEG analysis, the Autoregressive (AR) model has been
frequently employed. The central premise of the autoregressive (AR) model is that
the real EEG can be approximated using the AR process. With this premise, the
approximation AR model’s order and parameters are set to suit the observed EEG
as precisely as possible. AR produces a smooth spectrum if the model order is too
low, while it produces false peaks if it is too high [287]. AR also reduces leakage and
enhances frequency resolution, but choosing the model order in spectral estimation
is difficult. The observational data, denoted as x (), results from a linear system
with an H(z) transfer function. Then, x(n) encounters an AR model of rank p in the
formula [288].

™=

x(n) = =) ap(i)x(n —i) +o(n) ©)
i=1
The AR parameters are ap(i), the observations are x(n) and the excitation white noise
is v(n). Lastly, the most challenging part of AR EEG modeling is choosing the correct
model to represent and following the changing spectrum correctly.

2. Wavelet Transform (WT): The WT technique encodes the original EEG data using
wavelets, which are known as simple building blocks. It looks at unusual data patterns
using variable windows with expansive windows for low frequencies and narrow
windows for high frequencies. In addition, WT is considered an advanced approach
as it offers a simultaneous localization in the time-frequency domain, which is a
significant advantage. These wavelets can be discrete or continuous and describe the
signal’s characteristics in a time-domain frequency. The Discrete Wavelet Transform
(DWT) and the Continuous Wavelet Transform (CWT) are used frequently in EEG
analysis [289]. DWT is now a more widely used signal processing method than
CWT as CWT is very redundant. DWT decomposes any signal into approximation
and detail coefficients corresponding to distinct frequency ranges maintaining the
temporal information in the signal. However, most researchers try all available
wavelets before choosing the optimal one that produces the best results, as selecting a
mother wavelet is challenging. In wavelet-based feature extraction, the Daubechies
wavelet of order 4 (db4) is the most commonly employed [290].

7.2. ECoG-Based Features

Electrocorticography (ECoG) generates a reliable signal through electrodes placed on
the surface of the human brain, which decodes movement, vision, and speech. Decoding
ECoG signal processing gives immediate patient feedback and controls a computer cursor
or perhaps an exoskeleton. The ECoG signal feature extraction approach is a crucial element
of the BCI system since it is involved in accomplishing the classification phase during
decoding. Some of the widely used feature extraction methods are discussed below.

7.2.1. Linear Filtering

It is typically employed to filter out noise in the form of signals that are not in the
frequency range of the brain’s messages. Low-pass filters and high-pass filters are the two
types of linear filters. This typical linear filtering is used to removed ECOG, EOG, and EMG
artifacts from EEG signals. Low pass filtering is used to remove EMG artifacts, and high
pass filtering is used to remove EOG artifacts [291]. These artifacts are noises produced
by either physiological processes such as muscle, eye, or other biological movement or
exogenous (external) sources such as machinery faults. There are three approaches for
dealing with artifacts in EEG signal acquisition. Avoiding artifacts by keeping an eye on the
subject’s movements and the machine’s operation. Contaminated trials are discarded due
to artifact rejection. Pre-processing techniques are used to remove artifacts. The advantage
of linear filtering is that signals are considered a controlled scaling of the signal’s frequency
domain components. High pass filtering is used to raise the relative importance of the
high-frequency components by reducing the features in the frequency domain’s center.
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7.2.2. Spatial Filtering

Spatial filtering is a technique for improving decoding by leveraging information about
the electrode positions. The spatial filter aims to lessen the influence of spatial distortion
in the raw signal; various ECoG channels are treated as coordinates for multivariate
data sampling through spatial filters. The filtering transforms that coordinate system
to facilitate decoding. Spatial filtering can use to minimize data dimensionality or to
increase the dissimilarity of various observations. The referencing systems used during
ECoG recordings are frequently utilized for preliminary spatial filtering. Equation (10)
determines the spatial filter [292].

x' = i(xi) * (w;) (10)

where x’ is the spatially filtered signal, x; is the EEG signal from channel i, and w; is
the weight of that channel. With the aid of relevant information acquired from multiple
EEG channels, spatial filtering contributes to recovering the brain’s original signal. Simul-
taneously, it reduces dimensionality by lowering EEG channel size to smaller spatially
filtered signals.

Thus far, feature extraction involves extracting new features from existing ones to mini-
mize feature measurement costs, to improve classifier efficiency, and to improve classification
accuracy. Now in the following section, the extracted feature classifiers are briefly described.

