PCR Targeted to the 16S-23S rRNA Gene Intergenic Spacer Region of *Clostridium difficile* and Construction of a Library Consisting of 116 Different PCR Ribotypes

SIMON L. J. STUBBS,¹ JON S. BRAZIER,^{1*} GAEL L. O'NEILL,² AND BRIAN I. DUERDEN¹

Anaerobe Reference Unit, Department of Medical Microbiology and Public Health Laboratory, University Hospital of Wales, Cardiff,¹ and Central Public Health Laboratory, London,² United Kingdom

Received 8 September 1998/Returned for modification 1 October 1998/Accepted 27 October 1998

A reference library of types of *Clostridium difficile* has been constructed by PCR ribotyping isolates (n = 2,030) from environmental (n = 89), hospital (n = 1,386), community practitioner (n = 395), veterinary (n = 27), and reference (n = 133) sources. The library consists of 116 distinct types identified on the basis of differences in profiles generated with PCR primers designed to amplify the 16S-23S rRNA gene intergenic spacer region. Isolates from 55% of infections in hospitals in the United Kingdom belonged to one ribotype (type 1), but this type was responsible for only 7.5% of community infections.

Clostridium difficile is the etiologic agent of pseudomembranous colitis (PMC) and is a major cause of nosocomially acquired antibiotic-associated diarrhea (AAD) in the developed world (11). Several typing schemes have been developed to determine the relatedness of strains of C. difficile associated with infection, including serotyping (6, 16), immunoblotting (8), arbitrarily primed PCR (1, 15), pulsed-field gel electrophoresis (PFGE; 5, 9, 15), and PCR ribotyping (4, 7, 13). Collaborative studies have also been undertaken to assess the accordance, relative reliability, and discriminatory power of different schemes (3-5, 9, 10, 12-15). PCR ribotyping has been reported to provide a discriminatory, reproducible, and simple alternative to other typing methods (4). This technique has a number of advantages over other methods; specifically, PCR ribotyping has been shown to be more discriminatory than arbitrarily primed PCR (5) and serotyping (13) and is quicker and simpler than PFGE. PCR ribotyping has one further advantage over PFGE, since some isolates of C. difficile have excessive endogenous nuclease activity that renders them untypeable by PFGE (9, 10, 15). In the present study a library was constructed that comprises 116 distinct types of C. difficile identified on the basis of differences in amplification profiles generated by a modified PCR ribotyping technique (13). It is hoped that the library will facilitate global analysis of the epidemiology and relative virulence of strains of this nosocomial pathogen.

Bacterial isolates and PCR ribotyping. The Anaerobe Reference Unit of the Public Health Laboratory Service, based at the University Hospital of Wales in Cardiff, has provided a *C. difficile* typing service to hospitals throughout England and Wales since 1993. A modified PCR ribotyping scheme (13) has been the method of choice for typing isolates from the United Kingdom since 1995.

The identity of isolates of *C. difficile* submitted for typing was confirmed initially by the assessment of recognized phenotypic criteria (2). Enterotoxin (A) and cytotoxin (B) production were determined by the Tox A TEST immunoassay (TechLab; BioConnections, Leeds, United Kingdom) and Vero cell cytotoxicity (2), respectively.

The 2,030 isolates analyzed in the present study comprised 1,235 isolates from stool samples from hospital patients, 395 isolates from stool samples referred via community practitioners, 150 isolates from the hospital environment, 27 isolates from veterinary sources, 89 isolates from the general environment, 1 isolate from an extraintestinal human site, and 133 reference strains held in the National Collection of Type Cultures, the American Type Culture Collection and the Culture Collection, University of Göteborg, and in the personal collections of *C. difficile* types held by Delmee and others (6, 16) and other members of the International Study Group on *C. difficile* (3).

PCR ribotyping was performed in duplicate, with slight modifications to a method described previously (13). Briefly, bacteria were harvested from overnight anaerobic cultures on Fastidious Anaerobe Agar (LabM, Bury, United Kingdom) supplemented with 6% horse blood. Crude template nucleic acid was prepared by resuspension of cells in a 5% (wt/vol) solution of Chelex-100 (Bio-Rad, Hemel Hempstead, United Kingdom) and boiling for 12 min. After the removal of cellular debris by centrifugation (15,000 \times g for 10 min), the superna-

L 81 82 83 84 85 L 86 87 88 89 90 L

FIG. 1. PCR ribotype profiles obtained with strains belonging to PCR ribotypes 81 to 90. Lane L refers to 100-bp ladder (200 bp - 1 kbp).

