Table 2.
Classification performance (%) of the examined deep neural network architectures following Approach 1 when using the pretrained weights for the base network and when training each network end-to-end.
Base Model | End-to-End Training | Pre-Trained Base | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | F1-Score | Precision | Recall | Jaccard | Dice | Accuracy | F1-Score | Precision | Recall | Jaccard | Dice | |
EfficientNetB4 | 98.04 | 98.22 | 98.52 | 97.95 | 96.52 | 98.23 | 89.95 | 88.71 | 92.86 | 85.55 | 80.35 | 89.10 |
EfficientNetB7 | 96.87 | 96.66 | 97.10 | 96.27 | 93.24 | 96.50 | 88.67 | 85.70 | 93.11 | 81.46 | 78.35 | 87.86 |
VGG16 | 94.77 | 95.39 | 96.11 | 94.84 | 88.83 | 94.08 | 87.57 | 85.59 | 89.23 | 82.86 | 72.85 | 84.29 |
Xception | 98.00 | 98.20 | 98.58 | 97.87 | 95.98 | 97.95 | 90.36 | 90.07 | 92.29 | 88.16 | 79.92 | 88.84 |
InceptionResNetV2 | 97.38 | 97.35 | 97.88 | 96.89 | 94.17 | 97.00 | 89.05 | 88.76 | 91.25 | 86.65 | 77.51 | 87.33 |
InceptionV3 | 96.18 | 95.76 | 96.73 | 95.07 | 90.63 | 95.09 | 88.98 | 88.30 | 91.13 | 85.90 | 76.03 | 86.39 |
MobileNetV2 | 96.90 | 97.00 | 97.52 | 96.53 | 93.09 | 96.42 | 89.40 | 88.44 | 92.11 | 85.57 | 78.66 | 88.06 |
ResNet50V2 | 97.45 | 97.92 | 98.20 | 97.67 | 94.94 | 97.41 | 91.02 | 90.81 | 93.43 | 88.68 | 81.23 | 89.64 |
DenseNet121 | 97.07 | 97.46 | 97.95 | 97.03 | 93.83 | 96.82 | 88.06 | 87.28 | 93.23 | 83.02 | 75.66 | 86.14 |
DenseNet169 | 97.49 | 97.68 | 97.76 | 97.63 | 94.82 | 97.34 | 89.71 | 88.72 | 92.60 | 85.64 | 79.10 | 88.33 |
DenseNet201 | 97.25 | 97.15 | 97.60 | 96.77 | 93.93 | 96.87 | 89.12 | 88.25 | 91.63 | 85.58 | 78.21 | 87.77 |
Note: Results in bold denote the best performance for each metric and approach. Underlined results denote the overall best performance for each metric.