8. BCI Classifiers

BCI always needs a subject to use its device, and similarly, the subject must produce
several types of data to use a BCI device. In addition, to use a BCI system, the subject
must develop various brain activity patterns that the system can recognize and convert
into commands. To achieve this mentioned conversion, some regression or classification
algorithms can be used. The classification step’s design comprises selecting one or more
classification algorithms from a variety of options. In this section, some commonly known
classifiers [293], which are classified in Figure 6, as well as some new classifiers [294] are
described below.
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Figure 6. Classification of commonly used classifiers in BCI.

8.1. Linear Classifiers

Linear classifiers are discriminant algorithms that discriminate classes using linear
functions. It is most likely the most widely used algorithm in BCI systems. Two types
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of linear classifiers are used during BCI design: linear discriminant analysis (LDA) and
support vector machine (SVM).

8.1.1. Linear Discriminant Analysis (LDA)

The objective of Linear Discriminant Analysis is to separate data from diverse classes
using a hyperplane. The side of hyperplane determinded through the category of a feature
vector in a two-class problem. LDA requires that the data has a normal distribution and
that both classes have the same covariance matrix. The separation hyper-plane is based
on looking for a projection that maximizes the margin between the means of two classes
while minimizing intraclass variance [295]. Furthermore, this classifier is straightforward
to apply and generally produces excellent results and soundly implemented in various
BClI system, including MlI-based BCI, P300 speller, multiclass, and asynchronous BCI. The
disadvantage of LDA is its linearity, which might lead to unsatisfactory results when faced
with various nonlinear EEG data.

8.1.2. Support Vector Machine (SVM)

A Support Vector Machine (SVM) uses a discriminant hyperplane to identify classes.
The determined hyperplane in SVM is the one that maximizes the margins, i.e., the
distance between both the nearest training samples. The ability to generalize is believed
to improve when margins are maximized [296]. Linear SVM [297] is a type of SVM that
allows for classification utilizing linear decision bounds. This classifier has been used to
solve a substantial number of synchronous BCI tasks with tremendous success. The SVM
classifier also works by projecting the input vector X onto a scalar value £(X), as shown in
Equation (11).

N
f(X) =Y myK(X;, X) +b (11)
i

Gaussian SVM or RBF SVM is the term applied to the equivalent SVM. RBF and
SVM have also produced remarkable outcomes in BCI applications. SVM is used to solve
multiclass BCI problems that use the OVR approach, similar to LDA.

8.2. Neural Networks (NN)

Neural networks (NN) and linear classifiers are the two types of classifiers most
usually employed in BCI systems, considering that a NN is a collection of artificial neurons
that allows us to create nonlinear decision limits [298]. The multilayer perceptron (MLP) is
the most extensively used NN for BCI, as described in this section. Afterward, it briefly
discusses other neural network architectures utilized in BCI systems.

8.2.1. Deep Learning (DL) Models

Deep learning has been widely used in BCI applications nowadays compared with
machine learning technologies because most BCI applications require a high level of
accuracy. Deep learning models perform better in recognizing changing signals from the
brain, which changes swiftly. Some popular DL models such as CNN, GNN, RNN, and
LSTM are described below:

e  Convolutional Neural Network (CNN): A convolutional neural network (CNN) is an
ANN intended primarily to analyze visual input used in image recognition and pro-
cessing. The convolutional layer, pooling layer, and fully connected layer are the three
layers that comprise CNN. Using a CNN, the input data may be reduced to instant
response formations with a minimum loss, and the characteristic spatial relationships
of EEG patterns can be recorded. Fatigue detection, sleep stage classification, stress
detection, motor imagery data processing, and emotion recognition are among the
EEG-based BCI applications using CNNs. In BCI, the CNN models are used in the
input brain signals to exploit the latent semantic dependencies.
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e Generative Adversarial Network (GAN): Generative adversarial networks are a recent
ML technique. The GAN used two ANN models for competing to train each other
simultaneously. GANSs allow machines to envision and develop new images on their
own. EEG-based BCI techniques recorded the signals first and then moved to the
GAN techniques to regenerate the images [299]. The significant application of GAN-
based BCI systems is data augmentation. Data augmentation increases the amount of
training data available and allows for more complicated DL models. It can also reduce
overfitting and can increase classifier accuracy and robustness. In the context of BCI,
generative algorithms, including GAN, are frequently used to rebuild or generate a
set of brain signal recordings to improve the training set.

