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Abstract: Speech signals are being used as a primary input source in human–computer interaction
(HCI) to develop several applications, such as automatic speech recognition (ASR), speech emotion
recognition (SER), gender, and age recognition. Classifying speakers according to their age and gender
is a challenging task in speech processing owing to the disability of the current methods of extracting
salient high-level speech features and classification models. To address these problems, we introduce
a novel end-to-end age and gender recognition convolutional neural network (CNN) with a specially
designed multi-attention module (MAM) from speech signals. Our proposed model uses MAM to
extract spatial and temporal salient features from the input data effectively. The MAM mechanism
uses a rectangular shape filter as a kernel in convolution layers and comprises two separate time
and frequency attention mechanisms. The time attention branch learns to detect temporal cues,
whereas the frequency attention module extracts the most relevant features to the target by focusing
on the spatial frequency features. The combination of the two extracted spatial and temporal features
complements one another and provide high performance in terms of age and gender classification.
The proposed age and gender classification system was tested using the Common Voice and locally
developed Korean speech recognition datasets. Our suggested model achieved 96%, 73%, and 76%
accuracy scores for gender, age, and age-gender classification, respectively, using the Common Voice
dataset. The Korean speech recognition dataset results were 97%, 97%, and 90% for gender, age, and
age-gender recognition, respectively. The prediction performance of our proposed model, which was
obtained in the experiments, demonstrated the superiority and robustness of the tasks regarding age,
gender, and age-gender recognition from speech signals.

Keywords: human-computer interaction; convolutional neural network; multi-attention module; age
and gender recognition; speech signals

1. Introduction

Human speech is one of the most used sources of communication among mankind.
A speech signal consists of information regarding not only the content of speech but also
emotions, age, gender, and speaker identity. Moreover, speech signals play an essential role
in human–computer interaction (HCI). Nowadays, the speech signal is being used as a pri-
mary input source for several applications, such as automatic speech recognition (ASR) [1],
speech emotion recognition (SER) [2], gender recognition, and age estimation [3,4]. Addi-
tionally, automatically extracting the age, gender, and emotional state of a speaker from
speech signals has recently become an emerging field of study. Proper and efficient ex-
traction of a speaker identity from speech signal leads to building applications such as
advertisements based on customer age and gender, a caller-agent pairing that appropriately
assigns agents depending on the caller identity in call centers. Determining the gender
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information of a speaker contributes to a performance increase in the speaker recognition
system by helping to reduce the search space in the database. Moreover, age recognition
helps the systems that are operated using the speaker’s voice command to adapt to the
user and provide a more natural human–machine interaction.

Researchers have developed various methods for recognizing age and gender identity
from speech signals in the past decade, mainly focusing on the following two issues:
determining optimal features and designing a suitable recognition model. In a previous
study [5], i-vectors were used as an optimal feature for age estimation, and support vector
regression (SVR) was used as an age prediction model. In another study [6], the authors
proposed a score-level fusion method for age and gender classification from spectral and
prosodic features of speech using the classical Gaussian mixture model (GMM) and support
vector machine (SVM) classification models. Another study [3] reports a deep neural
network (DNN) architecture used to build x-vectors by mapping a variable-length utterance
into a fixed dimensional embedding vector that holds relevant sequential information.
The constructed x-vector was then used for age estimation based on the speaker speech
signal. A unified DNN architecture to recognize both the height and age of a speaker
from short durations of speech was also proposed [7], which improved age estimation
by 0.6 years in terms of the root mean square error (RMSE) over the classical SVR. The
authors of [8] proposed a novel age estimation system based on Long short-term memory
(LSTM) recurrent neural networks (RNN) that can deal with short utterances using acoustic
features. Another notable method was proposed, which utilized a convolutional recurrent
neural network (CRNN) for age and gender prediction from speech utterances [4].

Although researchers have suggested several methods for age and gender recognition
from speech signals, extracting optimal feature sets and designing high-performance
classification models remains challenging. One of the reasons for low results in age
classification when using acoustic features is the similarity of frequency-related acoustic
features across different age groups [9,10]. The proposed i-vectors and x-vectors uses
acoustic features to form embedding vectors. The i-vectors and x-vectors cannot provide
high classification results, especially for age classification, using DNN, SVM, and GMM
even though they are more robust compared to acoustic features. It is difficult for both
training and achieving high performance using traditional machine learning algorithms
such as SVM and GMM when the size of the input features is big. State-of-the-art results
have been achieved by properly designing a convolutional neural network (CNN) to solve
challenging tasks such as ASR [11], audio classification [12], and many more other speech-
processing-related tasks. Building the suitable architecture of the CNN model is hard
and challenging to achieve high performance. Hence, researchers have been continuously
attempting to achieve better results in speech-processing-related tasks by utilizing the
power of deep learning algorithms.

In this study, we proposed CNN with a specifically designed multi-attention module
(MAM) that addressed the two main aforementioned issues of age and gender classification
using speech signals. The extraction of salient high-level features, which is the first issue, is
addressed by designing MAM to efficiently manage spatial and temporal salient features
from the input data. Our proposed MAM mechanism uses a rectangular shape filter as
a kernel in convolution layers and consists of two separate time and frequency attention
mechanisms. The time-attention branch learns to detect the temporal cues of the input data.
In contrast, the frequency attention module extracts the most relevant features to the target
by focusing on the spatial features on the frequency axes. Both extracted features are then
combined to complement one another and build more robust features for processing in
the subsequent layers. We created a feature learning block (FLB) consisting of convolution,
pooling, and batch normalization layers to extract local and global high-level features.
We achieved the best recognition score for age and gender classification using the proper
combination of FLB, MAM, and the fully connected network (FCN) with the SoftMax
classifier, which is the neural network activation function that converts the final output
values of the network into a vector of probabilities. We tested our proposed model over the
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Common Voice [13] and Korean speech recognition datasets to experimentally prove the
efficiency and robustness of the proposed model. Originally, both datasets were developed
for the ASR task, but they can also be used for age and gender recognition. The Common
Voice dataset is a multilingual collection of transcribed speech. However, the Korean
speech recognition dataset was only in the Korean language. The results of the proposed
framework are presented in Section 4. The primary contributions of our proposed system
are as follows:

• We propose a CNN model with a MAM to adequately capture spatial and temporal
cues from speech spectrograms, which ensures high performance and robustness for
age and gender recognition.

