Table 1.
Classification performance (%) of the examined deep neural network architectures following the baseline approach.
| Base Model | Accuracy | F1-Score | Precision | Recall | Jaccard | Dice |
|---|---|---|---|---|---|---|
| EfficientNetB4 | 87.50 | 86.32 | 93.57 | 81.48 | 75.93 | 86.32 |
| EfficientNetB7 | 83.75 | 76.39 | 91.45 | 70.86 | 69.40 | 81.94 |
| VGG16 | 92.22 | 91.94 | 93.97 | 90.13 | 83.21 | 90.84 |
| Xception | 86.02 | 85.26 | 92.63 | 80.18 | 72.59 | 84.12 |
| InceptionResNetV2 | 86.51 | 86.53 | 91.34 | 82.79 | 73.06 | 84.43 |
| InceptionV3 | 86.82 | 84.79 | 90.73 | 80.58 | 72.60 | 84.12 |
| MobileNetV2 | 86.68 | 85.76 | 91.87 | 81.33 | 72.76 | 84.24 |
| ResNet50V2 | 89.02 | 88.90 | 93.56 | 85.14 | 77.11 | 87.08 |
| DenseNet121 | 84.27 | 80.20 | 93.77 | 73.65 | 70.97 | 83.02 |
| DenseNet169 | 87.23 | 86.52 | 92.84 | 82.03 | 74.75 | 85.55 |
| DenseNet201 | 86.37 | 87.13 | 93.04 | 82.83 | 72.75 | 84.23 |
Note: Results in bold denote the best performance for each metric.