e  Recurrent Neural Network (RNN): RNNs’ basic form is a layer with the output
linked to the input. Since it has access to the data from past time-stamps, and the
architecture of an RNN layer allows for the model to store memory [300,301]. Since
RNN and CNN have strong temporal and spatial feature extraction abilities in most
DL approaches, it is logical to mix them for temporal and spatial feature learning.
RNN can be considered a more powerful version of hidden Markov models (HMM),
which classifies EEG correctly [302]. LSTM is a kind of RNN with a unique architecture
that allows it to acquire long-term dependencies despite the difficulties that RNNs
confront. It contains a discrete memory cell, a type of node. To manage the flow
of data, LSTM employs an architecture with a series of “gates”. When it comes to
modeling time series of tasks such as writing and voice recognition, RNN and LSTM
have been proven to be effective [303].

8.2.2. Multilayer Perceptron (MLP)

An Multilayer Perceptron (MLP) [304] comprises multiple layers of neurons along with
an input layer, one or more hidden layers, and an output layer. The input of each neuron is
linked to the output of the neurons in the preceding layer. Meanwhile, the output layer
neurons evaluate the classification of the input feature vector. MLP and neural networks
can approximate, meaning they can compare continuous functions if they have sufficient
neurons and layers. The challenging factor behind MLPs is that they are susceptible to
over-training, particularly containing noisy and non-stationary data. As a result, significant
selection and regularization of the architecture are necessary. Perceptron is a multilayer
with no hidden layers comparable with LDA. It has been used in BCI applications on
occasion [293]. Sunny, M.S.H. et al. [305] used Multilayer Perceptron (MLP) to distinguish
distinct frequency bands from EEG signals to extract features more effectively.

8.2.3. Adaptive Classifiers

As new EEG data become accessible, adaptive classifiers” parameters, such as the
weights allocated to each feature in a linear discriminant hyperplane, are gradually re-
estimated and updated. Adaptive classifiers can use supervised and unsupervised adapta-
tion, that is, with or without knowledge of the input data’s real class labels. The true class
labels of the receiving EEG signals are obtained using supervised adaptation. The classifier
is either reassigned on the existing training data, enhanced with these updated, labeled
incoming data, or updated solely on this new data. Supervised user testing is essential for
supervised BCI adaptation. The label of the receiving EEG data is vague with unsupervised
adaptation. As a result, unsupervised adaptation is based on class-unspecific adaptation,
such as updating the generalized classes EEG data mean or a co-variance matrix in the
classifier model or estimating the data class labels for additional training [306].

8.3. Nonlinear Bayesian Classifiers

This section discusses the Bayes quadratic and hidden Markov models (HMM), two
Bayesian classifiers used in BCI. Although Bayesian graphical networks (BGN) have been
used for BCI, they are not covered here since they are not widely used [307].
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8.3.1. Bayes Quadratic

The objective of Bayesian classification is to provide the highest probability class to
a feature vector. The Bayes rule is often used to calculate the a posteriori probability of a
feature vector assigned to a single class. The class of this feature vector can be calculated by
using the MAP (maximum a posteriori) rule with these probabilities. The Bayes quadratic
assumption is that the data have a distinct normal distribution. The result is quadratic
decision boundaries that justify the classifier’s name [308]. Although this classifier is not
extensively utilized for BCI, it has been successfully used to classify motor imagery and
mental tasks.

8.3.2. Hidden Markov Model

A Bayesian classifier that generates a nonlinear cost function is known as a Hidden
Markov Model (HMM). An HMM is a statistical algorithm that calculates the chances of
seeing a given set of feature variables [309]. These statistical probabilities from HMM are
generally Gaussian Mixture Models (GMM) in case of BCI [310]. HMM may be used to
categorize temporal patterns of BCI characteristics (Obermaier, B. et al. [302]), even raw
EEG data, since the EEG elements required to control BCI have particular time sequences.
Although HMM is not widely used in the BCI world, this research demonstrated that they
could be helpful to classification on BCI systems such as EEG signals [311].

8.4. Nearest Neighbor Classifiers

In this section, some classifiers with distance vectors are described. Classifiers such as
K nearest neighbors (KNN) and Mahalanobis distance are common among them as they
are nonlinear discriminative classifiers [312].