^{*} Corresponding author. Mailing address: Anaerobe Reference Unit, Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff CF4 4XW, United Kingdom. Phone: 01222 742378. Fax: 01222 742161. E-mail: Brazier@cf.ac.uk.

TABLE 1. PCR ribotypes of <i>C. difficile</i> depicting type strain,					TABLE 1—Continued				
PCR	Type	Production of	No. of	Comment ^a	PCR ribotype	Type strain	Production of toxin A/B	No. of isolates	Comment ^a
поотуре	strain	toxin A/B	isolates		074	IS72	-/-	1	
001	R8366	+/+	846	Serogroup G	075	IS93	+/+	1	Serogroup A ₁
002	R8375	+/+	60	Serogroup A_2	076	R11548 R10955	+/+	4	Serogroup A_8
003	R8386	+/+	5		078	R7605	+/+	13	Weak toxin expression
005	R8373	+/+	54		079	R7606	-/-	1	·····
006	R8268	+/+	11		081	R9764	+/+	9	
007	R8264	+/+	1		082	R7638	-/-	1	
008	R10568	+/+	2	с т	083	R10566	+/+	1	Serogroup S_1
009	R8269	-/-	46	Serogroup I	085	R12098	_/_	4	Serogroup X
010	K8270	_/_	110	nity isolate	086	R12090	+/+	3	Serogroup A
011	R7619	+/+	4		087	R11840	+/+	5	
012	R6187	+/+	73		088	R10855 P8603	-/-	2	
013	R5252 D11446	+/+	12	Saragroup H	039	R10737	+/+	1	
014	R11440 R6685	+/+	104	Serogroup G	091	R8643	-/-	1	
015	R10424	+/+	2	Selogioup G	092	R10630	+/+	4	
017	R7404	-/+	32	Serogroup F	093	R8853	+/+	1	
018	R6184	+/+	10	Serogroup A ₈	094	R10078	+/+	4	
019	R8637	+/+	1		095	R8858	+/+	1	
020	R10079	+/+	84	Serogroup H	096	R9739 R8014	+/+	2	
021	R8763	+/+	5	Serogroup A_1	098	R9116	-/-	2	
022	R4202 D6028	+/+	13	Weak toyin expression	099	R7425	_/_	1	
023	R6321	+/+	45	weak toxin expression	100	R12104	_/_	2	
025	R7276	+/+	2		101	R10836	+/+	1	
026	R10118	+/+	28	Weak toxin expression	104	R9180	+/+	1	
027	R12087	+/+	1	CD196 (binary toxin	106	R10459	+/+	88	
				strain)	107	R9313 D7771	+/+	1	
028	R9300	-/-	1		111	R10870	+/+	1	
029	R8438 P11004	+/+	3		112	R8631	-/-	1	
030	R11631	_/_	24	Serogroup K	114	R11212	-/-	1	
032	R6598	_/_	2	Seregroup it	115	R11244	+/+	6	Serogroup G
033	IS58	_/_	2	Serogroup E_6	116	R11347	+/+	1	
034	IS81	+/+	9	Serogroup A ₅	11/	R100/1 R11204	+/+	1	
035	R11812	-/-	8		110	R11394 R11805	+/+	1	
036	CCUG20309	-/+	1	Strain 8864	120	R11830	+/+	1	
037	K0041 NCTC11206	+/+	10	Serogroup C	121	R9378	_/_	1	
039	R10738	_/_	10	Serogroup A ₁₀	122	R9385	+/+	1	
040	R10917	_/_	1	2000Broop - 10	123	R11907	-/-	1	
041	R10920	_/_	1		124	R11919	-/-	1	
042	R11817	+/+	6		^a Refere	nce where k	nown has been ma	de to Delm	ee serotype (6).
043	NCIC11382	+/+	2						
044	R10976 R10842	+/+	2						
046	R10991	+/+	4		(1.0				
047	R10541	-/+	4		tant (10	μl) was a	added to a 100)-µI PCR	mixture containing
048	R10069	+/+	3	Weak toxin expression	50 pmol	of each p	primer 5'-CTC	GGGGT	JAAGTCGTAACA
049	R6320	+/+	8		AGG-3'	(position	is 1445 to 1466	5 of the 1	6S rRNA gene) and
050	R9414	+/+	9		5'-GCG	CCCTTT	GTAGCTTG	ACC-3' ((positions 20 to 1 of
051	R9349 R6155	-/- +/+	1		the 23S	rRNA gen	ne), 2 U of <i>Taq</i>	polymera	ase (Pharmacia), and
053	IS21	+/+	6	Serogroup K	2.25 mM	I MgCl ₂ . F	Reaction mixtu	res were s	subjected to 35 cycles
054	IS22	+/+	15	Serogroup A_1	of denat	uration at	94°C for 1 min	n, anneali	ng at 55°C for 1 min.
055	R11652	+/+	3		and exte	ension at 7	72°C for 2 min	. Amplific	cation products were
056	IS25	+/+	19		concent	rated to a	final volume o	of 25 $\hat{\mathbf{u}}$ by	v heating at 75°C for
057	IS27	+/+	5	Serogroup K	105 min	(13) befor	re electrophore	sis (150 n	nA) in 3% Metanhor
058	R10450 R0304	+/+	12	weak toxin expression	agarose	(FMC Bi	oproducts Ro	ckland M	(aine) for 6 h at 8°C
060	IS40	_/_	2	Serogroup B	Product	(I WORD VI	sublized by st	aining the	a and for 20 min in
061	R12099	+/+	1	Seregroup D	riouucu	s were vis	$(0.5 \text{ mm})^{-1}$	anning the	ble mermelization of
062	R11382	+/+	4		ethidiun	1 bromide	$(0.5 \ \mu g \ m)$). 10 ena	the normalization of
063	IS47	+/+	2	Serogroup A ₅	an gei p	atterns, a	molecular size	standard	1 (100 pp; Advanced
064	IS48	+/+	2	Serogroup A_6	Biotechi	nologies, 1	Epsom, Unite	a Kingdo	m) was run at five-
065	1849	-/-	2	Serogroup A ₇	lane inte	ervals.			
067	1551	_/_	4 ⊿	Serogroup A	Libra	ry constru	iction. PCR ri	botype pr	ofiles were analyzed
068	IS56	_/_	1	Scrögröup A ₁₀	with Gel	lCompar i	mage analysis	software	(version 4.0; Applied
069	IS59	_/_	1		Maths, 1	Kortrijk, E	Belgium). The	criterion t	for the proposal of a
070	R9367	+/+	2	Serogroup K	new libr	ary type w	as the existenc	e of clear	ly discernible, repro-
071	IS64	-/-	1	Serogroup S ₁	ducible	(at least s	ix profiles rea	uired ner	type) differences in
072	R12095	+/+	1	Serogroup X	DCD		town from the	an of oll	the manifestive to the second