• A specially designed MAM mechanism that consists of separate time and frequency
attention modules was proposed to learn and select the most relevant features to
the target from the input data using a rectangular shape filter as a kernel in the
convolution layers to provide and enhance the performance of the baseline age and
gender recognition CNN models.

• We developed and tested three different CNN models for age, gender, and age-gender
classification problems to analyze and represent the effectiveness of the MAM module
when it was placed in various parts of the CNN model. We experimentally proved the
importance of placing the MAM mechanism in different parts of the CNN models.

• Our proposed age and gender classification system was evaluated using the Common
Voice and locally developed Korean speech recognition datasets. Our suggested
model achieved 96%, 73%, and 76% accuracy scores for gender, age, and age-gender
classification, respectively, using the Common Voice dataset. The Korean speech
recognition dataset results were 97%, 97%, and 90% for gender, age, and age-gender
recognition, respectively. Our proposed model achieved the best recognition results
in all three classification tasks when MAM was placed between two FLBs compared
to the various classification methods. The experiments showed the importance of
the location of MAM in the CNN model, and the analysis results are provided in the
experimental results section.

The remainder of this manuscript is structured as follows: the literature review
regarding age and gender classification is provided in Section 2, and a detailed explanation
of the proposed system and its primary components, datasets, experimental setup, and
evaluation metrics are described in Section 3. The experimental results are presented in
Section 4. Discussion and comparative analysis are provided in Section 5. Finally, the
conclusions and future directions are presented in Section 6.

2. Literature Review

There are several applications in the digital audio signal processing domain, such
as speaker identification [14] and recognition [15], speaker segmentation, and person-
alizing human–machine interactions, that have challenges in automatically identifying
gender and age from voice and speech signals [16]. Researchers can now measure the
properties of speech signals, both temporal and frequency related important cues, by re-
cent developments and advancements in voice recording technology [2]. Gender and age
recognition and identification from speech signals is challenging in this domain, which
should be automated or smart for determining the speaker gender from voice signals. The
classification of gender and age from direct speech signals can be logically related to the
time or frequency domains. In the time domain analysis, we directly measure the speech
signals considering the content of a signal for evaluating information regarding a speaker;
on the other hand, in the frequency domain analysis, the frequency content of a speech
signal is used to form a spectrum for evaluating information regarding a speaker, which
is analyzed accordingly [17,18]. The smart gender-age recognition system used the main
variation in the levels of power and the frequency content of the two genders to identify
the gender-based speech signals [9,10]. In this regard, Ali et al. [19] suggested a technique
for encoding speech signals in the digital jurisdiction using principal component analy-
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sis (PCM) and then determined the signal frequency information using deep frequency
transformation (DFT) [20]. The speech signal, on the other hand, is entirely composed of
real points, such as frequency, amplitude, pitch, and time. Hence, the proposed method
employs real point DFT to improve the efficiency and effectively identify the gender and
age of speakers through speech. The proposed method obtained an identification rate
above 80% by utilizing the short-time Fourier analysis (STFA).

A system for determining gender based on speech signals was recently proposed [15]
that utilized a fast Fourier transform (FFT) with a 30 ms Hamming window and a 20
ms overlap for signal analysis. Each 10 ms spectrum was further filtered to adhere to
the Mel Scale, yielding a vector of 20 spectral coefficients. The mean and variance of the
Multilayer Feature Switch Card (MFSC) vectors were determined in each window, and
40 coefficients were concatenated to generate a feature vector. The feature vector is then
normalized to ensure that the classifier captures the relationship between the frequency of
the spectrum rather than the individual frequencies. The authors used a neural network
such as MLP, DNN, CNN, and LSTM as a classifier in this method and obtained an accuracy
rate above 90%. Similarly, Martin A. F. et al. [19,21] provided one of the most innovative
revelations in the field of voice or speech signal-based gender and age identification.
The study suggested multiple linguistic detections for multiple speakers. Rather than
focusing on a single speaker, multi-speaker analysis was used in this study to address
the practical environment with higher efficiency and to obtain a reasonable recognition
rate. Khan et al. [22] suggested a fuzzy logic-based gender classification structure that
was trained using several metrics, such as the power amplitude, total harmonic distortion,
and power spectrum. Although the study yielded positive results, as the rule base grows
when utilizing the fuzzy logic, the scheme becomes more complex and lacks the added
benefit of learning owing to these issues; the proposed method failed to achieve a high
accuracy [23]. Nowadays, researchers have used deep learning approaches to recognize
emotions [2,24–26] in speech and human action in the frame of sequence [27].

In this advance era, researchers have proposed hybrid methods [28,29] and systems
to address the limitations of the age and gender recognition domain, which appear to
offer a potential answer to the problem; however, they also significantly increase the
system complexity, and the problem of noise has not been considered. Furthermore, owing
to higher complexity, these systems require more computational time [23,30], which is
addressed in this study. Furthermore, Prabha et al. [31] created a system for classifying
gender based on energy; the signal transformation was performed using FFT, and the
system secured a 93.5% efficiency. Several methods use machine learning techniques
for classification [32,33] and classify gender and age with high accuracy of 92.5%. The
proposed system utilizes a windowing and pre-emphasis technique for noise cancellation
during the preprocessing phase. In gender-age recognition, an x-vector (fixed-length
representations of variable-length speech segments) framework was recently proposed as
a replacement for i-vectors (the segment is represented by a low-dimensional) [34]. For
age and gender prediction, Ghahremani et al. presented an end-to-end DNN employing
x-vectors [3]. Hence, the main difficulties in i-vector/x-vector approaches for obtaining
high-performance outcomes are the intensive acquirement of a large amount of data and
the complex architecture to train the system. This research investigated voice signals and
suggested a better, smarter AI-based age-gender classification system. Our system uses an
end-to-end AI-based approach with a lightweight attention mechanism to selectively focus
on important information and efficiently recognize the age and gender of speakers.