8.4.1. K Nearest Neighbors

K nearest neighbor method aims to identify the dominant class amongst an unseen
point within the dataset habituated for training. Nearest neighbors are typically estimated
using a metric that has some intervals during the signal acquisition of BCI. KNN can
construct nonlinear decision boundaries by evaluating any function with enough training
data with an inflated k value. The usability of KNN algorithms is less in the BCI field as
their condescending sensitivity hampers the capacity, which causes them to fail in multiple
BCI research. KNN is efficient in BCI systems with some feature vectors, but low power
can cause failure in BCI research [313].

8.4.2. Mahalanobis Distance

For each prototype of class c, Mahalanobis distance-based classifiers [314] assume a
Gaussian distribution N (¢, Mc). Subsequently, using the Mahalanobis distance dc, a feature
vector x is allocated to the class that corresponds to the closest prototype (x).

de(x) =/ (x — )M (x — o) (12)

This results in a basic yet reliable classifier; it has been shown to work in multiclass
and asynchronous BCI systems. Considering its excellent results, it is still rarely mentioned
in BCI literature [315].

8.5. Hybrid

In several BCI papers, classification is implemented with a single classifier. Fur-
thermore, a current tendency is to combine many classifiers in various ways [316]. The
following are indeed the classifier combination strategies utilized in BCI systems:

8.5.1. Boosting

Boosting is the process of using multiple classifiers in a cascade, and each focused
on the errors made by the one before it. It can combine numerous weak classifiers to
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form a powerful one; thereforem it is unlikely to overtrain. Moreover, it is susceptible to
mislabeling, illustrating why it failed in one BCI trial [293].

8.5.2. Voting

Multiple classifiers are employed for voting, each of which allocates the input feature
vector to a class. The majority class becomes the final class. In BCI systems, voting is the
most preferred process of combining classifiers due to its simplicity and efficiency [293].

8.5.3. Stacking

Stacking is the process of utilizing multiple classifiers to categorize the input feature
vector. Level-0 classifiers are what it is named. Each one of these classifiers” output would
then feed into a “meta-classifier” (or “level-1 classifier”), which makes a final decision [293].

Aforementioned in this section, some other classifiers are utilized in the recent BCI
research. Since 2016 transfer learning is used for using MI classification tasks [317]. Some
ground-breaking architectures are established in recent years, such as EEG-inception, an
end-to-end Neural network [318], cluster decomposing, and multi-object optimization-
based-ensemble learning framework [319]; RENet is a fusion network that learns from
attention weights and used in embedding-specific features for decision making [179].

Now, a better understanding of the performance of commonly known classifiers with
some popular datasets are given in Table 9.

Table 9. Comparison of classifiers based on popular datasets and features.

Ref. Dataset Feature Classifier Accuracy

[102] BCI competition IV-2b CWT CNN Morlet- 78.93%, Bump-77.25%
Evolved Filters:

[320]  BCI competition III Csp SVM Subject 1—77.96%,

Subject 2—75.11%,
Subject 3—57.76%

[321] BCI competition III WT SVM 85.54%

[321] BCI competition III WT NN 82.43%

[322] BCI competition III WT LDA MisClassification Rate: 0.1286
[323] BCI competition III WT CNN 86.20%

[324] BCI competition IV-2a  Single Channel CSP KNN 622 +0.4%

[324] BCI competitionIV-2a  Single Channel CSP MLP 63.5+0.4%

[324] BCI competition IV-2a  Single Channel CSP SVM 63.3 +0.4%

[324] BCI competition IV-2a Single Channel CSP LDA 61.8 + 0.4%

9. Evaluation Measurement

To evaluate the performance of BCI systems, researchers employed several evaluation
metrics. The most common is accuracy, commonly known as error rate. Although accu-
racy is not always an acceptable criterion due to specific rigorous requirements, various
evaluation criteria have been offered. An overview of BCI research evaluation criteria is
provided below.

9.1. Generally Used Evaluation Metrics

In this section, we sorted the most commonly used evaluation metrics for measuring
the BCI system performances. The evaluation measures are explained carefully in the
following subsections.

9.1.1. The Confusion Matrix

The confusion matrix represents the relationship between the actual class’s user-
intentioned output classes and the actual predicted class. True positives rate (TPR),
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False negative rate (FNR), False positives rate (FPR), Positive predictive value (PPV),
and negative predictive value (PPV) are used to describe sensitivity or recall, specificity,
(1-specificity), precision, etc. [325].

