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Field Phenomics: Will It Enable Crop Improvement?
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Field phenomics has been identified as a promising enabling technology to assist plant breeders with the development of improved
cultivars for farmers. Yet, despite much investment, there are few examples demonstrating the application of phenomics within a
plant breeding program. We review recent progress in field phenomics and highlight the importance of targeting breeders’ needs,
rather than perceived technology needs, through developing and enhancing partnerships between phenomics researchers and
plant breeders.

1. Introduction

The continued breeding of high-yielding and stress-tolerant
varieties is one of the key challenges facing agriculture in the
coming years. Although the development of genomic selec-
tion methods [1, 2] has greatly aided the breeding process,
there is still a widely recognized gap in the development
and application of tools for equally rapid phenotyping of
the resulting germplasm [3–6]. For many years, plant
breeders and researchers have been interested in enhanced
methods to select lines with specific physiological and agro-
nomic characters that contribute to stress tolerance and to
final yield, but the traditional measurements for quantitative
studies have tended to be labor-intensive and not readily
capable of scaling up to allow screening of large numbers
of distinct lines, especially in the field. Conventional pheno-
typing, the visual assessment of plant traits, is a mainstay of
plant breeding but widely accepted as subjective and labori-
ous (refer to discussion in [7]).

Early in the 2000s with the rapid development of
genotyping technology, the general term of phenomics was
widely adopted to cover automated plant screening work
(although the terms phenotype and genotype originated over
a century ago [8]). In the past decade, the development of
robotics, advanced imaging, and data analysis technologies
opened up new avenues for high-throughput screening, but
the cost of the necessary facilities led to the establishment
of a number of specialised centres worldwide, of which the

Australian Plant Phenomics Facility (with its nodes in
Canberra and Adelaide) was one of the first. In addition, ini-
tiatives to create communities of practice and further phe-
nomics have been established including various national
and international networks, including this journal, Plant
Phenomics [9, 10]. There is substantial international effort
in the development of plant phenotyping, with many
regional- or national-level activities such as the UK National
Plant Phenotyping Network, the German Plant Phenotyping
Network, the European Plant Phenotyping Network (now
replaced by EMPHASIS), and the North American Plant
Phenotyping Network. The International Plant Phenotyping
Network (IPPN), which acts as a forum for phenotyping
activity, recently conducted a survey of members that
highlighted “field phenotyping” as the top priority in pheno-
typing, followed by “Abiotic stress” and “Data management”
(https://www.plant-phenotyping.org/ippn-survey_2016).
Emphasis in the development of field phenotyping is partic-
ularly important both because it is critical for the deploy-
ment into plant breeding, but also because it is still much
more challenging than laboratory or glasshouse phenotyping
and less advanced.

In recent years, many review publications (e.g., [6, 7, 11,
12]) have highlighted the importance of phenomics as an
enabling tool for crop improvement through research and
plant breeding and many encouraging results have been
reported (discussed below). It is timely, therefore, to review
the prospects for the application of phenomics as an enabling
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tool for crop improvement through research and plant breed-
ing. Because phenomics is such a large field and with many
researchers actively involved, the review is limited rather spe-
cifically to imaging approaches, aboveground phenotyping,
and especially their application to phenotyping for cereals.

2. The Challenge of Augmenting Conventional
Plant Breeding

Conventional plant breeding, in both the public and private
sectors, has successfully contributed to increased yields in
the world’s major crops over the past century [13]. However,
there is evidence that relative yield progress through breed-
ing has fallen as yields have increased (to less than 1% per
year in wheat [13–18]). In order to maintain and improve
rates of breeding progress, transdisciplinary approaches have
been proposed to augment the process of plant breeding
[19]. These include, among other approaches, the use of
genomic selection and crop simulation modelling in con-
junction with germplasm evaluation in carefully designed
managed environments (MEs) representative of the target
population of environments (TPEs) [20–23]. A universal
concept for evaluating performance of a given breeding
strategy is the genetic gain, ΔG, for a particular target trait
(e.g., grain yield), colloquially known as the “breeder’s equa-
tion,” which describes the response to selection per selection
cycle, c [24].

ΔG =
h2σpi

c
, ð1Þ

with h2 the narrow-sense heritability, σp the phenotypic
standard deviation of the target trait, and i the selection
intensity. Arguably for breeders to adopt phenomics tech-
nology, it would need to result in improved ΔG and/or pro-
vide an economic benefit (e.g., through reducing labor).
Others have identified the opportunity for phenomics to
positively influence the parameters in Equation (1) through
indirect selection for yield in the early generations of a breed-
ing program [7, 12, 25]. This opportunity is highlighted in
Figure 1. In the case of a self-pollinating species like wheat,
selection for yield in the early generations of a breeding pro-
gram is essentially subjective, relying on the expert skill of
the breeder (yet this approach is highly effective [13]). It is
not until after several generations that for a given genotype,
there is sufficient seed and homozygosity to reliably estimate
grain yield on a plot of sufficient size with bordered rows, so
that confounding factors due to edge effects can be mitigated
[26]. This is shown in Figure 1, together with an indication
of the range of planting formats used at the different stages.
The planting formats in the early stages of a breeding program
may comprise single plants, short-single, or short-double
rows, collectively defined herein as space-plant configurations.
Finally, for the purpose of discussion to highlight the scale of
assessment required, the range in the number of genotypes
under assessment at the various stages is indicated [27].

Breeders have at their disposal multiple selection strate-
gies [27–29], and several of these were recently summarised

within the context of indirect selection for yield in early-
generation plantings of small grained cereals [25]. These
authors [25] argued that these methods, although varied,
comprise at least a single generation where the material is
grown in a space-plant configuration, prior to evaluation in
yield plots. And that therefore, opportunities exist to
improve breeding efficiency via indirect selection for yield
among material grown in a space-plant configuration. Addi-
tionally, a perhaps less conventional method utilises so-
called “honeycomb selection designs” where phenotyping
for selection occurs on individual plants grown at low den-
sity (100 cm plant spacing) without competitive interactions
to maximise phenotypic expression and variation (see [30]
and references cited therein). Thus, an opportunity for the
phenotyping community lies in the potential development
of methods targeted at space-plant configurations.