3. Proposed Age and Gender Classification Methodology

In this section, we explain the proposed framework and its related MAM module. Our
suggested framework utilizes a MAM for the recognition of both the age and gender of a
speaker from speech spectrograms. The proposed age and gender recognition CNN model
is shown in Figure 1. The speech spectrogram contains significant information regarding
speaker age, gender, speaking style, emotional content, etc. One of the reasons for the
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importance of the speech spectrograms is that a human also processes the sounds in the
form of different frequencies over time in the ear [35]. Additionally, a two-dimensional
representation of the speech signal is a suitable input data for CNN models for speech
analysis. The proposed model architecture consists of two feature learning blocks (FLB)s, a
specially designed MAM, and a fully connected network (FCN), which recognizes the age
and gender from the spectrogram generated from the speech signal. A detailed explanation
of the spectrogram generation and the proposed framework components are presented in
the subsequent sections.
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3.1. Spectrogram Generation

A spectrogram is one of the most used visual input representations of speech signals
in speech analysis tasks, such as ASR [36] and SER [24] using deep learning (DL) models.
It demonstrates the signal strength over time at different frequencies present in a particular
waveform. In the spectrograms, time is shown on the horizontal axis, while the vertical
axis represents the frequency, and the yellow color of each point in the graph corresponds
to an amplitude of a certain frequency at a particular time.

The Short-time Fourier transform (STFT) is applied to a discrete signal to generate
a spectrogram of the speech signal. The speech signal is divided into short overlapping
segments of equal length, and then a fast Fourier transform (FFT) is applied to each frame
to compute its spectrum. For a given spectrogram S, the strength of a given frequency
attribute f at a given time t is represented by the darkness or color of the corresponding
point S(t, f). We extracted speech spectrograms, as shown in Figure 2, using STFT for
each speech signal in the dataset. Figure 2 presents the audio waveforms and generated
corresponding spectrograms of the speech samples.
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3.2. Feature Learning Block (FLB) Explanation and Configuration

Current state-of-the-art results in the field of computer vision are achieved by utilizing
the power of CNN for different tasks, such as image classification [37], object detection [38],
and action recognition [39]. CNN models have demonstrated their superiority not only in
the field of computer vision tasks but also in ASR [40] and SER [33]. The performance of
CNN models inspired us to utilize their efficiency for age and gender classification using
speech signals. Generally, a CNN model consists of the following three main components:
convolution layers, pooling layers, and fully connected layers. Convolution layers are
formed by specifying the number of filters and kernel size, which define the receptive field
and stride size, and is responsible for the amount of movement over the input. The primary
function of the convolution layer is to learn and extract high-level features from the input
data. The output of the convolution layer is fed to pooling to decrease processing time
by reducing the dimensionality of the feature maps. These layers are usually arranged in
the form of a hierarchy where we can use any number of convolution layers followed by
pooling layers to build robust and salient feature maps.

Our FLB was formed by utilizing three convolutions (C), two max-pooling layers,
and two batch normalization (BN) layers. Details regarding the configuration of our
proposed model layers, input tensor, which is a high dimensional vector, output tensor, and
parameters are provided in Table 1. We used 120 kernels with a size of 9 × 9 and a stride of
2 × 2 with a padding configuration in the first convolution (C1) layer to extract useful local
features from the input spectrogram. In addition, a rectified linear unit (ReLU) was used
as an activation function in all the convolution layers to achieve better performance and
to generalize the model during the training. The second convolution (C2) layer includes
256 filters of size 5 × 5 and a stride of 1 × 1 with the same padding setting to generate
a feature map to the next layer for further processing. The third convolution (C3) layer
has 384 kernels of size 3 × 3 with the same stride and padding configuration of C2 to
extract deeply hidden cues from the input data. The MP layer with a pool size and a
stride of 2 × 2 is applied after the BN layer in C1, which is followed by C2. The MP layer
reduces both the dimensions of the feature map and the network computation cost. The BN
layer was placed after C1 and C3 to normalize and rescale the feature map of the speech
spectrogram. Our FLB uses quadratic-shaped filters to learn the relationship between the
time and frequencies of the speech signal and extracts high-level salient feature maps.

3.3. Proposed Multi-Attention Module

The utilization of attention mechanisms in deep learning models has demonstrated
its strength in model performance and robustness in solving several different tasks, such
as machine translation [41], text classification [42], sound event detection [43], and speech
emotion recognition [33]. The working mechanism of attention is to select essential features
to the target by focusing on the extracted features. Not all extracted features are equally
relevant to the target in any deep learning task. Feature maps generated using CNN from
speech spectrograms contain information regarding particular regions of the input data.
However, it is challenging to capture temporal cues using CNNs. As the spectrogram of
the speech signal represents temporal and spatial information, we must capture all the
valuable features of the input data to achieve high performance. To solve this issue and
improve the performance and robustness of the classification model, we designed a new
attention module using two-stream, time, and frequency attention mechanisms separately,
which have various properties. The detailed architecture of the MAM is shown in Figure 3.
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Table 1. Detailed configuration specifications of our proposed model, including layer names, input tensor, output tensor,
and parameters.

Layer Names Input Tensor Output Tensor Kernel Size Stride Activation Parameters

FLB

Conv2D_1 64 × 64 × 3 32 × 32 × 120 9 × 9 2 × 2 ReLU 29,280
Batch_normalization_1 32 × 32 × 120 32 × 32 × 120 - - - 480

Max_pooling2D_1 32 × 32 × 120 16 × 16 × 120 2 × 2 2 × 2 - 0
Conv2D_2 16 × 16 × 120 16 × 16 × 256 5 × 5 1 × 1 ReLU 768,256

Max_pooling2D_2 16 × 16 × 256 8 × 8 × 256 2 × 2 1 × 1 - 0
Conv2D_3 8 × 8 × 256 8 × 8 × 384 3 × 3 1 × 1 ReLU 885,120