9.1.2. Classification Accuracy and Error Rate

Classification accuracy is one of the important metrics in BCI systems; this study
evaluates performance using classification accuracy as well as sensitivity and specificity.
This measure determines how frequently the BCI makes a right pick or what proportion of
all selections are accurate. It is the most obvious indicator of BCI accomplishment, implying
that it increase in a linear fashion with decision time, so it takes a long time. The following
is the mathematical formula for calculating accuracy:

Correctly classified test trials

Classification accuracy = Total test triols

x 100 (13)

9.1.3. Information Transfer Rate

Shannon [326] proposed the Information Transfer Rate (ITR) as the rate that makes up
both of these metrics. This rate represents the quantity of data that may pass through the
system in one unit of time. In [327], the information transmission rate in bits per minute
(bits/min) and accuracy (ACC) in percentage (%) were used to evaluate performance. They
made demographic data (age and gender) as well as the performance outcomes of 10
participants, and the ITR was computed using the Formula (14), which is as follows:

By =log, N + plog, p + (1 - p)log, {N-ﬂ (14)
where N is the number of targets and p is the classification accuracy (ACC). Based on four
cursor movements and the choose command, this resulted in a N of 5. Bits per trial were
used to compute B;.

According to ITR [328] also has some important parameters that are used to evaluate
BCI. A description of them is given below:

1.  Target detection accuracy: The accuracy of target identification may be enhanced
by increasing the Signal-to-Noise Ratio (SNR) and the separability of several classes.
Several techniques, such as trial averaging, spatial filtering, and eliciting increased
task-related EEG signals, are employed in the preprocessing step to reduce the SNR.
Many applications utilize trail averaging across topics to improve the performance of
a single BCI. These mental states may be used to lower the SNR [53].

2. Number of classes: The number of classes is raised and more sophisticated applica-
tions are built with a high ITR. TDMA, FDMA, and CDMA are among the stimulus
coding techniques that have been adopted for BCI systems [243,329]. P300, for exam-
ple, uses TDMA to code the target stimulus. In VEP-based BCI systems, FDMA and
CDMA have been used.

3.  Target detection time: The detection time is when a user first expresses their purpose
and when the system makes a judgment. One of the goals of BCI systems is to improve
the ITR by reducing target detection time. Adaptive techniques, such as the “dynamic
halting” method, might be used to minimize the target detection time [330].

9.1.4. Cohen’s Kappa Coefficient

Cohen’s Kappa measures the agreement between two observers; it measures the
contract between the proper output and the command of BCI domain in a BCI-based AAC
system. Cohen’s kappa coefficient resolves many of the accuracy measure’s objections [331].
The general agreement pg = ACC, which is equivalent to the classification accuracy and
the chance agreement p,, with n; and n;, being the column ith and row ith, correspondingly,
are used to calculate K.
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M
Yo ning

Pe = N2 (15)

where posteriori and priori probability are n : i, ni : respectively. The estimated kappa
Coefficient K and standard error e(K) are acquired by

Po — Pe
K=" 16
- (16)
When there is no correlation between the expected and actual classes, the kappa
coefficient becomes zero. A perfect categorization is indicated by a kappa coefficient of 1.
If the Kappa value is less than zero, the classifier offers an alternative assignment for the
output and actual classes [332].

\/(PO +p2 = XM [nni (g + "i:)]/N3)
(k) = (1- pg)\/ﬁ (17)

9.2. Continuous BCI System Evaluation

Continuous BCI performance was measured using a variety of parameters. Different
measures may be even more appropriate depending on whether the study is conducted
online or offline. The section goes through some of the most commonly used metrics in
this field, including the correlation coefficient, accuracy, and Fitts’s Law [333].

9.2.1. Correlation Coefficient

The correlation coefficient could be a useful statistic for determining whether an
intracortical implant receives task-relevant neurons. There are two essential stipulations:
one is scale-invariant, which implies that the cursor might miss the mark substantially
while still generating high values if the sign of the actual and anticipated movements
coincide [334]; the other is that a decoder can yield a high value if it simply generates a
signal that fluctuates with the repetitions [333].

9.2.2. Accuracy

Task characteristics such as target size and dwell time have a significant impact on
accuracy. As a result, it is more of a sign that the task was is good enough for the subject
and modality than a performance measure [333].