In the case of breeding for potential yield in small-grain
cereals, a range of candidate traits for indirect selection for
yield in early generations were recently reviewed [25]; sto-
matal conductance, fruiting efficiency (defined as the ratio
of the number of grains per spike to the dry weight of the
spike at anthesis [15]), and harvest index were identified as
the most promising. For these three traits, the review [25]
identified experimental evidence establishing that pheno-
typic variation expressed in a space-planting, typical of
breeder’s early-generation nurseries, was reliably expressed
in a full plot with bordered rows to mitigate competition
edge effects [26]. In addition, a range of examples were cited
linking these traits to increased yield potential attained
through conventional plant breeding. One such example is
the concomitant increase in stomatal conductance associ-
ated with yield potential in many C3 species [31].

The potential success of early-generation selection in
improving genetic gain per unit of cost is largely dependent
on the development of reliable and cost-effective phenotyp-
ing methods that are scalable across the many thousands
of individuals in a particular breeding program (Figure 1).
Yet, despite encouraging results, the application of pheno-
typing within plant breeding is, arguably, still in its infancy
[30, 32]. The latter is potentially hindered by the observation
that a significant proportion of contemporary phenotyping
studies are targeted at large plots where a reliable measure
of grain yield is also attainable. Such phenotyping applied
to large plots is of limited utility for breeding, as breeders
frequently measure grain yield on large plots as an objective
estimate of performance. As discussed elsewhere [7, 12] of
potentially far greater benefit to breeding is the capacity for
phenomics to routinely screen early-generation material
grown in space-plant configurations where reliable yield
estimates are not possible owing to edge effects [26].

Indeed, few authors have discussed the implementation
of phenomics at the scale required to support a breeding
program (two notable exceptions include [22, 33]). Further-
more, although the research community may be optimistic
about the role of phenomics in crop improvement, it is
noted that phenomics, in many cases but not all, is often
based on fundamental crop physiology and there are only
a handful of studies successfully reporting the application
of physiological-based selection on crop improvement (refer
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to examples in [25]) (indeed, the contribution of crop phys-
iology to crop improvement has been questioned in the past
[34]). There are even fewer examples of the use of phe-
nomics in conjunction with indirect selection in a breeding
program (granted, commercial breeding programs may not
publish their results in order to maintain competitive advan-
tage). Nevertheless, promising results from indirect selection
using phenomics predictors in experimental systems, as
opposed to actual breeding programs, have been reported
(e.g., [35, 36]) and are discussed in more detail below
(Section 6). This review is mainly aimed at assessing what
is required in order to extend the application of phenomics
to actual breeding programs. In order to address this ques-
tion, we must firstly review the recent technical advances
in phenomics.

3. Sensor Carrier Systems

High-throughput phenotyping technologies are being devel-
oped both for the laboratory and controlled environment as
well as for field studies: we concentrate here on the latter,
though will consider in passing some aspects of greenhouse
systems (e.g., conveyor belt systems) where imaging is used.
Field studies are generally more relevant for potential appli-
cation within a breeding program. The traditional field
approach, conventional phenotyping, involves walking the
plots and recording characters such as height, disease sus-
ceptibility, flowering time, and agronomic type (e.g., awns
and ear structure); however, this approach is slow and
labor-intensive so the search has been on for ways in
which to speed up such screening activities using imaging.

In the following, consideration is also given to the time-
dependency of particular measurements with instantaneous
snapshots of the whole trial preferable for weather dependent
variables, such as canopy temperature, but slower methods
(e.g., mobile “buggies”) are suitable for slowly changing vari-
ables (e.g., growth-related variables).

3.1. Fixed Sensor Points with Greater Field of View (Masts,
Balloons, and Cherry Pickers). An early approach to canopy
imaging was to raise the height of the imagers either by
mounting cameras on high stands/masts or cherry pickers
or even on Helium balloons held above the crop [37]. A
potential advantage of Helium balloons is that they can be
tethered up to 100m or so above the crop, giving a corre-
spondingly large field of view, while the use of poles, stands,
or cherry pickers is practically limited to a height of about
15m, and at least for cherry pickers are expensive to hire
or use. Although it is possible to enhance the area of canopy
viewed by using an oblique view angle [37, 38], this intro-
duces additional complications relating to varying apparent
size of plots and varying distances with the need for more
sophisticated plot extraction algorithms [39, 40]. Although
these approaches to elevation of the camera have some
potential advantages, in practice, the limitations of the
lower-level mounts and the susceptibility of the higher sys-
tems (especially balloon-mounted systems, but even cherry
pickers) to wind mean that they are unlikely to be the
method of choice in the future, except in the case of small
experiments. As an alternative to imaging, Wireless Sensor
Networks (WSNs) comprising many fixed inexpensive
individual sensors (e.g., like the ArduCrop, for canopy

Year Generation Description Selection method Opportunity for
phenomics

Number of genotypes
with multiple crosses

per year

Year 1 A ⨯ B Initial cross and 
production of F1 seed – – –

Year 2
to year 6 F1 to F5

Genotypes grown as 
individual space-plants
and / or short single or 
double rows because

of limited seed

Subjective, yet expert,
assessments of

agronomic type,
disease resistance, 

height and flowering 
time

Indirect selection using
phenotypic predictors

of yield
Many e.g. 104 to 105

Year 7 
onwards F6, F7, F8

Yield trials grown in
full plots in multiple

locations

Objective evaluation of
yield

Assess trial quality
e.g. spatial variability,

abiotic and biotic 
stresses

Fewer e.g. 104 to 101

Figure 1: Elementary summary of the various stages of cultivar development within a plant breeding program for a self-pollinating species.
The description of planting formats used in the early generations are indicative in the sense that various breeding strategies exist [27, 28],
within which the planting format will differ. The opportunity for phenomics through indirect selection is particularly strong in the early
stages of the breeding program, when plants are grown in a space-plant configuration and reliable yield estimates are not attainable;
assessment during these stages is largely subjective. For the purpose of discussion and to highlight the scale of assessment required, the
range in the number of genotypes under assessment is indicated.
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temperature) can provide extremely useful information,
especially where continuous records are needed for physio-
logical studies [41–43], but are unlikely to have the coverage
of a buggy or aerial imaging approaches for high-throughput
phenotyping applications, as discussed below. Alternatively,
fixed sensors may enable improved characterisation of target
growing environments, aka “envirotyping,” and thereby
improved understanding of genotype-by-environment inter-
actions [44, 45].