Batch_normalization_2 8 × 8 × 384 8 × 8 × 384 - - - 1536

MAM

Conv2D_4 8 × 8 × 384 8 × 8 × 64 1 × 9 1 × 1 ReLU 221,248
Conv2D_5, Conv2D_6 8 × 8 × 64 8 × 8 × 64 1 × 3 1 × 1 ReLU 12,352
Batch_normalization_3 8 × 8 × 64 8 × 8 × 64 - - - 256

Conv2D_7 8 × 8 × 384 8 × 8 × 64 9 × 1 1 × 1 ReLU 221,248
Conv2D_8, Conv2D_9 8 × 8 × 64 8 × 8 × 64 3 × 1 1 × 1 ReLU 12,352
Batch_normalization_4 8 × 8 × 64 8 × 8 × 64 - - - 256

Concatenate_1 8 × 8 × 64 8 × 8 × 128 - - - 0
Batch_normalization_5 8 × 8 × 128 8 × 8 × 128 - - - 512

Concatenate_2 8 × 8 × 128 8 × 8 × 512 - - - 0

FCN

Flatten 1 × 1 × 384 384 - - - 0
Dense_1 384 80 - - ReLU 30,800

Batch_normalization_7 80 80 - - - 320
Dense_2 80 12 - - SoftMax 972

Total parameters = 8,841,844

Trainable parameters = 8,839,156
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Figure 3. A detailed overview of the MAM module structure. Input feature maps fed to time and frequency attention
modules to capture the critical parts of both time and frequency features. Learned attention values are concatenated with
input feature maps using a skip connection to produce output feature maps.

From the given input feature map F ε RH×W×C, a learned 3D attention map A(F) ε
RH×W×C/r is first computed, where r is the reduction ratio, and the final refined feature
map is calculated as follows:

F′ = F + A(F) (1)

We applied a residual learning scheme along with the MAM to facilitate gradient flow.
To compose an efficient and robust attention module, we first compute the time attention
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At(F) ε RH×W×C/2r followed by the frequency attention Af(F) ε RH×W×C/2r values at two
separate branches. The final 3D attention map is computed as follows:

A(F) = At(F) + Af(F) (2)

The time attention module exploits the relationship of the particular frequency with the
time axis and contains specific frequency-related features at different times. To achieve this,
we applied three convolution operations with various rectangular shape filters followed
by batch normalization (BN) to the input feature maps F ε RH×W×C. The kernel size of
the first convolution layer is set to 1 × 9, and the input channels are reduced with the
reduction ratio r. The next two convolution layers have a 1 × 3 kernel size and the same
input channels. We used BN to normalize and rescale the computed time-attention map.
The final time attention map is calculated as follows:

At(F) = BN
(
J 1×3

3

(
J 1×3

2

(
J 1×9

1 (F)
)
) (3)

where J denotes a convolution operation, BN denotes a batch normalization operation,
and the superscripts denote the convolution filter sizes.

The frequency attention module learns the importance of each frequency to the target
during training. The frequency attention module has the same number of convolution
operations and BN; however, it has different kernel sizes. Three convolution operations
are applied to the input feature maps of F ε RH×W×C with kernel sizes of 9 × 1, 3 × 1, and
3 × 1, respectively. The output dimension of this attention module is the same as that of
the time-attention module. The final frequency attention map is computed as follows:

Af(F) = BNJ 3×1
3

(
J 3×1

2

(
J 9×1

1 (F)
)
) (4)

where J denotes a convolution operation, BN denotes a batch normalization operation,
and the superscripts denote the convolution filter sizes.

After computing the attention maps from two separate branches, we obtain two
different attention values that focus on the most time-related and frequency-related features
of the input feature maps. To build our final 3D attention map A(F), we combined these
two attention maps (Equation (2)) because the attention values computed at two different
branches complement one another owing to the fact that the input feature map is the same
for both branches, while the extracted attention maps are different. We concatenated the
input feature map F and attention weights obtained from MAM A (F) to build a more
informative feature map to feed for further processing in the second FLB.

3.4. Age and Gender Classification Datasets

We used Common Voice [13] and Korean speech recognition [44] datasets to evaluate
and demonstrate the proposed model significance and robustness. Both datasets were
originally created for developing a speech recognition system. However, they can also
be used for conducting research and developing age and gender recognition systems. A
detailed description of the datasets is provided in the following subsections.

3.4.1. Description of the Common Voice Dataset

The primary purpose of the Common Voice dataset [13] is to accelerate the research
domain of automatic speech recognition technologies. However, it can be used to research
and develop other speech domain tasks, such as language identification, speaker age, and
gender recognition. It consists of a collection of massively multilingual transcribed speech
that is publicly available. To obtain reproducible results, we used the English subset of
the dataset, which dominated the other languages in terms of the number of speakers
and validated files; this was available through the Kaggle website [45]. This dataset was
divided into valid and invalid subsets. The valid subset contains audio files that at least
two people validated as the audio matches the text. Each subset is separated into training,
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development, and test groups on the Kaggle website. All audio files were labelled for the
speech recognition task, however, not for age and gender classification. Three annotators
labelled the audio files, and the final labels were assigned based on the majority voting
method. Thus, we selected audio files based on the age and gender information from the
dataset. Detailed information regarding the age groups, gender, and the number of files in
the dataset is provided in Table 2. Our final selected dataset includes both genders along
with six age groups named teens, twenties, thirties, forties, fifties, and sixties. The speakers
in the training, development, and test sets were significantly different from one another.

Table 2. A detailed description of the utilized English subset of the Common Voice dataset.

Age
Groups

Age
Range
(Years)

Train Development Test

Male Female Male Female Male Female

Teens <19 4249 1060 84 28 82 34
Twenties 19–29 18,494 3955 389 87 376 80
Thirties 30–39 13,662 4560 256 88 295 92
Forties 40–49 8684 2187 180 60 184 47
Fifties 50–59 4946 4467 116 87 116 89
Sixties 60–69 2835 1722 55 40 43 44

Total
52,870 17,951 1080 390 1096 386

70,821 1470 1482

3.4.2. Description of the Korean Speech Recognition Dataset

The Korean speech recognition database was developed using 24,000 sentences related
to utilizing the sentence for AI-based systems, involving 7601 Korean speakers collected
from residents of seven regions within the province of Korea. This study was financially
supported by the AI database project of the National Information Society Agency (NIA)
in 2020. The recordings occurred in a silent room using a personal smart device. The
participants were requested to record themselves according to the prepared sentences.
After each sentence was recorded, they listened to and checked the quality of the voice data.
If not correctly recorded, the same sentence was re-recorded until the recording quality was
sufficient. The evaluation of the recorded data was conducted by professional researchers.
The database contains records of three situations, AI secretary, AI robot, and Kiosk, from
the following three groups: children, adults, and the elderly. The total recording time was
10,000 h. We selected random samples from the AI secretary situation for our experiments
and evaluated our model. A detailed description of the dataset is provided in Table 3.