9.2.3. Fitts’s Law

Fitts’s law asserts that the time taken for a person to move a mouse cursor to a targeted
object of the target’s distance is divided by its size. The longer it takes, the greater the
distance and the narrower the target [335,336]. Fitts’s law requires using a method to
calculate the “index of difficulty” of a particular change.

9.3. User-Centric BCI System Evaluation

Users are an essential element of the BCI product life cycle. Their interactions and
experiences influence whether BCI systems are acceptable and viable. The four criteria
or User Experience (UX) factors are used to evaluate user-centric BCI systems. These are
usability, affects, ergonomics, and quality of life, shown below in the following subsection.

9.3.1. Usability

The amount that can be utilized to fulfill specific objectives with effectiveness, effi-
ciency, learnability, and satisfaction in a given context is referred to as usability [337]. In
usability measure, we can include four metrics, such as,
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1.  Effectiveness or accuracy: It depicts the overall accuracy of the BCI system as experi-
enced from the end user’s perspective [333].

2. Efficiency or information transfer rate: It refers to the speed and timing at which a task
is accomplished. Therefore, it depicts the overall BCI system’s speed, throughput, and
latency seen through the eyes of the end user’s perspective [333].

3. Learnability: The BCI system can make users feel as if they can use the product
effectively and quickly learn additional features. Both the end-user and the provider
are affected by learnability [338].

4.  Gatisfaction: It is based on participants’ reactions to actual feelings while using BCI
systems, showing the user’s favorable attitude regarding utilizing the system. To
measure satisfaction, we can use rating scales or qualitative methods [333].

9.3.2. Affect

Regarding BClIs, it might refer to how comfortable the system is, particularly for long
periods, and how pleasant or uncomfortable the stimuli are to them. EEG event-related
possibilities, spectral characteristics, galvanic skin responses, or heart rates could be used
to quantitatively monitor user’s exhaustion, valence, and arousal levels [339].

9.3.3. Ergonomics

Ergonomics studies are the study of how people interact with their environments. The
load on the user’s memory is represented by the cognitive task load, a multidimensional
entity. In addition, physiological markers including eye movement, EEG, ERP, and spectral
characteristics could also be employed to evaluate cognitive stress objectively [340].

9.3.4. Quality of Life

It expresses the user’s overall perception of the system’s utility and acceptance and its
influence on their well-being. The Return on Investment (ROI) is an economic measure
of the perceived benefit derived from it. The overall quality of experience is a measure of
how satisfied a user is with their expertise [333].

Other assessment methods, such as Mutual Information, Written symbol rate (WSR),
and Practical bit rate (PBR), are utilized to a lesser extent.

10. Limitations and Challenges

The brain-computer interface is advancing towards a more dynamic and accurate
solution of the connection between brain and machine. Still, few factors are resisting
achieving the ultimate goal. Therefore, we analyzed a few core research on BCI in this
section and found the limitations exhibited in Table 10. Then, we demonstrated the
significant challenges of the BCI domain.

The challenges and difficulties of the BCI domain are divided into three categories:
challenges based on usability, technical challenges, and ethical challenges. The rest of the
section briefly explains these challenges.
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Table 10. A summary of some research papers proposing new methods of BCI.

Model Novelty Feature Extraction Architecture Limitations
. The proposed approaches
Compact Convolutional .
P300, ERN, MRCF, neural network for EEG Band pass filtering EEGNet only work effectl\'/ely
SMR [200] based BCI when the feature is
accustomed to before.
et This model is not updated
WOLA [254] gyrr:zg ic filtering of FEG cspe ST::;;MECLBCI (EBCD) yet for eye blinking or
& Y muscle activities.
There is room for
xDAWN [255] EnhanFe P300 evoked Spatial Filtering P300 speller BCI paradigm  improvization and
potentials enhancements.
SSVEP, P300 [341] BCI-based healthcare P300 detector Kernel iigltﬁs;rej Sl;iggm with iﬁﬁ%ﬁfﬁaﬁfﬂsw to
! g control system (FDA+ SSVEP)

SSVEP

enhance accuracy.

Online decoding of motor

LSTM, pCNN, ) . ~ Classify Motor Imagery The data used in proposed
RCNN [342] imagery movements using  CSP, log-BP features movements models are limited.
DL models
Classification framework Ml-based BCI Computational costs are
MDRM and TSLDA [343]  for BCI-based motor Spatial filtering classification using faced while implementing
imagery Riemannian framework this proposed framework.
SVM [344] Fatigue detection system FFT Train (;1r1ver Vigilance NA
detection
Gaussian, polynomial lf\AKELM-based method MKELM-based method Improvemgnt of accuracy
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10.1. Based on Usability

This section describes the challenges that users have in accepting BCI technology [350].
They include concerns relating to the requisite training for class discrimination.