3.2. Field “Buggies.” Another approach to achieving high
precision imaging of canopies is the use of mobile field
“buggies” [46–48] equipped with cameras and laser scanners
to measure crop height and potentially even canopy struc-
ture. Other sensors such as fluorescence imagers, hyperspec-
tral imagers, and thermal imagers can also be mounted on
such platforms. Field buggies can typically only move at a
maximum of about 6 to 8 kmh-1 and sometimes much less.
For a typical 2m swath at 5 kmh-1, this would equate to
about 1 hectare in an hour. Over this period, canopy temper-
ature or photosynthesis will vary substantially. Therefore,
buggies are well suited for characters that change only slowly
(over at most a daily time scale, e.g., nitrogen status, leaf
growth, or canopy height) but are likely to be much less
useful for characters such as photosynthesis or canopy tem-
perature that change dynamically with environmental con-
ditions, as methods are needed to normalise the data to
account for time differences in sampling [37, 49, 50]. For
example, normalising the canopy temperature data “per pass
of data collection” increased the average repeatability from
the Phenocart system from 0.34 to 0.55 [50].

The use of such mobile systems, whether the earlier
Phenomobile [46] or the Phenomobile Lite [48] (which is
much smaller and lighter), the INRA Phenomobile [51],
the “Field4Cycle” (developed by Forschungszentrum Jülich
[52]) or “PhenoTrac 4” [53, 54], or even the mounting or
towing (e.g., “BreedVision” system [55]) of appropriate sen-
sors on tractors during standard crop management [33, 56,
57], can readily replace and enhance a wide range of manual
and other observations that are currently frequently required
in plant breeding. For example, measurements such as
height, Normalised Difference Vegetation Index (NDVI) as
a measure of canopy cover, and LiDAR measurements may
give useful information on canopy structure and even lead
to indirect estimates of aboveground biomass and even final
yield, though they are not as accurate as gravimetric mea-
surements [48, 58]. Presently, indirect estimates from imag-
ery are subject to significant error and so only give useful
relative data for similar varieties in any one trial. There is
much interest in making autonomous buggies that can oper-
ate continuously without human intervention (e.g., [59]),
though they have some way to go before they can replace
manned buggies. A number of companies have developed
track-mounted field phenotyping facilities or platforms such
as the “Field Scanalyzer” [60], which is capable of scanning
an area 115m by 11m, or the “PhenoField” [61] which com-
prises eight moveable rain-out shelters and precision irriga-
tion to impose varying levels of drought (total area of 0.5 ha).
These tend to be much less flexible in use than buggies, as

they usually involve quite heavy engineering and fixed
tracks, thus greatly limiting their flexibility and the area of
crop that can be studied, so are likely to be of less use for
high-throughput screening at the scale required within a
breeding program (Figure 1), though they may be valuable
for developing appropriate screening protocols.

From a practical standpoint, the importance of measur-
ing many individual genotypes in a short time period was
recently highlighted by demonstrating that travelling at right
angles to the direction of sowing and simultaneously scan-
ning multiple plots minimised the travel distance consider-
ably when compared to travelling over each plot in the
direction of sowing [33]. While it was acknowledged that
travelling over each individual plot may improve the data
quality, the trade-off for slightly reduced data quality and
higher throughput was highlighted as a particular advantage
for a plant breeding program.

3.3. Airborne (Including Unpiloted and Piloted Aircraft). The
most rapid and probably the most promising approaches to
field phenotyping involve the use of airborne sensor plat-
forms, whether these are piloted light aircraft or helicopters
or unmanned aerial vehicles (UAVs also known as Remotely
Piloted Aircraft Systems (RPASs) or simply “drones”) [62].
The use of airborne sensor platforms allows much more
rapid collection of images than is possible from buggies on
the ground. The more rapid ground coverage by airborne
systems (especially fixed wing UAVs and piloted aircraft)
reduces the time required to cover experiments, potentially
enabling the effective study of more rapidly varying charac-
ters such as photosynthesis or transpiration. Although
UAVs in Australia are limited to an altitude of 120m thus
limiting their coverage, this limitation can be overcome with
piloted aircraft or helicopters [43, 63, 64].

The increasing availability of low cost UAVs that allow
preprogrammed flight paths for rapid imaging of whole
experiments, when combined with appropriate software for
image mosaicking (e.g., Agisoft (http://www.agisoft.com),
Pix4D (https://www.pix4d.com), Blue Marble Geographics
Global Mapper (http://www.bluemarblegeo.com), and Auto-
stitch [65]), makes a strong case for their wider use. For use-
ful reviews of the commercial softwares and algorithms
available for accurate automated or semiautomated image
mosaicking, see Zhao et al. [66] and Gómez-Candón et al.
[67]. However, limitations include flying/licensing restric-
tions, and in Australia, these include the need for a licence
for commercial work using UAVs larger than 2 kg (UAVs
that weigh less than 2 kg are exempt) (https://www.casa.gov
.au). These lighter devices have only a rather limited payload
and equally limited range, making them more suitable for
smaller experiments using conventional RGB cameras.