Table 3. Detailed descriptions regarding age groups, age range, and utterances of the Korean speech
recognition dataset.

Age
Groups

Age
Range
(Years)

Train Development Test

Male Female Male Female Male Female

Children 3~10 3341 3139 716 673 716 673
Adults 20~59 3971 2312 818 528 876 472
Elderly 60~79 3565 3109 764 666 764 667

Total
10,877 8560 2298 1867 2356 812

19,437 4165 4168

3.5. Experimental Setup

We implemented our proposed model using TensorFlow [46], an open-source platform
for developing machine learning algorithms, and the Python [47] programming language.
Speech spectrograms were generated using the librosa [48] Python library for audio and
music analysis. The Common Voice dataset consists of the following three parts: training,
development, and test sets. The training part was used to train our proposed model,
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and the development part was used to evaluate our trained model while conducting the
experiments. The test set was only used to verify the model performance after training
was complete. We divided the Korean speech recognition dataset into three subsets, with
70% utilized for training, 15% for development, and the remaining 15% for testing the
model performance. The proposed model was trained with 50 epochs using the Adam
optimizer with a learning rate of 0.0001. We conducted experiments with various batch
sizes, and the best result was achieved with a batch size of 256 samples. To maintain a
balance between the computation cost and model performance, input spectrograms, with
a size of 64 × 64 pixels, were chosen as the optimal option among the other 32 × 32 and
128 × 128 pixels. Two NVIDIA GeForce RTX 3080 GPUs with ten GB of onboard memory
were used to conduct all the experiments.

3.6. Evaluation of Model Testing Performance

To measure the proposed model performance for age and gender classification, we
utilized the statistical parameters computed from the model prediction and ground truth.
Definition of the terms used to calculate evaluation metrics is given in Table 4. The number
of positively predicted samples correctly matching with the actual positive labels is called
the true positive (TP) value, whereas the false negative (FN) value is the number of positive
predicted samples that do not match with the positive ground truth labels. True negative
(TN) indicates the correctly predicted negative samples with actual values, and false
positive (FP) indicates the samples that are predicted as negative, but the actual labels are
positive samples.

Table 4. Definition of the terms used to calculate evaluation metrics.

Actual Label Predicted Label Metrics Definition

Positive Positive True positive (TP)
Positive Negative False negative (FN)

Negative Positive False positive (FP)
Negative Negative True negative (TN)

The statistical parameters assist in computing other factors that are used to evaluate the
model performance and robustness. The accuracy score is calculated using Equation (5),
and it indicates how many of the classes were correctly predicted. Utilizing only the
accuracy factor is insufficient for measuring the model performance and effectiveness.
Thus, additional measurement factors, such as recall (Equation (6), precision (Equation (7),
F1-score (Equation (8), weighted accuracy, and unweighted accuracy, are required to
measure the proposed model efficiently.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1− score =
2× TP

2× TN + FP + FN
(8)

4. Experimental Results

We empirically evaluated our proposed classification framework using the Common
Voice dataset [13] and a Korean speech recognition dataset to demonstrate the model
significance and robustness. We checked the performance of our system and compared
it with other CNN model architectures and methods with the same tasks. We conducted
experiments to classify the three different tasks. The first task was gender classification.
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The proposed model was trained to classify the speaker into male and female classes using
speech spectrograms. In the second task, the model was trained only for age classification
without predicting gender information. The final task involved the recognition of both
age and gender from the speech spectrogram. Moreover, five different CNN models were
developed and evaluated for all the classification problems. The prediction performances
of all five CNN models are shown in Table 5.

Table 5. Classification accuracy (%) of the five different CNN models on the development set. All models were trained and
evaluated for gender, age, and age-gender classification using the Common Voice and Korean speech recognition datasets.
Numbers with bold fonts indicate the highest classification accuracy.

Input
Feature

Model
Type Model Architecture

Common Voice Korean Speech Recognition

Gender Age Age-Gender Gender Age Age-Gender

Speech
Spectrogram

Model-1 FLB + FLB + FCN 89 68 69 94 85 82

Model-2 FLB + FLB + TAM
+ FCN 90 70 70 94 87 83

Model-3 FLB + FLB + FAM
+ FCN 92 70 70 95 91 85

Model-4 FLB + FLB + MAM
+ FCN 93 71 71 95 93 85

Model-5 FLB + MAM +
FLB+FCN 96 73 76 97 97 90

The first CNN model (model-1 in Table 5) consists of two FLBs, which are placed one
after the other, and the FCN without MAM. This model was used as the baseline model
for analyzing the effectiveness of other CNN models with attention modules. We used
two FLBs in order to keep the balance between model complexity and performance as
well as to avoid model overfitting problems. The second model (model-2 in Table 5) was
built using two consecutive FLBs and a time attention module (TAM), followed by FCN.
This model was developed to verify the effectiveness of the TAM mechanism. The third
model (model-3 in Table 5) has the same architecture as the second model except that
TAM was replaced with frequency attention module (FAM). For the analysis of whether
TAM and FAM feature complement each other when combined or not, we developed the
CNN model (model-4 in Table 5) using two consecutive FLBs and multi-attention module
(MAM), followed by FCN. The last model (model-5 in Table 5) architecture consisted of
FLB, MAM, FLB, and FCN in sequential order. The primary purpose of the last model is to
analyze and represent the effectiveness of the MAM module when it is placed in various
parts of the CNN model.