10.1.1. Training Time

Usually, training a user, either leading the user through the procedure or the total
quantity of the documented manual, takes time. The majority of the time, the user also
requests the system to be simpler to use. The users often despise a complicated system that
is difficult to manage. It is a challenging effort to create such a sophisticated, user-friendly
system [351].

10.1.2. Fatigue

The majority of present BCIs generate a lot of fatigue since they need a lot of concentra-
tion, focus, and awareness to a rapid and intermittent input. In addition to the annoyance
of weariness of electrodes, BCI may fail to operate because the user cannot maintain a
sufficient degree of focus. As in BCI, mental activity is continually monitored and the
user’s attention point alters the input. The concentration necessary for stimuli results in a
combination of input and output [352,353]. Rather than relaxing, the user must concentrate
on a single point as an input and then look at the outcome. At some point, the interaction
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has a forced quality to it, rather than the natural quality that would be there if the user
could choose whatever part of the visual output to focus on [6].

10.1.3. Mobility to Users

Across most situations, users are not allowed to move around or to have mobility in
BCIs. During the test application, users must stay motionless and quiet, ideally sitting
down. However, in a real-world setting, a user may need to utilize BCI while walking
down the street, for example, to manage a smartphone. Additionally, BCIs cannot ensure
user comfort. Usually, the EEG headset is not lightweight and easy to carry, which hampers
the user experience.

10.1.4. Psychophysiological and Neurological Challenges

Emotional and mental mechanisms, cognition-related neurophysiology, and neu-
rological variables, such as functionality and architecture, play vital roles in BCI per-
formance, resulting in significant intra- and inter-individual heterogeneity. Immediate
brain dynamics are influenced by psychological elements such as attention; memory
load; weariness; conflicting cognitive functions; and users’ specific characteristics such
as lifestyle, gender, and age. Participants with weaker empathy engage less emotionally
in a P300-BCI paradigm and generate larger P300 wave amplitudes than someone with
greater empathy involvement [354].

10.2. Technical Challenges

Non-linearity, non-stationarity, and noise as well as limited training sets and the accom-
panying dimensionality curse are difficulties relating to the recorded electrophysiological
characteristics of brain impulses.

10.2.1. Non-Linearity

The brain is a very complex nonlinear system in which chaotic neuronal ensemble
activity may be seen. Nonlinear dynamic techniques can thus better describe EEG data
than linear ones.

10.2.2. Non-Stationarity

The non-stationarity of electrophysiological brain signals to recognize human recog-
nition is a significant challenge in developing a BCI system. It results in a constant shift
in the signals utilized with time, either between or within transition time. EEG signal
variability can be influenced by the mental and emotional state backdrop across sessions.
In addition, various emotional states such as sadness, happiness, anxiety, and fear can vary
on daily basis that reflects non-stationarity [355]. Noise is also a significant contribution
to the non-stationarity problems that BCI technology faces. Noises and other external
interferences are always present in raw EEG data of emotion recognition that is most
robust [356]. It comprises undesired signals generated by changes in electrode location as
well as noise from the surroundings [357].

10.2.3. Transfer Rate of Signals

In BCls, the system must continuously adjust to the signals of the user. This modifica-
tion must be made quickly and precisely. Current BCIs have an extremely slow information
transfer rate, taking almost two minutes to “digitalize” a single phrase, for example. Fur-
thermore, BCI accuracy does not always reach a desirable level, particularly in visual
stimulus-based BCI. Actions must sometimes be repeated or undone, producing pain or
even dissatisfaction in using interactive systems using this type of interface [358].

10.2.4. Signal Processing

Recently, a variety of decoding techniques, signal processing algorithms, and classi-
fication algorithms have been studied. Despite this, the information retrieved from EEG
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waves does not have a high enough signal-to-noise ratio to operate a device with some
extent of liberty, such as a prosthetic limb. Algorithms that are more resilient, accurate, and
quick are required to control BCL

10.2.5. Training Sets

In BCI, the training process is mainly impacted by usability concerns, but training sets
are tiny in most cases. Although the subjects find the training sessions time-consuming and
challenging, they give the user the required expertise to interact with the system and to
learn to manage their neurophysiological signals. As a result, balancing the technological
complexity of decoding the user’s brain activity with the level of training required for the
proper functioning of the interfaces is a crucial issue in building a BCI [359].