Continued

d d а)ducible (at least six profiles required per type) differences in PCR ribotype pattern from those of all other existing types. The stability, reliability, and homogeneity of the patterns constituting each type have been tested with the cluster correlation algorithm with the unweighted pair group method by using arithmetic averages and fine alignment. The integrity of the library is tested routinely at monthly intervals by blind PCR ribotyping of quality control isolates. PCR ribotype profiles from routine clinical isolates are compared to those profiles which define the library by maximum matching with Pearson correlation.

Figure 1 depicts the amplification profile obtained with 10 different PCR ribotypes within the library. At present, of the 2,030 isolates of C. difficile typed by this method, 116 distinct PCR ribotypes have been recognized (Table 1). A representative type strain of each PCR ribotype has been stored on cryobeads (ProLab Diagnostics, Wirral, United Kingdom) and frozen at -80°C.

Strains within the library have also been analyzed by other typing schemes through international collaboration (3). The ribotyping method correlates with other typing schemes and allows subtyping of many of the types produced by other methods (Table 1) (3, 9, 13). In addition, all members of a single type have the same toxin A and toxin B production profiles, a characteristic which is not always exhibited by other typing schemes.

Routine typing of isolates of C. difficile from the United Kingdom. Of the isolates of C. difficile from patients in hospitals in the United Kingdom (n = 1,235), a single, distinct PCR ribotype (type 1) has been found to be responsible for 55% (n = 682) of all referrals to the Anaerobe Reference Unit. However, it is intriguing that PCR ribotype 1 is detected less frequently (7.5%; n = 30) among isolates referred by community practitioners (n = 395). Type 1, a subtype of serogroup G (3, 13), may be a particularly virulent or transmissible clone of C. difficile or may have been selected by the particular antibiotic regimens used in hospitals in the United Kingdom. Research into the possible clonality of ribotype 1 is currently being undertaken. However, PFGE analysis of PCR ribotype 1 and serogroup G is not a viable option because these isolates produce excessive nuclease activity and are untypeable by this method (9, 10). Isolates which were untypeable by PFGE have also been encountered in nosocomial outbreaks in the United States (15). The 14 isolates described by Samore et al. (15) have been included in the present study and were found to belong to PCR ribotype 1, indicating that this type may also be a potential problem in the United States.