Table 5 presents the evaluation results of the five CNN models for the Common Voice
and the Korean speech recognition datasets. The output from the model is the class proba-
bilities taken from the SoftMax layer. The class with the highest prediction probability was
taken as the final model prediction class. Then accuracy score was calculated using the final
predicted class and original labels. Speech spectrograms were utilized as the input features
for all the models in the classification tasks. All developed CNN models with attention
modules achieved higher classification accuracy for both databases over the baseline CNN
model in all three classification tasks. Model-3 achieved a better classification accuracy
over model-1 and model-2. It means that FAM features are more effective comparing to
TAM features as well as it increased classification accuracy considerable over model-1.
The results of model-4 indicating the efficiency of a specifically designed MAM module
for age and gender classification using speech spectrograms. The highest performance
was achieved using the proposed model-5 among the other CNN models, which indicates
that the location of the MAM module in the CNN models is significant for obtaining
high accuracy.

Table 6 presents the statistical parameters obtained from the model prediction of the
test data to recognize speaker age and gender information from the speech spectrograms.
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The age and gender classification for the Common Voice dataset is twelve classes classi-
fication problem. The age range for each class was ten years. However, the age range in
the Korean speech recognition dataset was different for each class. The age range of the
children group was between three to 10 years, while that of the adult group was between
20 to 59 years. The 60 to 79 age range was considered as the older group.

Table 6. A classification report of the proposed age and gender classification model on each dataset is provided to
demonstrate precision, recall, F1-score, and weighted and unweighted accuracy results. F and M denote the female and
male genders, respectively. Numbers with bold fonts indicate the average classification accuracy.

Common Voice Analysis Korean Speech Recognition Analysis

Class
Category Precision Recall F1-Score Utterances Class

Category Precision Recall F1-Score Utterances

F-teens 0.78 0.53 0.63 34 F-children 0.75 0.97 0.85 673
F-twenties 0.72 0.8 0.76 80 F-adult 0.99 0.88 0.93 472
F-thirties 0.8 0.79 0.8 92 F-elderly 0.95 0.95 0.95 667
F-forties 0.76 0.68 0.72 47 M-children 0.91 0.75 0.82 716
F-fifties 0.8 0.85 0.83 89 M-adult 0.99 0.83 0.91 876
F-sixties 0.87 0.89 0.88 44 M-elderly 0.86 0.99 0.92 764
M-teens 0.68 0.52 0.59 82

M-twenties 0.72 0.81 0.76 376
M-thirties 0.75 0.73 0.74 295
M-forties 0.76 0.72 0.74 184
M-fifties 0.79 0.75 0.77 116
M-sixties 0.89 0.77 0.82 43

Weighted
Accuracy 0.76 0.75 0.75

1482
0.91 0.9 0.9

4168
Unweighted

Accuracy 0.78 0.74 0.75 0.91 0.9 0.9

Accuracy 0.75 0.9

The highest precision, recall, and F1-score values obtained were 89%, 89%, and 88%,
respectively, for the Common Voice dataset. For the Korean speech recognition dataset,
these values were 99%, 99%, and 92%, respectively. The results clearly indicate that the
recognition rate is higher when the age range difference increases. The average recognition
accuracy obtained was 75% and 90% for the Common Voice and Korean speech recognition
datasets, respectively.

Figure 4 presents the confusion matrices obtained from the model predictions and
the test data labels for the age and gender classification problem for the Common Voice
and Korean speech recognition datasets. The best class-wise accuracy for the Common
Voice dataset was achieved in the F-sixties (89%) and M-twenties (81%). However, the
accuracy rates of both the F-teens and M-teens classes were 53% and 52%, respectively.
The proposed model confused the predictions of F-teens and M-teens with F-twenties and
M-twenties, respectively. One of the main reasons for this confusion is the similarity of the
acoustic features such as pitch, the fundamental frequency, and formants of the F-teens
and M-teens with F-twenties and M-twenties age groups [9,10]. As our proposed model
captures information from the frequency and time of the generated speech spectrograms,
the frequency features of the male and female teens group are mostly similar to those of the
twenties group. This similarity feature [49] between the female and male gender groups was
also observed in the Korean speech recognition dataset. Most M-children were confused
with the F-children class in the model prediction. The voices of children are significantly
similar for males and females in terms of acoustic features. The highest classification
accuracy for the Korean speech recognition dataset was obtained for F-children and M-
elderly with a 97% and 99% accuracy, respectively.
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Table 7 presents the precision, recall, F1-score, and weighted and unweighted accuracy
results obtained from the model prediction for age classification using the test data for the
Common Voice and the Korean speech recognition datasets. The highest precision, recall,
and F1-score values were 87%, 83%, and 81%, respectively, for the Common Voice dataset.
The values for these parameters were 98%, 99%, and 97% for the Korean speech recognition
dataset. When male and female teens were combined into one group, it affected the overall
recognition accuracy in the Common Voice dataset. However, the average recognition
accuracy for the Korean speech recognition dataset increased in the age classification
task. As shown in Figure 4b, most of the confusion occurred for the M-children with
the F-children class. When these two classes were combined, the confusion between the
M-children and F-children groups were resolved; as a result, the overall classification
accuracy increased. The average recognition accuracy obtained was 72% and 96% for the
Common Voice and Korean speech recognition datasets.

Table 7. Classification of the proposed age classification model on each dataset presents the precision, recall, F1-score, and
weighted and unweighted accuracy results. Numbers with bold fonts indicate the average classification accuracy.