The choice of platform ultimately depends on a range of
features such as the type of characters being evaluated (e.g.,
whether they are rapidly or slowly changing, or whether they
require high resolution or where low resolution is adequate
for average values) (for reviews on this subject, see [68,
69]). Similarly, the choice of platform also depends on the
payload of cameras, flexibility needed, and costs. There are
important trade-offs between speed of flight, flight altitude,
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and spatial resolution; guidance on optimisation of these
properties for any particular situation can be provided by
software such as the PhenoFly Planning Tool [70].

3.4. High-Altitude Airborne and Satellite. The remote sens-
ing community commonly uses specialised (expensive)
high-quality imagers (usually line scanners rather than true
imagers) mounted on aircraft flying at higher altitudes (often
up to 2000m)—this can allow simultaneous coverage of
large trials (ideal for thermal studies), but at the expense of
spatial resolution with few pixels wholly within any plot, so
that edge effects of mixed pixels (where a pixel contains both
plant canopy and background soil) become more serious.

Mixed pixels are particularly seriouswhen the size of
the individual pixels are similar to or greater than that of the
plant organs comprising the crop canopy [64, 71]. In the case
of thermal imagery, mixed pixels typically result in the
observed temperatures significantly biasing the background
soil temperatures [71]. This edge effect can be very difficult
to disentangle [72] in order to obtain the true crop signal.

Approaches to extract true canopy signal from digital
imagery [71] are very scale dependent and range from whole
pixel approaches, where image analysis is used to extract
data only from crop pixels, to those methods such as unmix-
ing and disaggregation that obtain information at a subpixel
level. The expense and limited availability of such systems
means that although they are useful for larger-scale agro-
nomic studies, they are very unlikely to become the method
of choice for breeders. Similarly, most readily available satel-
lite imagery (e.g., MODIS of Landsat) has much too low a
spatial resolution for phenotyping, while high-resolution
imagery (WorldView, IKONOS, GeoEye, etc.) is no better
than airborne, very expensive, and subject to limited avail-
ability due to scheduling problems or cloud cover [72].

4. Sensing Technologies

4.1. Reflectance, Multispectral, and Hyperspectral. Reflec-
tance imagery for plant phenotyping ranges from conven-
tional red/green/blue (RGB) images as used in consumer
cameras (discussed in Section 4.2), through a range of sen-
sors (often termed “Agricultural cameras”) with either one
channel replaced by a near infrared (IR) reflectance channel
[73] or with an additional IR channel, through multispectral
sensors with a larger number of generally quite broad-band
reflectance channels to true hyperspectral cameras that
may have hundreds of precise narrow-band channels [72,
74]. The inclusion of an IR channel makes use of the high
reflectance of plant material in the near IR and allows the
calculation of a Normalised Difference Vegetation Index
(NDVI) analogous to that originally derived for Landsat
[75] or other vegetation indices (see [72], for a detailed dis-
cussion of options) as indicators of canopy density or leaf
area index. In addition to light weight RGB cameras suitable
for mounting on UAVs, a number of light weight multispec-
tral “Agricultural cameras,” with more wavelengths, including
IR, are now available for deployment on UAVs (e.g., Tetracam
(http://www.tetracam.com), Parrot Sequoia (https://www
.parrot.com), and MicaSense RedEdge https://micasense

.com): some can be used with narrow wavebands chosen for
specific purposes (e.g., Photochemical Reflectance Index or
Flourescence studies of photosynthesis) (see Section 4.5).
The use of multispectral imaging is a more powerful tool for
crop phenotyping as it allows the selection of more appropri-
ate spectral indices for any of a wider range of characters of
interest [6]. The precision of estimates can often be improved
with the use of the narrower spectral bands available with
hyperspectral imagers. To date, the potential of multispectral
and hyperspectral sensing has not been fully realised as they
are commonly used in a relatively simple mode to derive only
two band vegetation indices [72]. Nevertheless, the technology
is potentially much more powerful, having been used to esti-
mate photosynthesis using Solar-Induced Fluorescence (SIF)
[76], Photochemical Reflectance Indices (PRI) [77], canopy
senescence using time-resolved canopy spectral measure-
ments [78], or indeed a range of photosynthetic traits (using
a leaf-clip) [79] as well as other foliar traits across species, eco-
systems, and forests [5, 80, 81]. It is worth adding an impor-
tant word of caution here that the more complex the
vegetation index used, the more critical is the need for good
training data for the actual crop situation and the less likely
that a standard vegetation index will be appropriate [82].

One example where substantial progress has been
achieved is the use of hyperspectral sensing to phenotype
maize for sensitivity to ozone damage [83], while there is
also potential for monitoring soluble carbohydrates and
other biochemicals [84]. As an alternative, there is evidence
[85] that Fourier Transform Infrared (FTIR) spectroscopy
(which extends further into the infrared) may be able to
extract even more information on tissue biochemistry
beyond what is possible with conventional hyperspectral
sensing which only covers the range 400-1000 (-2500) nm.
It is possible that radiation transfer modelling (e.g., using
PROSAIL [86]) to account for varying radiation input, view
and illumination angles, and leaf angle distribution could
substantially improve the efficiency of extraction of key bio-
chemical and physiological information, particularly with
regard to canopy level measurements (as opposed to leaf-
clip measurements where acquisition parameters are held
relatively constant).

4.2. Red/Green/Blue (RGB) Imagery. RGB digital cameras are
probably the primary tool for plant phenotyping imagery
(especially from UAVs), because of their ready availability
and low price, flexibility in application, and, for UAV oper-
ation, potentially low mass. Additionally, a major advantage
of RGB imaging is the high resolution now available in
consumer-grade cameras [87], and, rather obviously, that
the visible spectrum enables humans to easily label features
of interest and train object detection algorithms [88].