10.2.6. Lack of Data Analysis Method

The classifiers should be evaluated online since every BCI implementation is in an
online situation. Additionally, it should be validated to ensure that it has low complexity
and can be calibrated rapidly in real-time. Domain adaptation and transfer learning could
be an acceptable solution for developing calibration-free BCIs, where even the integration
of unique feature sets, such as covariance matrices with domain adaptation algorithms,
can strengthen the invariance performance of BCls.

10.2.7. Performance Evaluation Metrics

A variety of performance evaluation measures are used to evaluate BCI systems.
However, when different evaluation metrics are used to assess BCI systems, it is nearly
impossible to compare systems. As a result, the BCI research community should establish
a uniform and systematic approach to quantify a particular BCI application or a particular
metric. For example, to test the efficiency of a BCI wheelchair control, the number of control
commands, categories of control commands, total distance, time consumed, the number of
collisions, classification accuracy, and the average success rate need to be evaluated, among
other factors [360].

10.2.8. Low ITR of BCI Systems

The information transfer rate is one of the extensively used processes for the perfor-
mance evaluation metrics of BCI systems. The number of classes, target detection accuracy,
and target detection time are all factors of this rate. By increasing the Signal-to-Noise
Ratio (SNR), it can improve the target detection accuracy [53,328]. Several techniques are
typically used for the preprocessing phase to optimize the SNR. When a high ITR has
been attained, more complicated applications can be created by expanding the number
of classes available. CDMA, TDMA, and FDMA [243,361] are only a few of the stimulus
coding schemes that have already been developed for BCI systems. TDMA was used with
P300 to code the required stimuli, while CDMA and FDMA have been used with BCIs
that interact with VEP. Furthermore, the essential aspect of BClIs is reducing the target
recognition period, which helps to increase the ITR. Adaptive techniques, such as “dynamic
stopping”, could be an effective option for accomplishing this.

10.2.9. Specifically Allocated Lab for BCI Technology

Most of the BCI systems are trialed in a supervised lab rather than in the actual
surroundings of the users. When designing a BCI system, it is essential to think about the
environment in which the technology may be used. It is critical to thoroughly investigate
the system’s requirements, environmental factors, circumstances, and target users mostly
during the system design phase.

10.3. Ethical Challenges

There are many thoughts surrounding the ethical issues behind BCI as it considers
physical, psychological, and social factors. In biological factors, BCI always finds a human
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body to identify signals that must be acquainted with electrodes. As humans need to wear
these electrodes, it is always risky for them and can harm the human body to some worse
extent. BCI also requires strict maintenance of the human body during signal acquisition,
so the subject must sit for a long time in his place. Adding to that, a user or participant
must act what the electrodes need, so they cannot do anything willingly. This fact can have
a substantial impact on the human body.

11. Conclusions

The brain-computer interface is a communication method that joins the wired brain
and external applications and devices directly. The BCI domain includes investigating,
assisting, augmenting, and experimenting with brain signal activities. Due to transatlantic
documentation, low-cost amplifiers, greater temporal resolution, and superior signal analy-
sis methods, BCI technologies are available to researchers in diverse domains. Moreover,
It is an interdisciplinary area that allows for biology, engineering, computer science, and
applied mathematics research. However, an architectural and constructive investigation of
the brain—computer interface is exhibited in this article. It is aimed at novices who would
like to learn about the current state of BCI systems and methodologies. The fundamen-
tal principles of BCI techniques are discussed elaborately. It describes the architectural
perspectives of certain unique taxons and gives a taxonomy of BCI systems. The paper
also covered feature extraction, classification, evaluation procedures, and techniques as
the research continues. It presents a summary of the present methods for creating various
types of BCI systems. The study looks into the different types of datasets that are available
for BCI systems as well. The article also explains the challenges and limitations of the
described BCI systems, along with possible solutions. Lastly, BCI technology advancement
is accomplished in four stages: primary scientific development, preclinical experimentation,
clinical investigation, and commercialization. At present, most of the BCI techniques are
in the preclinical and clinical phases. The combined efforts of scientific researchers and
the tech industries are needed to avail the benefit of this great domain to ordinary people
through commercialization.
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