Common Voice Analysis Korean Speech Recognition Analysis

Class
Category Precision Recall F1-Score Utterances Class

Category Precision Recall F1-Score Utterances

Teens 0.78 0.47 0.58 116 Children 0.96 0.97 0.97 1389
Twenties 0.66 0.83 0.73 456 Adult 0.98 0.92 0.95 1348
Thirties 0.76 0.65 0.7 387 Elderly 0.95 0.99 0.97 1431
Forties 0.72 0.69 0.7 231
Fifties 0.87 0.77 0.81 205
Sixties 0.7 0.82 0.76 87

Weighted
Accuracy 0.73 0.72 0.72

1482
0.96 0.96 0.96

4168
Unweighted

Accuracy 0.75 0.7 0.71 0.96 0.96 0.96

Accuracy 0.72 0.96

Figure 5 illustrates the confusion matrices for age classification from the speech
spectrograms obtained from the model predictions and the actual labels for the Common
Voice (a) and the Korean speech recognition (b) datasets. The best accuracy among the age
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classes for the Common Voice dataset was achieved in the twenties age range (83%), while
the lowest accuracy was observed in the teens class. The proposed model mostly confused
the predictions of the teens with the twenties group owing to the similarity of the frequency
features. The highest classification accuracy for the Korean speech recognition dataset
was obtained for the elderly group (99%). The age difference between the age groups in
the Korean speech recognition dataset was noticeably different. Hence, their frequency
features were also different [49]. Our proposed model can capture these different features
during the model prediction. As a result, each age group had an accuracy score above 90%.
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Table 8 presents the statistical factors obtained from the model prediction for gender
classification using the test data for the Common Voice and the Korean speech recognition
datasets. The highest precision, recall, and F1-score values achieved the same 97% in the
male class for the Common Voice dataset. The values for these parameters were 96%, 97%,
and 96% for the Korean speech recognition dataset. The average recognition accuracy of
96% was obtained for both the Common Voice and Korean speech recognition datasets.

Table 8. Classification report of the proposed gender classification model for each dataset presents the precision, recall, F1-
score, and weighted and unweighted accuracy results. Numbers with bold fonts indicate the average classification accuracy.

Common Voice Analysis Korean Speech Recognition Analysis

Class
Category Precision Recall F1-Score Utterances Class

Category Precision Recall F1-Score Utterances

Male 0.97 0.97 0.97 1096 Male 0.96 0.97 0.96 2356
Female 0.92 0.91 0.92 386 Female 0.96 0.95 0.95 1812

Weighted
Accuracy 0.96 0.96 0.96

1482
Weighted
Accuracy 0.96 0.96 0.96

4168
Unweighted

Accuracy 0.94 0.94 0.94 Unweighted
Accuracy 0.96 0.96 0.96

Accuracy 0.96 0.96

The confusion matrices for gender classification from the speech spectrograms are
presented in Figure 6. The results were obtained from the model predictions and the actual
labels for the Common Voice (a) and Korean speech recognition (b) datasets. The best
accuracy of 97% was achieved for gender classification in the male class for both datasets.
Over 90% classification accuracy was achieved for each gender class on both datasets,
even though the Common Voice dataset is gender imbalanced. This indicates that our
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proposed model capable of learning differential features from the imbalanced dataset and
demonstrated its superiority to all three classification problems.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 6. Obtained confusion matrices of the proposed model for the Common Voice (a) and Korean 
speech recognition (b) dataset for gender classification with average recognition rates of 96% for 
both datasets. 

5. Discussion and Comparative Analysis 
In this study, we proposed a CNN model with a specifically designed MAM for age 

and gender classification using spectrograms generated from the speech signal. The MAM 
was designed to capture the most relevant salient features from both the time and fre-
quency axes of the input spectrogram. MAM is considered to be our primary contribution 
to age and gender classification from speech signals. Additionally, we built an FLB scheme 
to extract high-level salient feature maps from the input data. To the best of our 
knowledge, this is the first CNN model with a MAM mechanism proposed for age and 
gender classification using speech spectrograms. We thoroughly investigated the litera-
ture regarding age and gender recognition from speech signals and found two main is-
sues, the first of which is the difficulty capturing the essential features for age classifica-
tion because most of the acoustic features relevant to the speech frequency are similar in 
the age groups of children, teens, and twenties [9,10,49]. Several researchers have at-
tempted to develop various techniques in this domain by utilizing hand-crafted features 
using classical machine-learning classification models [5]. However, the recognition score 
remained low. The second issue is the design of a proper classification model [6,50]. Re-
cently, deep learning models have been applied for age and gender recognition [7]; how-
ever, the aforementioned issues remain unresolved. 

In this study, we addressed these issues and designed a novel CNN model with a 
MAM mechanism. MAM consists of two separate branches responsible for learning and 
detecting essential features that are mostly related to the target in both the frequency and 
time domains. We used a rectangular shape filter as a kernel on the convolution layer of 
the time attention and frequency attention branches to manage the most relevant features. 
A proper combination of FLB and MAM captures both local and global high-level salient 
features in our proposed model. An FCN with a SoftMax classifier was used for our pro-
posed model. A speech spectrogram, which is a 2D visual representation of frequencies 
over time, was used as an input to our proposed model. Table 1 lists the detailed config-
uration specifications, including the layer names, input tensor, output tensor, and param-
eters. To properly evaluate our proposed model, we first developed a simple CNN model 
and used it as a baseline model for analyzing the effectiveness of other CNN models with 
attention modules. The second and the third models were built using two consecutive 
FLBs, TAM and FAM, respectively, followed by FCN. These models were developed to 
verify the effectiveness of the TAM and FAM modules. We developed model-4 for the 
analysis of whether TAM and FAM features complement each other when combined or 

Figure 6. Obtained confusion matrices of the proposed model for the Common Voice (a) and Korean speech recognition (b)
dataset for gender classification with average recognition rates of 96% for both datasets.

5. Discussion and Comparative Analysis

In this study, we proposed a CNN model with a specifically designed MAM for
age and gender classification using spectrograms generated from the speech signal. The
MAM was designed to capture the most relevant salient features from both the time
and frequency axes of the input spectrogram. MAM is considered to be our primary
contribution to age and gender classification from speech signals. Additionally, we built
an FLB scheme to extract high-level salient feature maps from the input data. To the best
of our knowledge, this is the first CNN model with a MAM mechanism proposed for
age and gender classification using speech spectrograms. We thoroughly investigated
the literature regarding age and gender recognition from speech signals and found two
main issues, the first of which is the difficulty capturing the essential features for age
classification because most of the acoustic features relevant to the speech frequency are
similar in the age groups of children, teens, and twenties [9,10,49]. Several researchers have
attempted to develop various techniques in this domain by utilizing hand-crafted features
using classical machine-learning classification models [5]. However, the recognition score
remained low. The second issue is the design of a proper classification model [6,50].
Recently, deep learning models have been applied for age and gender recognition [7];
however, the aforementioned issues remain unresolved.