RGB cameras can be used in one of several modes, the
simplest of which in terms of image analysis, and particu-
larly suitable for lower resolution imagery such as from
UAVs, is to take the average spectral signature (or colour)
for all pixels deemed to be within the plot of interest. Thus
far this is the most common approach to the use of RGB
imagery, where it is usually used for the estimation of vege-
tation cover (usually as a proxy for leaf area index and hence
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use as a measure of crop growth), either through simple col-
our analysis to determine the proportion of vegetation and
nonvegetation pixels [48, 89–94] or through the use of veg-
etation indices, especially when using Agricultural cameras.
Even without the additional IR channel, RGB images are fre-
quently enhanced for such studies by transformation of the
colour space, for example, to enhance “greenness” [95]. Sim-
ilarly, colour-space transformations such as Hue have been
proposed for estimation of a range of characters that are
expressed at a canopy level, such as chlorophyll content
[96, 97] or leaf senescence [98], nitrogen (N) status [99],
or disease susceptibility [100], all of which can be valuable
for plant breeders [6].

Where higher-resolution imagery is available, for exam-
ple, either from in-field buggies [46] or UAV, it becomes
possible to undertake more sophisticated image analysis to
identify individual plants [101, 102], leaves [103], tillers
[104], or even wheat heads [105, 106]. This opens up a wide
range of phenotyping possibilities that include selection for
characters such as ear density and inflorescence size. Interest-
ingly, stem diameter and stem density in wheat, as measured
by RGB camera after grain harvest, were shown to be good
predictors of head number and final biomass (when combined
with biovolume measured before grain harvest) [107].

4.3. Photogrammetry and LiDAR. A further step that
becomes possible with multiangular RGB imagery is to
derive information on 3D canopy structure including char-
acters such as leaf number and orientation, canopy height
[108], or even crop volume as an indicator of biomass
[109] using either conventional photogrammetry or
“structure-from-motion” (SfM) analysis [110, 111], using
dedicated software (e.g., Pix4D or Agisoft), or from other
depth sensors such as LiDAR or time-of-flight cameras.
Multiview imagery is incorporated in many laboratory imag-
ing platforms [112, 113], allowing detailed 3D analysis of
plant structure including leaf angle, size, rolling, and study
of plant growth over time. Similar data can also be obtained
using laser scanning or time-of-flight and light-field cam-
eras. We do not intend to review these here.

Laser scanning or LiDAR (Light Detection And Rang-
ing) is perhaps the most powerful current technique for
detailed analysis of plant structure, especially when
applied from more than one angle so occlusion is mini-
mised. This is probably now the method of choice for
proximal sensing from buggies [46, 48, 58] or tractors
[57] for height and biomass surrogates. In the case of bio-
mass in wheat, there is evidence of success at estimation of
biomass from LiDAR, though it is notable that although rea-
sonable correlations can be observed, inverse prediction from
LiDAR readings is only weak and not robust across experi-
ments [48, 57, 58].

The use of LiDAR and photogrammetry at close range
(e.g., on buggies) enables the derivation of more subtle infor-
mation that can be of interest to researchers, for example,
leaf angle (distribution) (primarily obtained using LiDAR
on buggies or photogrammetry in the laboratory). A key
question is the detail of the information needed by breeder-
s—how useful, for example, is detailed information on plant

structure? Nevertheless, information on detailed canopy
structure such as leaf angle distribution, while not being an
objective in itself, may yet be useful for improving precision
in the interpretation of simpler parameters such as canopy
reflectance, because it allows the use of radiation transfer
models such as PROSAIL [86] to enhance the data inversion
for estimation of characters such as chlorophyll content,
photosynthesis, or tissue biochemistry.

For the purposes of quantifying crop height and volume
(as a biomass proxy), photogrammetry from UAV is argu-
ably more suited to breeding-scale applications than LiDAR.
This is due to the availability of turnkey consumer-grade
UAVs equipped with RGB and often multispectral cameras,
together with the availability of image mosaicking software
and feature extraction algorithms. Additionally, as discussed
herein and elsewhere [6, 114], it is possible to derive a wide
range of quantitative information from RGB images. In con-
trast, LiDAR, although powerful, often requires engineering
to capture, georeference, and process the data. Further, most
LiDAR systems are mounted on a buggy or tractor, which
may not have the required throughput for a breeding pro-
gram. That said, a tractor-mounted LiDAR system enables
the possibility of combining data collection with crop man-
agement activities [33, 57].

4.4. Thermal. Infrared thermography (IRT) can be a partic-
ularly powerful tool for studies of plant water relations and
abiotic stress because canopy temperature (CT) is directly
related to evaporation rate (which is itself dependent on sto-
matal conductance among other things) [115], so CT can be
a powerful tool for screening for stomatal conductance. This
relationship holds for any given environmental conditions,
but in practice, it is essential to take account of environmen-
tal conditions at the time of imaging for any study involving
canopy temperature (discussed further below).

