Skip to main content
. 2021 Aug 24;21(17):5702. doi: 10.3390/s21175702

Table 5.

Execution time and size of the best-performing models.

Base Model Approach Trainable Parameters Epochs Training Time
(s/epoch)
VGG16 Baseline 186,667,011 28 108 s
EfficientNetB4 Approach 1 (End-to-end) 17,786,571 32 112 s
Xception Approach 1 (End-to-end) 21,077,675 20 111 s
ResNet50V2 Approach 1 (Pretrained base) 270,723 13 119 s
InceptionV3 Approach 2 (End-to-end) 28,076,195 18 123 s
Xception Approach 2 (End-to-end) 27,114,795 21 118 s
DenseNet169 Approach 2 (Pretrained base) 5,520,643 18 166 s

Note: Average execution times measured using TensorFlow and the Keras API on the Google Colab Pro platform (Nvidia Tesla T4 and P100 GPU, 24 GB RAM). All base models were initialised with weights pretrained on the ImageNet dataset.