In this study, we addressed these issues and designed a novel CNN model with a
MAM mechanism. MAM consists of two separate branches responsible for learning and
detecting essential features that are mostly related to the target in both the frequency
and time domains. We used a rectangular shape filter as a kernel on the convolution
layer of the time attention and frequency attention branches to manage the most relevant
features. A proper combination of FLB and MAM captures both local and global high-
level salient features in our proposed model. An FCN with a SoftMax classifier was used
for our proposed model. A speech spectrogram, which is a 2D visual representation of
frequencies over time, was used as an input to our proposed model. Table 1 lists the detailed
configuration specifications, including the layer names, input tensor, output tensor, and
parameters. To properly evaluate our proposed model, we first developed a simple CNN
model and used it as a baseline model for analyzing the effectiveness of other CNN models
with attention modules. The second and the third models were built using two consecutive
FLBs, TAM and FAM, respectively, followed by FCN. These models were developed to
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verify the effectiveness of the TAM and FAM modules. We developed model-4 for the
analysis of whether TAM and FAM features complement each other when combined or not.
The primary purpose of the last model is to analyze and represent the effectiveness of the
MAM module when it is placed in various parts of the CNN model. We investigated the
importance of the MAM mechanism by placing it in different regions of the CNN model.
As shown in Table 4, model-5 achieved the best recognition score for all the classification
tasks. Despite model-2, model-3, and model-4 results being lower than those of model-5,
they remained higher than model-1. This indicates that our designed MAM mechanism
demonstrated its capability to increase the CNN model performance by capturing suitable
special and temporal features of the input speech spectrogram.

Moreover, we conducted experiments using transfer learning methodology to compare
the performance and classification accuracy of our proposed model over other methods.
VGG19 [51] and EfficientNet [37] image classification models were used to extract fea-
tures from the input speech spectrogram, and an SVM [52] was used for classification.
We extracted 4096-dimensional feature vectors for each audio file from the second fully
connected layer of VGG19 by giving a speech spectrogram as an input image to the model.
In the case of EfficientNet, we extracted 1536-dimensional feature vectors for each audio file
from the global average layer of EfficientNet-B3 by giving speech spectrogram as an input
image to the model. The extracted feature was used to train the SVM classifier with radial
basis function (RBF) kernel and regularization parameter of one. Additionally, pre-trained
models were fine-tuned for the gender, age, and age-gender classification tasks by replacing
top fully connected layers of pre-trained models with our multi-layer perceptron network,
which has two fully connected layers with 128 and 64 hidden neurons, respectively. The
main reason for choosing VGG19 and EfficientNet pre-trained models for comparison with
our proposed model is the similarity of input data to the model. The pre-trained models
are very good at extracting useful features from the input image. As our model also uses
speech spectrogram as input data, extract useful features, and perform classification task
as pre-trained models do, we chose these models as baselines for comparing our proposed
model. The same test set was used to evaluate the performance of the trained models.
Figure 7 illustrates the accuracy score of various classification models for age, gender, and
age-gender recognition obtained using the Common Voice dataset. The gender recognition
results were above 90% for all the classification methods, except model-1. However, the age
classification and age-gender classification results of pre-trained models were noticeably
lower than those of all proposed models. Our proposed CNN model with the MAM
mechanism achieved the best results in all three classification problems among the various
classification models.
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6. Conclusions and Future Direction

In this study, a novel CNN model with a MAM mechanism was proposed for the
classification of age, gender, and age-gender using speech spectrograms. We addressed the
two main issues in the field of age and gender recognition from speech signals. The first
issue is the lack of the proper extraction of essential features, while the second issue is the
design of an appropriate classification model. We designed a unique MAM mechanism to
efficiently manage special and temporal salient features from the input data. Our proposed
MAM uses a rectangular shape filter as a kernel in convolution layers and consists of two
separate time and frequency attention mechanisms. The time-attention branch learns to
detect the temporal cues of the input data. In contrast, the frequency attention module
extracts the most relevant features to the target by focusing on the spatial features on the
frequency axes. Both extracted features were then combined to complement one another
and build more robust features for processing in the subsequent layers. We created an
FLB composed of convolution, pooling, and batch normalization layers to extract local
and global high-level features. We achieved the best recognition score for age and gender
classification using the proper combination of FLB, MAM, and the FCN with the SoftMax
classifier. We evaluated the performance and robustness of our proposed model over
the Common Voice and Korean speech recognition datasets. We trained and tested our
proposed model for age, gender, and age-gender classification problems. Additionally, we
conducted experiments using the transfer learning method to evaluate the superiority of
our proposed model. Our model achieved average accuracy scores of 96%, 73%, and 76%
for the classification of gender, age, and age-gender tasks, respectively, for the Common
Voice dataset. A 97% recognition rate was obtained for the gender and age classification
using the Korean speech recognition dataset. For the age-gender recognition, the highest
result obtained was 90% compared to the other results.

Even though our proposed model achieved the highest classification accuracy com-
pared to the other models, there is still confusion between teens and twenties age groups in
the Common Voice dataset. The prediction accuracy of teens age class was lower than 50%
and mostly confused with twenties age class around 40%. It still requires conducting more
research to decrease the confusion between teens and twenties age groups. Moreover, it is
difficult to directly compare the results of the Common Voice dataset and Korean speech
recognition dataset because of their age group labels difference. There is a significant
difference between the classification scores of the Common Voice and the Korean speech
recognition datasets. The reason behind this is the nature of the data labels in each dataset.
Additionally, male recognition score is high compared to female recognition score in gender
recognition task for both datasets because of data imbalance problem. As a result, it affects
model generalizability.

We intend to apply this type of attention mechanism in the future for ASR, SER, and
speech processing tasks. In the future, we will endorse and advance the architecture and
compare it with a state-of-the-art established model to prove its significance. Additionally,
testing our proposed model over other datasets would be advisable to evaluate the perfor-
mance of the system. Our proposed MAM mechanism can be easily adapted to other CNN
models to design an efficient and robust CNN model.
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