There are many published examples where handheld
thermal sensing has been used in phenotyping for stomatal
conductance or drought adaptation (e.g., [116–120]). The
enhanced capacity and much greater heritabilities provided
by the use of imaging approaches, especially from airborne
platforms, mean that this approach now shows real promise
for high-throughput phenotyping of water productivity
using manned [43, 64, 121] or unmanned aircraft [122].
There are, however, many critical aspects to using this tech-
nology successfully. For example, to obtain true canopy tem-
peratures, it is necessary to correct for errors relating to
mixed pixels [71], particularly from incomplete ground
cover (Figure 2). This issue becomes more pertinent when
assessing genotype performance under water limitation,
where greater incomplete ground cover is more likely, than
environments with high water supply. Similarly, because of
the sensitivity of CT to environmental conditions (for a
thorough analysis, see [123]), it is necessary to devise effec-
tive methods for normalisation of data for environmental
variation [37] or else for all images to be obtained as rapidly
as is possible with airborne sensors which can greatly reduce
the time taken to complete imagery of a field. Additionally,
the prevailing environmental conditions, particularly vapor
pressure deficit (VPD) and solar radiation, can influence
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CT repeatability estimates, with higher repeatability more
likely with higher VPD and solar radiation [43]. The higher
CT repeatability observed under such conditions, which are
more likely to occur in the afternoon and during the grain-
filling period, is possibly (but not necessarily) because differ-
ences in stomatal conductance between genotypes were
more pronounced. The latter is plausible when considering
energy balance theory [72], whereby for a given stomatal
conductance, CT is linearly related to VPD and solar radia-
tion. Therefore, any differences in stomatal conductance are
likely to result in larger differences in CT with greater VPD
and solar radiation. A further complication that needs to be
considered is that canopy temperature depends not only on
stomatal conductance but also on canopy height [16, 119,
120, 124, 125], and morphology such as the presence and
form of ears also affects results. In the case of height, nega-
tive associations with CT (where taller canopies are cooler)
are typically attributed to the greater coupling between can-
opy and atmosphere [126] for taller genotypes. It is impor-
tant to note that even small differences in height can
influence CT, as per the example shown in Figure 3 where
despite only a 0.2m range in height, there were significant
associations between CT and height. Thus, although there
is good evidence that in general taller canopies have lower
canopy temperatures [16, 119, 120, 124, 125], the inclusion
of major height genes (as factors) together with quantitative
variation in plant height as covariates substantially improved
the genetic correlation between CT and grain yield in popu-
lations varying for plant height [120]. Notably, in some pop-
ulations, similar quantitative trait loci (QTL) for height and
stomatal conductance have been reported, where geno-
types with Rht dwarfing genes (controlling plant height)
had higher conductance in spite of their shorter stature
and higher canopy temperatures [120]. This indicates that

selection for canopy height cannot be used as an indirect
indicator of stomatal conductance. Therefore, for the effec-
tive deployment of CT within plant breeding, further work
is required to accommodate height variation when sam-
pling CT.

There is an important trade-off between acquisition
height and pixel size (sometimes called ground resolution)
with thermal cameras, particularly when mounted on air-
borne platforms. This trade-off, while still applicable to any
imaging sensor, is typically more pronounced with thermal
cameras which are generally limited to a pixel resolution of
640 by 480 (although higher-resolution cameras are avail-
able, they are considerably more expensive). For example,
the pixel size of a FLIR®A655sc thermal camera with a
13.1mm (45°) lens is about 7 cm at 60m height and about
15 cm at 120m (https://flir.custhelp.com). Lower heights or
a narrower-angle lens would be required to obtain leaf-
sized pixels for cereal crops. There is a similar trade-off with
speed of platform movement that depends on the effective
shutter speed (integration time) of the camera [71]. As men-
tioned earlier, in the case of thermal cameras, greater resolu-
tion is currently possible but considerably more expensive.
For example, the FLIR®X8500sc SLS (https://www.flir.com/
products/x8500sc-sls-lwir/) is a cooled thermal camera with
a spatial resolution of 1280 × 1024, a thermal resolution
(pixel sensitivity) of 0.04°C, and minimum integration time
of 270ns (however, the FLIR®X8500sc SLS is approximately
an order of magnitude more expensive than the FLIR®A655sc
uncooled thermal camera). Nevertheless, such a camera
offers potential for high-quality CT measurements on the
small planting configurations used in breeder’s nurseries that
can comprise single or multiple rows or even single plants
(Figure 1). However, it is important to recognize that the
physical size of the respective space-plant (e.g., single plants,

Spatial scaling

Scale (pixel resolution) affects results – i.e., low
resolution images give misleading information

Tmean = 38°C 42.5°C
42

40

38

36

34

33.4°C

Tmean = 36°C

Tmean = 34°C

Figure 2: The importance of obtaining thermal data for just the leaves/canopy of interest is highlighted by the 4°C difference between the
actual leaf temperature shown on the far-left and the resulting mean CT from the image on the far-right. The image on the far-right
comprises all the pixels from the plot of interest and has a resulting mean CT of 38°C; the mean CT is clearly influenced by the soil
pixels. The central image comprises considerably fewer pixels; however, the mean CT is 36°C and 2°C warmer than the image on the far-
left that comprises only leaf pixels. The prevalence of incomplete ground cover impacting CT measures is more likely to be encountered
in water-limited environments and in the planting configurations used in breeder’s nurseries, owing to limited seed per genotype in early
generations. Further work is required to develop routine methods for thresholding the background soil temperature and extracting
thermal data exclusively from the plant material of interest. The thermal image was acquired using a FLIR® A655sc thermal infrared
camera with a 13.1mm lens.
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short-single or short-double rows, and microplots) has both
technological effects on the screening process (e.g., problems
related to pixel size and impacts on crop boundary layer in
the case of CT), as well as impacts on the expression of some
crop performance-related characters (discussed elsewhere
[25, 26, 30, 127]). That said, the example in Figure 3 demon-

strates the successful application of airborne thermal imagery
using the FLIR®A655sc thermal camera on small two-row
plots (0.25m by 2.0m) with the same configuration as that
used by an Australian breeding company to evaluate their
early-generation germplasm; note the high repeatabilities
and reasonable association between the CT events.

