Skip to main content
. 2021 Aug 24;21(17):5702. doi: 10.3390/s21175702

Table 2.

Classification performance (%) of the examined deep neural network architectures following Approach 1 when using the pretrained weights for the base network and when training each network end-to-end.

Base Model End-to-End Training Pre-Trained Base
Accuracy F1-Score Precision Recall Jaccard Dice Accuracy F1-Score Precision Recall Jaccard Dice
EfficientNetB4 98.04 98.22 98.52 97.95 96.52 98.23 89.95 88.71 92.86 85.55 80.35 89.10
EfficientNetB7 96.87 96.66 97.10 96.27 93.24 96.50 88.67 85.70 93.11 81.46 78.35 87.86
VGG16 94.77 95.39 96.11 94.84 88.83 94.08 87.57 85.59 89.23 82.86 72.85 84.29
Xception 98.00 98.20 98.58 97.87 95.98 97.95 90.36 90.07 92.29 88.16 79.92 88.84
InceptionResNetV2 97.38 97.35 97.88 96.89 94.17 97.00 89.05 88.76 91.25 86.65 77.51 87.33
InceptionV3 96.18 95.76 96.73 95.07 90.63 95.09 88.98 88.30 91.13 85.90 76.03 86.39
MobileNetV2 96.90 97.00 97.52 96.53 93.09 96.42 89.40 88.44 92.11 85.57 78.66 88.06
ResNet50V2 97.45 97.92 98.20 97.67 94.94 97.41 91.02 90.81 93.43 88.68 81.23 89.64
DenseNet121 97.07 97.46 97.95 97.03 93.83 96.82 88.06 87.28 93.23 83.02 75.66 86.14
DenseNet169 97.49 97.68 97.76 97.63 94.82 97.34 89.71 88.72 92.60 85.64 79.10 88.33
DenseNet201 97.25 97.15 97.60 96.77 93.93 96.87 89.12 88.25 91.63 85.58 78.21 87.77

Note: Results in bold denote the best performance for each metric and approach. Underlined results denote the overall best performance for each metric.