The library contains a number of types that exhibit no toxin A activity but produce active cytotoxicity (Table 1). Some of the strains constituting these types have been isolated from individuals with active AAD or PMC and highlight the limitations of using only toxin A assays for direct detection of C. difficile in stool samples.

The current reference library of fully characterized PCR ribotypes seems ideal for use by groups wishing to compare the performance of other fingerprinting or typing methods and by those studying the various virulence factors attributed to C. difficile. It is hoped that use of the library will facilitate epidemiology and aid virulence studies on this important nosocomial pathogen.

We thank the members of the International Study Group on C. difficile for kindly providing strains.

REFERENCES

- 1. Barbut, F., N. Mario, J. Frottier, and J. C. Petit. 1993. Use of arbitrary primer PCR for investigating an outbreak of *Clostridium difficile*-associated diarrhoea in AIDS patients. Eur. J. Clin. Microbiol. Infect. Dis. **12**:724–795.
- 2. Brazier, J. S. 1993. Role of the laboratory in investigations of Clostridium difficile diarrhoea. Clin. Infect. Dis. 16(Suppl. 4):228-233.
- 3. Brazier, J. S., M. E. Mulligan, M. Delmee, S. Tabaqchali, and the International Clostridium difficile Study Group. 1997. Preliminary findings of the International Study Group on Clostridium difficile. Clin. Infect. Dis. 25(Suppl. 2):199-201.
- Cartwright, C. P., F. Stock, S. E. Beekmann, E. C. Williams, and V. J. Gill. 1995. PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile. J. Clin. Microbiol. 33:184-187.
- Collier, M. C., F. Stock, P. C. DeGirolami, M. H. Samore, and C. P. Cartwright. 1996. Comparison of PCR-based approaches to molecular epidemiologic analysis of *Clostridium difficile*. J. Clin. Microbiol. 34:1153–1157.
- 6. Delmee, M. 1985. Serogrouping of Clostridium difficile strains by slide agglu-
- tination. J. Clin. Microbiol. **21**:323–327. **Gürtler, V.** 1993. Typing of *Clostridium difficile* strains by PCR-amplification of variable length 16S-23S rDNA spacer regions. J. Gen. Microbiol. 139: 3089-3097
- 8. Heard, S. R., B. Rasburn, R. C. Matthews, and S. Tabaqchali. 1986. Immunoblotting to demonstrate antigenic and immunogenic differences among nine standard strains of Clostridium difficile. J. Clin. Microbiol. 24:284-287.
- 9. Hyett, A. P., J. S. Brazier, and G. L. O'Neill. 1997. Pulsed-field gel electrophoresis as a method for typing Clostridium difficile in the routine laboratory. Rev. Med. Microbiol. 8(Suppl. 1):S63-S64.
- 10. Kato, H., N. Kato, K. Watanabe, K. Ueno, Y. Sakata, and K. Fujita. 1996. Relapses or reinfections: analysis of a case of Clostridium difficile-associated colitis by two typing systems. Curr. Microbiol. 33:220-223.
- 11. Lyerly, D. M., H. C. Krivan, and T. D. Williams. 1988. Clostridium difficile: its disease and toxins. Clin. Microbiol. Rev. 1:1-18.
- 12. Mulligan, M. E., L. R. Peterson, R. Y. Y. Kwok, C. R. Clabots, and D. N. Gerding. 1988. Immunoblots and plasmid fingerprints compared with serotyping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J. Clin. Microbiol. 26:41-46.
- 13. O'Neill, G. L., F. T. Ogunsola, J. S. Brazier, and B. I. Duerden. 1996. Modification of a PCR-ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2:205-209.
- 14. Rupnik, M., V. Avensani, M. Janc, C. von Eichel-Streiber, and M. Delmee. 1998. A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J. Clin. Microbiol. 36:2240-2247.
- 15. Samore, M. H., M. Kristjansson, L. Venkataraman, P. C. DeGirolami, and R. D. Arbeit. 1996. Comparison of arbitrarily-primed polymerase chain reaction, restriction enzyme analysis and pulsed-field gel electrophoresis for typing Clostridium difficile. J. Microbiol. Methods 25:215-224.
- 16. Toma, S., G. Lesiak, M. Magus, H. L. Lo, and M. Delmee. 1988. Serotyping of Clostridium difficile. J. Clin. Microbiol. 26:426-428.