Canopy area sampled: –0.25m (width) ⨯ –2.0m (length) = –0.5 m2

0.25m

0.5m 0.5m

Canopy temp. event 

(a)

(b) (d)

(c)

Repeatability 

Heading (25-Sep 13:00) 0.68 

Grain-filling (23-Oct 13:00) 0.70
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Figure 3: Example application of airborne thermal imagery to quantify canopy temperature (CT) on small plots using the previously
described airborne thermography method [64]. (a) The experiment, comprising two replications of 133 commercially released wheat
varieties, and manned-helicopter used to capture CT. (b) Each plot comprised two rows, 0.25m apart, about 2.7m in length and with
0.5m interplot spacing. This plot configuration is utilised by an Australian breeding company and is therefore representative of the small
plots commonly used in breeding nurseries to evaluate early-generation germplasm. Results are shown for (c) two CT events made
during the heading and grain-filling growth stages as repeatability estimates and (d) Pearson correlations between genotype BLUPs for
the two CT events and canopy height. Given the smaller plot size, the (c) high repeatability estimates for the two events are encouraging
as the thermal camera resolution (640 × 480) can limit the CT data quality. Note the significant association between (d) CT events and
the high negative associations between CT and height, despite only a small range in height of about 0.2m. Therefore, to better relate CT
to stomatal conductance, further research is required to develop methods that can account for variation in height when sampling CT,
eliminating boundary-layer effects. Thermal images were acquired using a FLIR® A655sc thermal infrared camera, with a 13.1mm lens,
mounted on a manned-helicopter flying at an altitude of 50m, resulting in a pixel size of 6.5 cm. Approximately, 90 to 110 pixels were
acquired per plot by selecting an inner section of the plot canopy: three or four pixels across the width of the plot (ca. 0.25m) and ca. 30
pixels along the length of the plot (ca. 2.0m). Repeatability and genotype BLUPs were estimated at each individual sampling time using
the SpATS package [160].
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Canopy temperature measurements can be used experi-
mentally, in a relative mode which is particularly suitable
for most phenotyping applications [49], or it can be used
to provide information on absolute evaporation or stomatal
conductance [128]. Unfortunately, it is still unclear whether,
at a given growth stage, a high canopy temperature (indicat-
ing water conservation) or a low temperature (indicating
continued stomatal opening) is going to be optimal for
drought performance in any particular environment. Never-
theless, with the exception of extremely water-limited envi-
ronments, at least one study in wheat has shown that
selection for yield in irrigated and low-stress environments
can confer performance across to more water-limited envi-
ronments [129]. Therefore, indicating that selection for
cooler CT (greater conductance) in irrigated nurseries, dur-
ing the grain-filling period when repeatability is generally
higher [43], may translate across through improved yield
in less favourable environments. In addition, several
research groups working across multiple crops have reported
variation in the capacity of genotypes to limit transpiration
rate (TR) in response to increasing VPD [130–134]. This
trait, referred to herein as limited-TR, is a water-saving trait
that essentially reduces transpiration when VPD exceeds a
threshold, so that water is conserved until later in the season.
However, limited-TR is commonly evaluated under precisely
managed experimental conditions, in a glasshouse or growth
cabinet with controlled temperature and VPD, with TR
determined by weight with the soil covered and normalised
by leaf area. That said, promising results were obtained using
thermal imagery to evaluate limited-TR across 12 cowpea
genotypes [131]. In summary, although direct estimates of
TR from CT [42] to evaluate limited-TR at the scale of a
breeding program are plausible, the opportunity of using
CT to assist selection for performance under water limita-
tion requires more testing.

4.5. Other Technologies. A range of other technologies are
being developed for phenotyping, though some are more suit-
able for laboratory/controlled environment situations, espe-
cially where plants are moved on robotic systems to a
sensing station. These include the use of X-ray or Gamma-
probes for biomass or the use of NMR or MRI for studies of
sap flow or root anatomy [135], though at present the latter
approaches are low throughput. Multispectral fluorescence
imaging appears to hold promise for stress monitoring for
phenotyping [136–139], though the relationships found tend
to be empirically rather than mechanistically based, so are
not particularly robust to environmental or growth condi-
tions. Similarly, chlorophyll fluorescence has great potential
for phenotyping of photosynthesis, but the more precise mod-
ulated measurements are only suited for the laboratory or
close range field systems because the inverse square law limits
operating distances [82]. The development of Laser-Induced
Fluorescence Transient (LIFT) technology, however, can
potentially allow fluorescence photosynthesis measurements
to be made at distances of several meters [140], for example,
from buggies. An alternative, though less precise approach in
the field is to use SIF (see above) based on narrow-band hyper-
spectral sensors from airborne platforms [141].

5. Data Handling

Data handling is arguably a major limiting factor to making
truly “user-friendly” phenotyping systems. At the core of
phenomics data handling is the need to convert raw sensor
data into biologically relevant metrics and georeference the
data to individual experimental units within a given experi-
mental design. Therefore, a critical feature of phenomics is
the development of software that enables easy transfer of
data and metadata between different phenotyping platforms
and the introduction of standardized reporting to facilitate
archiving and analysis of the enormous amounts of data col-
lected [142]. Example applications of such systems include,
but are certainly not limited to, thermal imagery [64],
LiDAR [48], high-frequency time-series data [143], and
RGB from UAV [144]. However, the development of data
handling systems that can reliably georeference measure-
ments to individual plants, short-single, or short-double
rows (as used in breeder’s nurseries) (Figure 1) is particu-
larly important to enable the reliable deployment of phe-
nomics into large-scale breeding programs. Arguably, for
phenomics applications in plant breeding, the operation of
the system needs to be completely automatic with minimal
user inputs required at any stage. Clearly, data handling will
continue to be an important area for applied phenomics
researchers, as the recent advances in imaging have rather
outstripped the ability both to manage and archive data
and the necessary metadata and importantly to automati-
cally analyze the results to provide outputs directly that are
useful to breeders and researchers. Therefore, the develop-
ment of effective data management systems and “user-
friendly” analysis tools is an important enabling technology
that needs application of intensive resources. Also, of prom-
inent importance is the statistical modelling required to ulti-
mately predict genotype performance for a particular target
environment. This topic, although beyond the scope of this
article, was recently reviewed [145].

6. Field Phenomics Application to Breeding

Although the range of variables that can be targeted by pheno-
typing systems is enormous, there is a critical need for pheno-
typing efforts to target breeders’ needs; there is a widespread
perception that much of current research is more for physiol-
ogists and prebreeders than for breeders. Furthermore, it
seems that much of the work is still driven by available tech-
nology rather than by breeders’ (or even physiologists’)
requirements. This is a common part of the problem for ser-
vice systems or enabling technologies which are liable to fail
to satisfy or keep up with the user requirements unless great
care is taken, especially if the service is remote from the end
users. It is particularly important therefore that phenomics
researchers are attuned to breeder and prebreeder require-
ments through appropriate mechanisms—possibly by surveys,
interviews, and regular face-to-face interactions and ideally
through jointly developed research projects. It will remain crit-
ical to continually assess the purpose of phenomics research
and its relevance to crop improvement. For example, breeders
and prebreeders may be less interested in some of the more
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detailed information that can be obtained from image anal-
ysis (e.g., relating to leaf number and orientation) than in
some of the relatively simpler outputs such as surrogates
for LAI or photosynthesis or transpiration rates. Indeed it
is encouraging that the application of field phenomics (CT
and spectral indices) has improved the accuracy of pedigree
and/or genomic selection models in several studies [36, 121,
146, 147]. Further, a study in wheat reported promising
results relating spectral indices measured on a range of
space-plant configurations (one to three rows per plot) to
grain yield [148]. Additionally, encouraging results were
reported [35] from indirect selection for sugar cane yield
based on remotely sensed canopy height, canopy cover,
and NDVI. Nevertheless, despite promising results, the
application of field phenomics in plant breeding to assist
decision-making is not commonplace and further work is
therefore required that is targeted at plant breeding applica-
tions. Practical considerations are important, including the
development of inexpensive tools that can quickly quantify
many individual genotypes across multiple locations [6].
Furthermore, it is worth evaluating the potential benefit, if
any, of automation for variables that are easily scored
visually by eye. Examples include flowering time, height,
and canopy architecture (erectophile versus planophile).
Although these traits are typically assessed manually, by
breeders walking their trials, augmenting this process with
handheld smartphone apps may improve effectiveness. How-
ever, it may be that remote and proximal sensing is of
greater benefit for variables that cannot be seen easily or
those that are highly subjective to estimate by eye. Thus,
additional work is required to assess the benefits and
trade-offs of specific approaches, for example, assessing the
cost of measuring multiple traits with the same platform
(e.g., a drone carrying an RGB sensor) versus the labour
saved and realised genetic gain. Such propositions are ame-
nable to economic assessment, similar to that presented by
Brennan and colleagues [149]. The latter study demonstrated
a high likelihood of economic benefit to the CIMMYT
breeding program through indirect selection for yield based
on screening for stomatal aperture-related traits. Relatedly,
Awada et al. developed an economic model to analyze
breeder’s decision-making regarding the adoption of phe-
nomics technology [32]. Their model highlights an obvious
but salient point for phenomics researchers: adoption
requires that the return from adopting phenomics is greater
than the cost of phenomics and the profit from the existing
system. Testing such an adoption model, which is theoretical
at this stage, with real-world data is a complex undertaking
requiring domain expertise in behavioural psychology and
social sciences, but potentially invaluable for understanding
the requirements for phenomics adoption by breeders and
guiding research effort in phenomics.

As major yield determinants, susceptibility to pests and
diseases is a key area where good phenotyping techniques
are required [150], but much work is still needed before
effective automated screening can be performed [151]. Dis-
ease diagnosis is likely to require detailed analysis of patterns
of colour on individual leaves, which is feasible at a labora-
tory scale using image analysis approaches [152, 153]. At

the field scale, quantitative resistance to Septoria tritici
blotch in winter wheat populations was evaluated by a rather
manual, but effective, process: infected leaves were sampled
and then scanned on a flatbed scanner, and the images were
later analyzed for lesion characteristics [154–156]. As such,
the current approaches generally involve a two-stage segmen-
tation [157]. Firstly, the leaves of interest are segmented from
the background, for example, by manual image processing
[157] or, in the aforementioned examples [154–156], by pro-
viding a uniform background to enable automatic segmenta-
tion. Secondly, the disease symptoms are separated from the
healthy tissue as a means of identifying different diseases from
the pattern of lesion and for scoring the severity of infection.
For this application, the sensing is often based on the pattern
of variation detected on the leaf, where conceivably, the use
of smartphones and artificial intelligence may alleviate the
challenge of disease identification and scoring. This type of
inference is in contrast to sensing based on an average spectra
derived from a leaf/plant or plot, where disease-specific spec-
tral indices have been developed [151] or where time-
resolved canopy spectral reflectance measurements are used
to determine the presence and severity of leaf foliar diseases
[158]. The latter approach required ground-truth measure-
ments of disease presence and severity at frequent time
intervals to effectively distinguish between the spectral signal
associated with the foliar disease from that associated with
canopy development. The outlook for improved disease phe-
notyping at the scale required for plant breeding is promis-
ing given the increased availability of UAVs equipped with
high-resolution cameras and advanced feature extraction
algorithms. To this end, promising results at the plot scale
were recently obtained using feature extraction from hyper-
spectral imagery, captured from a UAV, for detecting diag-
nostic patterns related to disease severity of yellow rust in
wheat [159].

7. Conclusions

The application of phenomics in plant breeding to assist
with selection of genotypes is seen as an important step for
ongoing crop improvement. However, this application
requires concerted effort on the part of researchers to adapt
and develop phenomics methods to support breeding pro-
grams. In particular, key considerations for phenomics
researchers are as follows: how related the phenotype is to
the breeding target of a particular breeding program,
whether the phenotype is sufficiently repeatable, at a given
sampling time, and heritable across years and locations;
how amenable a particular method is to screening large
numbers of individuals in breeder’s nurseries at an accept-
able cost and across multiple locations; and the level of data
handling required to derive biologically meaningful infor-
mation for each individual genotype. Finally, realising the
full benefits of phenomics to support decision-making
within breeding programs will clearly depend on additional
enabling technologies. Not least of which are crop and eco-
nomic optimisation models to strategically guide the
deployment of phenomics within a particular plant breed-
ing program.
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